JPS6011408B2 - Extruded insulated cable continuous cooling device - Google Patents

Extruded insulated cable continuous cooling device

Info

Publication number
JPS6011408B2
JPS6011408B2 JP53061921A JP6192178A JPS6011408B2 JP S6011408 B2 JPS6011408 B2 JP S6011408B2 JP 53061921 A JP53061921 A JP 53061921A JP 6192178 A JP6192178 A JP 6192178A JP S6011408 B2 JPS6011408 B2 JP S6011408B2
Authority
JP
Japan
Prior art keywords
cooling
insulated cable
container
extruded insulated
condensable gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53061921A
Other languages
Japanese (ja)
Other versions
JPS54153292A (en
Inventor
善輔 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP53061921A priority Critical patent/JPS6011408B2/en
Publication of JPS54153292A publication Critical patent/JPS54153292A/en
Publication of JPS6011408B2 publication Critical patent/JPS6011408B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は押出し絶縁ケーブルをその製造工程中において
連続的に冷却する押出し絶縁ケーブル連続冷却装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extruded insulated cable continuous cooling device that continuously cools an extruded insulated cable during its manufacturing process.

例えば、架橋ポリエチレンケーブルを製造するに際して
は、押出機による押出し工程で得られたポリエチレン絶
縁ケーブルを冷やさないで直ちに架橋装置による架橋工
程を通して加熱架橋を行わせ、その後に冷却装置による
冷却工程に通して室温程度まで冷却している。
For example, when manufacturing a crosslinked polyethylene cable, the polyethylene insulated cable obtained through an extrusion process using an extruder is immediately heat-crosslinked through a crosslinking process using a crosslinking device without being cooled, and then passed through a cooling process using a cooling device. It is cooled to about room temperature.

しかしながら、従来は冷却装置で冷却水を用い、水の顕
熱を利用して冷却しているので、冷却効率が悪い欠点が
あり、またこの関係で冷却工程が長くなる欠点があった
However, conventionally, a cooling device uses cooling water and uses the sensible heat of the water for cooling, which has the disadvantage of poor cooling efficiency and, in this connection, the disadvantage that the cooling process becomes long.

本発明の目的は、冷却効率の向上を図ることができ、且
つ気化した冷却媒体を効果的に液化できる押出し絶縁ケ
ーブル連続冷却装置を提供するにある。
An object of the present invention is to provide an extruded insulated cable continuous cooling device that can improve cooling efficiency and effectively liquefy a vaporized cooling medium.

本発明では、冷却工程で沸騰冷却用冷却媒体を用い、移
動しつつある押出し絶縁ケーブルをこの冷却媒体を収容
した冷却容器内で沸騰冷却により連続的に効率よく冷却
し、またこの過程で気化した冷却媒体は凝縮部で再液化
して冷却容器に戻し再使用することを特徴としている。
In the present invention, a cooling medium for boiling is used in the cooling process, and a moving extruded insulated cable is continuously and efficiently cooled by boiling in a cooling container containing the cooling medium. The cooling medium is characterized by being reliquefied in the condensing section and returned to the cooling container for reuse.

このような冷却手段を採用した場合には、冷却媒体の凝
縮都内で不凝縮性ガスが発生すると、冷却容器内に分留
してきて十分な冷却能力を保持することが困難となる。
ことにCVケーブルの架橋の場合には、メタンの如きガ
スが発生することが広く知られている。気相と液相とが
共存する冷却の場合には、このような不凝縮ガスが発生
すると冷却能力に悪影響がでる。特に、メタンは沸点が
−164qoであり、通常の水冷等では凝縮しない。そ
こで本発明では、このような不凝縮ガスを分留分離し、
冷却効率の低下を防止する点も他の1つの特徴とするも
のである。沸騰冷却用冷却媒体としては、例えばフロン
、フッ素油、或はトリフロロェチルアルコール等を用い
る。
When such a cooling means is employed, if non-condensable gas is generated in the condensation area of the cooling medium, it will be fractionated in the cooling container, making it difficult to maintain sufficient cooling capacity.
In particular, it is widely known that gases such as methane are generated when CV cables are bridged. In the case of cooling in which a gas phase and a liquid phase coexist, the generation of such non-condensable gas has an adverse effect on the cooling capacity. In particular, methane has a boiling point of -164 qo and is not condensed by normal water cooling. Therefore, in the present invention, such non-condensable gas is separated by fractional distillation,
Another feature is that it prevents a decrease in cooling efficiency. As the cooling medium for boiling, for example, fluorocarbon, fluorine oil, trifluoroethyl alcohol, or the like is used.

この中で、例えばフロンのR−11(CC13F)、R
−112(CC12F・CC12F)、R−113(C
C12F・CCIF2)等の平衡蒸気圧は第1図の如く
で、温度と圧力が一義的に決る。従って、被冷却体であ
るケーブルがフロンの容器内に入ると、その温度が平衡
温度より高い場合には、フロンが沸騰し、ケーブルより
蒸発潜熱を奮い気化する。従って、ケーブルはフロンの
潜熱を利用して効率よく冷却されることになる。フッ素
油としては、例えばC8F,60、C3F,6、C7F
,4、C5F,2、C,oF,8、C,2F27N等を
用いることができる。
Among these, for example, Freon R-11 (CC13F), R
-112 (CC12F/CC12F), R-113 (C
The equilibrium vapor pressure of C12F, CCIF2), etc. is as shown in Figure 1, and is primarily determined by temperature and pressure. Therefore, when the cable to be cooled enters the Freon container and its temperature is higher than the equilibrium temperature, the Freon boils, exerts latent heat of vaporization from the cable, and vaporizes. Therefore, the cable can be efficiently cooled using the latent heat of freon. Examples of fluorine oil include C8F,60, C3F,6, and C7F.
,4, C5F,2, C,oF,8, C,2F27N, etc. can be used.

このようなフッ素油中のC8F,60(パーフルオロサ
イクリツクエーテルミツクスチヤ)の物理特性を示すと
次の通りである。C8F,60の物理特性 沸点 102.20
流動点 −93午0
蒸気圧 260で3仇吻日鞍bs
比重 25午0で1.
76粘度 260で0.8センチスト
ーク蒸発潜熱 21Kcal
ノタ比熱 0.2&al
/タ℃絶縁耐圧 25o0で21.
7KV/側ねn6 25q0で
3×10‐4以上誘電率
1.87次に、トリフロロェチルアルコールは沸
点が75℃であるが、これは単体で用いてもよいが、水
と混合して用いることもできる。
The physical properties of C8F,60 (perfluorocyclic ether mixture) in such fluorine oil are as follows. Physical properties of C8F,60 Boiling point 102.20
Pour point -93pm
Vapor pressure 260 and 3 days bs
Specific gravity: 1 at 25 o'clock.
76 Viscosity 0.8 centistoke at 260 Latent heat of vaporization 21 Kcal
Nota specific heat 0.2&al
/ ℃ dielectric strength 25o0 21.
Dielectric constant of 3×10-4 or more at 7KV/side n6 25q0
1.87 Next, trifluoroethyl alcohol has a boiling point of 75°C, and it may be used alone or in a mixture with water.

例えば、トリフロロェチルアルコール85重量%に水1
5重量%を混合したものを用いる。第2図は本発明に係
る押出し絶縁ケーブル連続冷却装置を含む絶縁ケーブル
製造装置の一例を示したものである。
For example, 85% by weight of trifluoroethyl alcohol and 1 part of water.
A mixture of 5% by weight is used. FIG. 2 shows an example of an insulated cable manufacturing apparatus including an extruded insulated cable continuous cooling device according to the present invention.

図示のように、ケーブル心線1はターンシーブ2を経て
押出機3のクロスヘッド4に入り、外周に架橋剤入り未
架橋のゴム、プラスチック絶縁材が押出し被覆され、押
出し絶縁ケーブル5となる。
As shown in the figure, a cable core 1 passes through a turn sheave 2 and enters a crosshead 4 of an extruder 3, and its outer periphery is coated with an uncrosslinked rubber or plastic insulating material containing a crosslinking agent, thereby forming an extruded insulated cable 5.

押出し絶縁ケーブル5は、直ちに架橋装置6の架橋筒7
の中に入り加熱架橋される。
The extruded insulated cable 5 is immediately inserted into the bridging tube 7 of the bridging device 6.
The material is heated and cross-linked.

架橋は、例えば不活性ガスを用いたり、赤外線や超音波
等を用いたりして行う。架橋済の押出し絶縁ケーブル5
は、次いで本発明に係る絶縁ケーブル連続冷却装置8に
入り、室温まで冷却される。
Crosslinking is performed using, for example, an inert gas, infrared rays, ultrasonic waves, or the like. Crosslinked extruded insulated cable 5
then enters the insulated cable continuous cooling device 8 according to the invention and is cooled to room temperature.

この冷却装置8は、沸騰冷却用冷却媒体9で押出し絶縁
ケーブル5を沸騰冷却する沸騰冷却部10と、気化した
冷却媒体9を取出して液化し再び沸騰冷却部101こ房
す凝縮部11と、この凝縮部11に接続されていて気相
の冷却媒体中から不凝縮ガスを分留分離する不凝縮ガス
分離部12とを備えている。沸騰冷却部10は、架橋筒
7に連続して設置された縦長で円筒状をした冷却容器1
3を備え、この冷却容器13内には沸騰冷却用気液二相
型冷却媒体9としてフロン9が充填されている。
This cooling device 8 includes a boiling cooling section 10 that boils and cools the extruded insulated cable 5 with a boiling cooling medium 9, a condensing section 11 that takes out the vaporized cooling medium 9, liquefies it, and returns it to a boiling cooling section 101. A non-condensable gas separation section 12 is connected to the condensing section 11 and separates non-condensable gas from the gaseous cooling medium by fractional distillation. The boiling cooling unit 10 includes a vertically long cylindrical cooling container 1 that is installed continuously on the bridge tube 7.
3, and this cooling container 13 is filled with Freon 9 as a vapor-liquid two-phase cooling medium 9 for boiling cooling.

架橋された高温の押出し絶縁ケーブル5が冷却容器13
内に入り、フロン9(例えばR−113)の液にふれる
と、フロン9は沸騰し、押出し絶縁ケーブル5が蒸発潜
熱を奮って気化し、気相となる。従って、冷却容器13
内は下部にフロン9が液相で存在し、上部にフロン9が
気相で存在する気液二相型の冷却媒体9で満たされる。
押出し絶縁ケーブル5はフロン9の蒸発潜熱により効率
よく冷却されることになる。この際、フロン9の気相の
区間を適当にとると、押出し絶縁ケーブル5は液相のフ
ロン9に至るまでに気相のフロン9により徐冷すること
ができ、押出し絶縁ケーブル5が急激に冷却されるのを
防止できる。これは、気相のフロン9とケーブル5間の
熱伝達とを比較した場合、桁違いに後者の方が熱伝達効
果が大きいことになる。気相での冷却は、液の蒸発の強
さが大きくなると、気相の速度が大きくなり、冷却効果
が大きくなるので、徐冷が不十分な場合にはこれを改善
する方向に作用するメリットがある。冷却されたケーブ
ル6はシール部Sを経て外部に導出される。凝縮部11
は、冷却容器13に並列に設けられたバイパス形の分岐
路14を備え、この分岐路14の途中には凝縮器15が
設けられ、気相となったフロン9を分岐路14を経てこ
の凝縮器15に導き、凝縮させて再液化し、冷却容器1
3に戻している。
The cross-linked high temperature extruded insulated cable 5 is placed in the cooling container 13
When the CFC 9 enters the inside and comes into contact with the liquid of Freon 9 (for example, R-113), the Freon 9 boils, and the extruded insulated cable 5 is vaporized by the latent heat of vaporization, becoming a gas phase. Therefore, the cooling container 13
The inside is filled with a gas-liquid two-phase cooling medium 9, in which the lower portion contains Freon 9 in a liquid phase and the upper portion contains Freon 9 in a gas phase.
The extruded insulated cable 5 is efficiently cooled by the latent heat of vaporization of the freon 9. At this time, if the section of the gas phase of the fluorocarbon 9 is set appropriately, the extruded insulated cable 5 can be gradually cooled by the gas phase fluorocarbon 9 until it reaches the liquid phase fluorocarbon 9, and the extruded insulated cable 5 suddenly becomes It can prevent cooling. This means that when comparing the heat transfer between the gas phase Freon 9 and the cable 5, the latter has an order of magnitude greater heat transfer effect. Cooling in the gas phase has the advantage that as the strength of liquid evaporation increases, the speed of the gas phase increases and the cooling effect increases, so if slow cooling is insufficient, it will work towards improving this. There is. The cooled cable 6 is led out through the seal section S. Condensing section 11
is equipped with a bypass type branch passage 14 provided in parallel with the cooling container 13, and a condenser 15 is provided in the middle of this branch passage 14, and the fluorocarbon 9 in the gas phase is passed through the branch passage 14 and condensed. into the cooling container 15, condensed and reliquefied.
I'm reverting to 3.

凝縮器15では、容器15a内で冷却パイプ15bの中
に水のような冷却媒体を通し、分岐路14の放熱部14
aを通るフロンガスと熱交換している。冷却容器13内
の圧力は、凝縮器15の交換熱量とケーブル5の温度で
決る冷煤温度で第1図のような平衡蒸気圧曲線から一義
的に決る。
In the condenser 15, a cooling medium such as water is passed through the cooling pipe 15b in the container 15a, and the heat dissipation section 14 of the branch passage 14 is heated.
It exchanges heat with the fluorocarbon gas passing through a. The pressure inside the cooling container 13 is uniquely determined by the cold soot temperature determined by the amount of heat exchanged by the condenser 15 and the temperature of the cable 5 from the equilibrium vapor pressure curve as shown in FIG.

また、冷却容器13内の温度は、気相、液相ともはゞ同
一温度になっている。不凝縮ガス分離部12は、分岐路
14の途中に常開のバルブ17aを介して接続されたり
ザーバタンク16を備え、リザーバタンク16には外部
と蓮通・遮断させるための常閉のバルブ17bを備え、
且つリザーバタンク16を冷却する水ジャケット等より
なる補助冷却手段18を備えている。
Further, the temperature inside the cooling container 13 is the same in both the gas phase and the liquid phase. The non-condensable gas separation section 12 is connected to the branch path 14 via a normally open valve 17a, and includes a reservoir tank 16, and the reservoir tank 16 is provided with a normally closed valve 17b for communicating with and shutting off the outside. Prepare,
In addition, an auxiliary cooling means 18 consisting of a water jacket or the like for cooling the reservoir tank 16 is provided.

このため、ケーブル5の冷却の過程でメタン等の不凝縮
ガスが発生すると、分岐路14で分留分離されてリザ−
バタンク16に集まる。
Therefore, if non-condensable gas such as methane is generated during the cooling process of the cable 5, it is fractionated and separated in the branch path 14 and stored in the reservoir.
Gather at Batank 16.

従って、適当な間隔をおいてバルブ17aを閉じ、バル
ブ17bを開くと、溜った不凝縮ガスが放出される。こ
の場合、リザーバタンク16を補助冷却手段18で冷却
しておくと、より効果的に不凝縮ガスをリザーバタンク
16に集めることができる。このようにして不凝縮ガス
を取り除くと、不凝縮ガスによる冷却効率の低下を防止
できる。第3図は本発明に係る冷却装置の他の実施例を
示したものである。
Therefore, by closing the valve 17a and opening the valve 17b at appropriate intervals, the accumulated non-condensable gas is released. In this case, if the reservoir tank 16 is cooled by the auxiliary cooling means 18, the non-condensable gas can be collected in the reservoir tank 16 more effectively. By removing the non-condensable gas in this way, it is possible to prevent the cooling efficiency from decreasing due to the non-condensable gas. FIG. 3 shows another embodiment of the cooling device according to the present invention.

本実施例では、凝縮部11の構成と、不凝縮ガス分離部
12の取付け位置を変えている。即ち、本実施例の凝縮
部11では、分岐路14を冷却容器13から分岐して上
方に立上げた形状とし、その上端に凝縮器15の容器1
5aを蓮通接続して気相の冷却媒体9がこの容器15a
内に直接入るようにし、また容器15a内には冷却水等
を通す冷却パイプ15bを配置している。このようにす
ると、凝縮器15の容器15a内で再液化され液相とな
った冷却媒体9はその目童で同じ分岐路14を下って冷
却容器13に戻されることになる。また本実施例の不凝
縮ガス分離部12では、リザーバタンク16を凝縮部1
1の容器15aに常関のバルブ17aを介して接続し、
リザーバタンク16の上部に外部と蓮通・遮断させるた
めの常閉のバルブ17bを接続している。
In this embodiment, the configuration of the condensing section 11 and the mounting position of the non-condensable gas separation section 12 are changed. That is, in the condensing section 11 of this embodiment, the branch path 14 is branched from the cooling container 13 and raised upward, and the container 1 of the condenser 15 is placed at the upper end of the branch path 14.
5a is connected through a lotus, and the gas phase cooling medium 9 is transferred to this container 15a.
A cooling pipe 15b for passing cooling water or the like is arranged inside the container 15a. In this way, the cooling medium 9 that has been reliquefied into a liquid phase within the container 15a of the condenser 15 is returned to the cooling container 13 by going down the same branch path 14. Furthermore, in the non-condensable gas separation section 12 of this embodiment, the reservoir tank 16 is connected to the condensing section 1.
1 via a regular valve 17a,
A normally closed valve 17b is connected to the upper part of the reservoir tank 16 to allow communication with and isolation from the outside.

このようにすると、凝縮部11の容器15a内の上部側
(冷却容器13から遠い側)に不凝縮ガスがたまり易く
、この位置にリザーバタンク16を蓮通接続しているの
で、効率よく不凝縮ガスを除去することができる。上記
各実施例では、架橋後に冷却を行う場合について説明し
たが、本発明はこれに限定されるものではなく、例えば
架橋を行わない場合には押出し後、直ちに冷却をする押
出し絶縁ケーブルの製造にも適用できることは勿論であ
る。
In this way, non-condensable gas tends to accumulate in the upper side of the container 15a of the condensing section 11 (the side far from the cooling container 13), and since the reservoir tank 16 is connected to this position, the non-condensable gas can be efficiently condensed. Gas can be removed. In each of the above embodiments, the case where cooling is performed after cross-linking has been described, but the present invention is not limited to this. For example, in the case where cross-linking is not performed, extruded insulated cables that are cooled immediately after extrusion can be manufactured. Of course, it can also be applied.

以上説明したように本発明に係る押出し絶縁ケーブル連
続冷却装置は、沸騰冷却用冷却媒体を用い、その蒸発「
潜熱」により押出し絶縁ケーブルを沸騰冷却するので、
「顕熱」を利用した従来の冷却装置よりも効率よく冷却
を行うことができる。
As explained above, the extruded insulated cable continuous cooling device according to the present invention uses a boiling cooling medium and its evaporation.
The extruded insulated cable is boiled and cooled by "latent heat".
It can perform cooling more efficiently than conventional cooling devices that utilize "sensible heat."

このため、ケーブル通過方向に対する冷却装置の長さを
短かくすることができ、占有面積を小さくすることがで
きる。特に本発明では、ケーブル冷却の過程で発生する
不凝縮ガスを凝縮部で分留分離し、取り除くので、冷却
効率の低下を防止し、効率よく冷却を行うことができる
Therefore, the length of the cooling device in the cable passing direction can be shortened, and the occupied area can be reduced. In particular, in the present invention, since non-condensable gas generated during the cable cooling process is fractionated and separated in the condensing section and removed, a decrease in cooling efficiency can be prevented and cooling can be performed efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷却媒体としてフロンの温度−圧力特性図、第
2図は本発明の冷却装置の一例を用いた押出し絶縁ケー
ブル製造装置の概略断面図、第3図は本発明に係る冷却
装置の他の実施例の要部断面図である。 8・・・・・・連続冷却装置、9・・・・・・沸騰冷却
用冷却媒体、10・・・・・・沸騰冷却部、11…・・
・凝縮部、12・・・・・・不凝縮ガス分離部、13・
・・・・・冷却容器、14・・・・・・分岐路、15・
・…・凝縮器、16・・・・・・リザーバタンク、17
a,17b……バルブ、18……補助冷却手段。 第1図 第2図 第3図
Fig. 1 is a temperature-pressure characteristic diagram of CFC as a cooling medium, Fig. 2 is a schematic sectional view of an extruded insulated cable manufacturing apparatus using an example of the cooling device of the present invention, and Fig. 3 is a diagram of the cooling device according to the present invention. FIG. 7 is a sectional view of a main part of another embodiment. 8... Continuous cooling device, 9... Cooling medium for boiling cooling, 10... Boiling cooling section, 11...
・Condensation section, 12... Non-condensable gas separation section, 13.
...Cooling container, 14... Branch road, 15.
...Condenser, 16...Reservoir tank, 17
a, 17b...Valve, 18...Auxiliary cooling means. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 製造された押出し絶縁ケーブルを連続的に通して冷
却する押出し絶縁ケーブル連続冷却装置において、冷却
容器の中に沸騰冷却用冷却媒体を収容していてその中を
通る前記ケーブルを前記冷却媒体にて沸騰冷却させる沸
騰冷却部と、前記冷却容器から分岐されて設けられた分
岐路及びこの分岐路の接続された凝縮器を備えて前記冷
却容器内で気化された前記冷却媒体を取出して液化し再
び前記冷却容器に戻す凝縮部と、前記凝縮部に接続され
ていて気相の前記冷却媒体の中から不凝縮ガスを分留分
離して除去する不凝縮ガス分離部とを具備したことを特
徴とする押出し絶縁ケーブル連続冷却装置。 2 前記不凝縮ガス分離部は、前記凝縮部に接続された
リザーバタンクと、前記リザーバタンク内に溜った不凝
縮ガスを抽出させる制御を行うバルブとを有することを
特徴とする特許請求の範囲第1項に記載の押出し絶縁ケ
ーブル連続冷却装置。 3 前記不凝縮ガス分離部は、前記リザーバタンクを冷
却する補助冷却手段を備えていることを特徴とする特許
請求の範囲第2項に記載の押出し絶縁ケーブル連続冷却
装置。 4 前記冷却媒体として沸騰冷却用気液二相型冷却媒体
を用いて前記冷却容器内に収容し、前記ケーブルを前記
冷却容器内で前記冷却媒体の気相中に導き、次いで液相
中に導く構造にしたことを特徴とする特許請求の範囲第
1項乃至第3項のいずれかに記載の押出し絶縁ケーブル
連続冷却装置。
[Scope of Claims] 1. In an extruded insulated cable continuous cooling device that continuously cools a manufactured extruded insulated cable by passing it through the cable, a cooling medium for boiling cooling is contained in a cooling container, and the cable passes through the cooling container. The cooling medium is vaporized in the cooling container, and includes a boiling cooling unit that boils and cools the cooling medium with the cooling medium, a branch path branched from the cooling container, and a condenser connected to the branch path. a condensing section that takes out the liquid, liquefies it, and returns it to the cooling container; and a non-condensable gas separation section that is connected to the condensing section and separates and removes non-condensable gas from the cooling medium in the vapor phase. An extruded insulated cable continuous cooling device characterized by: 2. The non-condensable gas separation section includes a reservoir tank connected to the condensing section, and a valve that performs control to extract the non-condensable gas accumulated in the reservoir tank. The extruded insulated cable continuous cooling device according to item 1. 3. The extruded insulated cable continuous cooling device according to claim 2, wherein the non-condensable gas separation section includes auxiliary cooling means for cooling the reservoir tank. 4 Using a vapor-liquid two-phase cooling medium for boiling cooling as the cooling medium and storing it in the cooling container, guiding the cable into the gas phase of the cooling medium and then into the liquid phase within the cooling container. An extruded insulated cable continuous cooling device according to any one of claims 1 to 3, characterized in that the extruded insulated cable continuous cooling device has a structure.
JP53061921A 1978-05-24 1978-05-24 Extruded insulated cable continuous cooling device Expired JPS6011408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53061921A JPS6011408B2 (en) 1978-05-24 1978-05-24 Extruded insulated cable continuous cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53061921A JPS6011408B2 (en) 1978-05-24 1978-05-24 Extruded insulated cable continuous cooling device

Publications (2)

Publication Number Publication Date
JPS54153292A JPS54153292A (en) 1979-12-03
JPS6011408B2 true JPS6011408B2 (en) 1985-03-26

Family

ID=13185103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53061921A Expired JPS6011408B2 (en) 1978-05-24 1978-05-24 Extruded insulated cable continuous cooling device

Country Status (1)

Country Link
JP (1) JPS6011408B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177003U (en) * 1987-05-08 1988-11-16
JPS6411505U (en) * 1987-07-09 1989-01-20
US11168296B2 (en) 2013-12-10 2021-11-09 Abec, Inc. Attachment device for single use containers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177003U (en) * 1987-05-08 1988-11-16
JPS6411505U (en) * 1987-07-09 1989-01-20
US11168296B2 (en) 2013-12-10 2021-11-09 Abec, Inc. Attachment device for single use containers

Also Published As

Publication number Publication date
JPS54153292A (en) 1979-12-03

Similar Documents

Publication Publication Date Title
JPS61208490A (en) Heat transfer method, which use mixed fluid as heat-dissipating agent, to cold fluid from hot fluid and device thereof
JPS6011408B2 (en) Extruded insulated cable continuous cooling device
JPS611958A (en) Manufacture of heat and/or low temperature by compression type machine worked by mixed working fluid
US3166914A (en) Process of refrigeration
GB1595094A (en) Method and system for cooling electrical apparatus
US3452720A (en) Heat storage heat exchanger
JPS6016685B2 (en) Manufacturing method of extruded insulated cable
US3513660A (en) Removal of congealable impurities from gases
JPS6016687B2 (en) Extruded insulated cable continuous cooling device
Agarwal et al. Dielectric Studies in Solid Phase EBBA
US2797557A (en) Absorption refrigeration apparatus
Yoon et al. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube
JPH054596B2 (en)
Ichikawa et al. Operating characteristics of two-phase nitrogen thermosyphons
Joudi et al. Improved heat transport of heat pipes with an internal wall separating liquid and vapour streams
KR200181954Y1 (en) Apparatus for cooling water in the water cooling-warming machine or water cleaning machine
JPS6226244B2 (en)
Arman et al. Adsorption analysis of ammonia in an aqueous solution
Lund et al. Fränkl regenerator packings
JPS5854358B2 (en) How to make a heat pipe
RU2172435C1 (en) Freezing-cut trap
JPS5819657A (en) Solar heat collecting device
JP2915226B2 (en) Method and apparatus for regenerating petroleum solvent
JPH02229411A (en) Pole transformer with built-in heat pipe and preventing it from being covered with snow
SU663944A1 (en) Pipeline for cryogenic liquids