JPS60166300A - Method for epitaxial growth - Google Patents
Method for epitaxial growthInfo
- Publication number
- JPS60166300A JPS60166300A JP1961384A JP1961384A JPS60166300A JP S60166300 A JPS60166300 A JP S60166300A JP 1961384 A JP1961384 A JP 1961384A JP 1961384 A JP1961384 A JP 1961384A JP S60166300 A JPS60166300 A JP S60166300A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- epitaxial growth
- atmosphere
- growth
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/12—Liquid-phase epitaxial-layer growth characterised by the substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はInPi6よびI n GaA s P系半導
体表面上へのエピタキシャル成長方法の改良に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improved method for epitaxial growth on the surfaces of InPi6 and InGaAsP based semiconductors.
(従来技術)
1nPおよびInGaAsP 系半導体は光フアイバ通
信のキーデバイスである発光素子や受光素子用の材料と
して近年その重要性はいよいよ増しておりエピタキシャ
ル成長技術の改良が各方面で精力的に進められている。(Prior art) In recent years, 1nP and InGaAsP-based semiconductors have become increasingly important as materials for light-emitting elements and light-receiving elements, which are key devices in optical fiber communications, and improvements in epitaxial growth technology are being actively pursued in various fields. There is.
このような中にあって、エピタキシャル成長も単に平坦
な結晶表面に限らず、加工された表面、例えば格子溝上
への成長や、メサ状突起上への成長など高性能な半導体
素子製造に要求されるエピタキシャル成長技術も増々高
度化している。Under these circumstances, epitaxial growth is not limited to simply flat crystal surfaces, but is also required for the production of high-performance semiconductor devices, such as growth on processed surfaces such as lattice grooves and mesa-like protrusions. Epitaxial growth technology is also becoming increasingly sophisticated.
従来、熱分解によって表面構造の変形を生じやすいIn
P上ないしInPに近い組成のInGaAsP混晶への
エピタキシャル成長に際しては、半導体基板表面の熱分
解による変形を防ぐためにInP結晶やG a A s
結晶で作られたカバーを半導体基板に被せたり、Pの揮
発を防ぐためにPH,等を雰囲気に混入してPの分圧を
増大させるなどの対策が施されていたが、いずれも部分
的な効果に留まり、エピタキシャル成長条件に影響を与
えすに高温保持中における半導体基板の熱変形を防止す
ることはできなかりた。Conventionally, In
When epitaxially growing an InGaAsP mixed crystal with a composition on P or close to InP, InP crystal or GaAsP is used to prevent deformation of the semiconductor substrate surface due to thermal decomposition.
Countermeasures have been taken, such as placing a cover made of crystal over the semiconductor substrate and increasing the partial pressure of P by mixing PH into the atmosphere to prevent P volatilization. However, it was not possible to prevent the thermal deformation of the semiconductor substrate during high temperature maintenance, which affected the epitaxial growth conditions.
(発明の目的)
本発明の目的は上述の欠点を除去し、エピタキシャル成
長条件にほとんど影響することなく半導体基板の熱変形
を防止することができるエピタキシャル成長方法を提供
することにある。(Objective of the Invention) An object of the present invention is to provide an epitaxial growth method that eliminates the above-mentioned drawbacks and can prevent thermal deformation of a semiconductor substrate without substantially affecting epitaxial growth conditions.
(発明の構成)
本発明の構成はInPを含むInGaAsP 糸半導体
を表面にもつ半導体基板上にエピタキシャル成長を行な
う方法において、そのエピタキシャル成長開始に先立つ
前記半導体基板の高温保持期間中、その半導体基板にG
aAs結晶からなるカバーを被せ、かつ保持雰囲気にホ
スフィン(PHs)8混入することを特徴とする。(Structure of the Invention) The structure of the present invention is a method for epitaxially growing a semiconductor substrate having an InGaAsP thread semiconductor containing InP on its surface, during which the semiconductor substrate is held at a high temperature prior to the start of epitaxial growth.
It is characterized in that it is covered with a cover made of aAs crystal and that 8 phosphines (PHs) are mixed into the holding atmosphere.
(実施例) 次ζこ図面を参照して本発明の詳細な説明する。(Example) The present invention will now be described in detail with reference to the drawings.
第1図は本発明の一実施例を使用した面相エピタキシャ
ル成長装置の模式図である。半導体基板4はInP単結
晶であり炭素製の治具3の所定の位置に設置されている
。半導体基板4の上被こはG a A s単結晶からな
るカバー5が被せられ、エピタキシャル成長が開始され
るまではこの状態で保持される。雰囲気の温度が所定の
値に達した所で治具3を右方ζこ移動させ融液ホルダ2
の中に設けられた成長用融g16a及び6bに半導体基
板4を順次接触させてエピタキシャル成長を行なう。こ
れは通常液相エピタキシャル成長法として良く知られた
方法である。本実施例では反応管l内の雰囲気ガスとし
てl(2ガス及び濃度が約100 pImのPH。FIG. 1 is a schematic diagram of a phase epitaxial growth apparatus using an embodiment of the present invention. The semiconductor substrate 4 is made of InP single crystal and is placed at a predetermined position on the jig 3 made of carbon. A cover 5 made of GaAs single crystal is placed over the semiconductor substrate 4, and maintained in this state until epitaxial growth is started. When the temperature of the atmosphere reaches a predetermined value, move the jig 3 to the right and remove the melt holder 2.
Epitaxial growth is performed by sequentially bringing the semiconductor substrate 4 into contact with the growth melts 16a and 6b provided inside. This is a method well known as a normal liquid phase epitaxial growth method. In this example, the atmospheric gas in the reaction tube L was 1 (2 gases and PH with a concentration of about 100 pIm).
ガスを使用している。It uses gas.
本実施例では以上のようζこ、成長をこ先立つ高温保持
期間中、半導体基板4はカバー5及びPH3ガスの熱分
解によって生じる2分正によって保護され半導体基板の
熱分解が抑制され、半導体表面近傍の結晶品質の低下と
形状の変形が防止される。In this embodiment, as described above, during the high-temperature holding period prior to growth, the semiconductor substrate 4 is protected by the cover 5 and the 2-minute positive generated by the thermal decomposition of the PH3 gas, suppressing thermal decomposition of the semiconductor substrate and suppressing the semiconductor surface. Deterioration of crystal quality and shape deformation in the vicinity are prevented.
第2図は本実施例による半導体基板の熱変形防止の効果
を示したものである。m2図(a)は熱処理前のInP
基板20、第2図中)は通常の液相エピタキシャル成長
に相尚する熱履歴を受けた後の1nP基板20を示した
もので、これはG a A s結晶からなるカバー及び
PH,ガスを使用しない従来方法による場合を示してい
る。InP基板20上に形成されたストライブ状メサ2
1は高温保持期間中に角22の部分が熱分解によって消
失し、分解生成物の作用で底辺部分2:3Iこ堆積が生
じる。一方、上述の実施例の方法によれば、同様の熱処
理によっても何らストライプ状メサ21の変形は生じな
い。もちろん、ストライブ状メサ21以外のInP基板
20の表面に熱分解によるエッチビットないし荒れが生
じることもない。FIG. 2 shows the effect of preventing thermal deformation of a semiconductor substrate according to this embodiment. m2 diagram (a) is InP before heat treatment
The substrate 20 (in Figure 2) shows the 1nP substrate 20 after undergoing a thermal history comparable to that of ordinary liquid phase epitaxial growth, which uses a cover made of GaAs crystal, PH, and gas. The figure shows the case using the conventional method. Striped mesa 2 formed on InP substrate 20
In No. 1, the corner portion 22 disappears due to thermal decomposition during the high temperature holding period, and the bottom portion 2:3I is deposited due to the action of decomposition products. On the other hand, according to the method of the above embodiment, no deformation of the striped mesa 21 occurs even by the same heat treatment. Of course, etch bits or roughness due to thermal decomposition do not occur on the surface of the InP substrate 20 other than the striped mesa 21.
本実施例における半導体基板の保護効果は、G a A
s結晶の熱分解によって生じるAs分圧及び微小なO
a分圧、四にPH,カスから供給される2分圧によって
、半導体基板近傍lこ極めて成長速度が遅いInGaA
sP糸の成長雰囲気が形成されることによって得られて
いる。従って、PH3ガス濃度は半導体基板の保持温度
によって定まる一定の値以上にTる必要がある。例えば
PH3ガス′fA′度が低すぎた場合には成長雰囲気の
形成が阻害される結果半導体基板の保護効果が低下し、
表面荒れの原因となる。通報の成長条件ではInP基板
に対しPH3濃度の好ましい値は10〜500 ppm
である。The protective effect of the semiconductor substrate in this example is G a A
As partial pressure and minute O produced by thermal decomposition of s-crystal
InGaA, which has a very slow growth rate in the vicinity of the semiconductor substrate, is produced by a partial pressure, a partial pressure supplied from PH, and a partial pressure supplied from the gas.
This is achieved by creating an atmosphere for growing spP yarns. Therefore, the PH3 gas concentration must be higher than a certain value determined by the holding temperature of the semiconductor substrate. For example, if the PH3 gas 'fA' degree is too low, the formation of a growth atmosphere is inhibited, resulting in a reduction in the protection effect of the semiconductor substrate.
It causes surface roughness. Under the reported growth conditions, the preferred value of PH3 concentration for InP substrate is 10-500 ppm.
It is.
(発明の効果)
最後に本発明が有する効果及び利点を吸約すれば、1n
P糸ないしI n G a A s P糸基板の熱変形
が防止でき、表面に凹凸構造を有する半導体基板上へも
安定なエピタキシャル成長が可能となることである1、(Effects of the invention) Finally, if we absorb the effects and advantages of the present invention, 1n
Thermal deformation of the P yarn or InGaAs P yarn substrate can be prevented, and stable epitaxial growth can be performed even on a semiconductor substrate having an uneven structure on the surface1.
第1図は本発明の一実施例のためのY便相エピタキシャ
ル成長装置の図、第2図は半導体基板の熱変形を説明す
るための図である。図中、lは反応管、2は融液ホルダ
、3は治具、4は半導体基板、5はカバー、6a及び6
bは成長用融液、20はInP基板、21はストライプ
状メサ、22は角、23は底辺部分である。
51baAb2
43
(a)
(b)FIG. 1 is a diagram of a Y-type epitaxial growth apparatus for one embodiment of the present invention, and FIG. 2 is a diagram for explaining thermal deformation of a semiconductor substrate. In the figure, l is a reaction tube, 2 is a melt holder, 3 is a jig, 4 is a semiconductor substrate, 5 is a cover, 6a and 6
b is a growth melt, 20 is an InP substrate, 21 is a striped mesa, 22 is a corner, and 23 is a bottom portion. 51baAb2 43 (a) (b)
Claims (1)
体基板に所望の組成を有する融液を接触させて当該半導
体基板上にエピタキシャル成長を行なう方法lこおG\
て、そのエピタキシャル成長開始に先立つ前記半導体基
板の高温保持期間中、その半導体基板にG a A s
結晶からなるカバーを被せかつ保持雰囲気lこホスフィ
ン(Pus)を混入することを特徴とするエピタキシャ
ル成長方法。A method of epitaxial growth on a semiconductor substrate by bringing a melt having a desired composition into contact with a semiconductor substrate having an InGaAsP thread semiconductor layer containing 1nP on the surface.
During the high-temperature holding period of the semiconductor substrate prior to the start of epitaxial growth, GaAs is applied to the semiconductor substrate.
An epitaxial growth method characterized by covering with a cover made of crystal and mixing phosphine (Pus) in a holding atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1961384A JPS60166300A (en) | 1984-02-06 | 1984-02-06 | Method for epitaxial growth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1961384A JPS60166300A (en) | 1984-02-06 | 1984-02-06 | Method for epitaxial growth |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60166300A true JPS60166300A (en) | 1985-08-29 |
Family
ID=12004031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1961384A Pending JPS60166300A (en) | 1984-02-06 | 1984-02-06 | Method for epitaxial growth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60166300A (en) |
-
1984
- 1984-02-06 JP JP1961384A patent/JPS60166300A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4204893A (en) | Process for depositing chrome doped epitaxial layers of gallium arsenide utilizing a preliminary formed chemical vapor-deposited chromium oxide dopant source | |
US5400740A (en) | Method of preparing compound semiconductor | |
US4629532A (en) | Method of growing InGaAsP on InP substrate with corrugation | |
US4073676A (en) | GaAs-GaAlAs semiconductor having a periodic corrugation at an interface | |
JPS60166300A (en) | Method for epitaxial growth | |
JP3258847B2 (en) | Method for manufacturing semiconductor device | |
EP0746011B1 (en) | Method of producing single crystal thin film | |
US5869398A (en) | Etching of indium phosphide materials for microelectronics fabrication | |
US4662983A (en) | Multiple meltback procedure for LPE growth on InP | |
US4614672A (en) | Liquid phase epitaxy (LPE) of silicon carbide | |
CA1234036A (en) | Lpe growth on group iii-v compound semiconductor substrates containing phosphorus | |
JPS5737827A (en) | Manufacture of semiconductor device | |
US4975388A (en) | Method of forming epitaxial layers | |
US4263064A (en) | Method of liquid phase epitaxial growth | |
US4729968A (en) | Hydride deposition of phosporus-containing semiconductor materials avoiding hillock formation | |
US4717443A (en) | Mass transport of indium phosphide | |
JP2735190B2 (en) | Molecular beam epitaxy growth method and growth apparatus | |
US4601888A (en) | Protection of semiconductor substrates during epitaxial growth processes | |
JP2661155B2 (en) | Vapor phase epitaxial growth method | |
JPH01270287A (en) | Manufacture of semiconductor laser | |
JPS5965434A (en) | Vapor phase etching of compound semiconductor | |
JPS60166296A (en) | Liquid-phase epitaxial growth apparatus | |
JP2959580B2 (en) | Semiconductor crystal growth method | |
JPS607715A (en) | Manufacture of compound semiconductor device | |
EP0525617B1 (en) | Liquid-phase growth process of compound semiconductor |