JPS60165379A - Method and apparatus for continuous-type vapor growth - Google Patents

Method and apparatus for continuous-type vapor growth

Info

Publication number
JPS60165379A
JPS60165379A JP2373584A JP2373584A JPS60165379A JP S60165379 A JPS60165379 A JP S60165379A JP 2373584 A JP2373584 A JP 2373584A JP 2373584 A JP2373584 A JP 2373584A JP S60165379 A JPS60165379 A JP S60165379A
Authority
JP
Japan
Prior art keywords
chambers
chamber
vapor phase
phase growth
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2373584A
Other languages
Japanese (ja)
Inventor
Taisan Goto
後藤 泰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2373584A priority Critical patent/JPS60165379A/en
Publication of JPS60165379A publication Critical patent/JPS60165379A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To carry out vapor growth continuously and enhance productivity, by a method wherein a wafer is circulated through each chamber of a reactor partitioned into a plurality of chambers by vertical walls, and each step is carried out by passing a required gas after heating each of the chambers to a predetermined temperature. CONSTITUTION:The reactor 11 comprising A, B, C and D chambers 12, 13, 14, 15 is used, and a series of process for vapor growth is divided into 4 steps. The 4 steps are successively assigned respectively to the A-D chambers 12-15, a substrate wafer 20 is fed into each of the chambers, and the wafer 20 located in each of the chambers is heated to a temperature required for each of the steps of vapor growth process. The atmosphere in each of the chambers is replaced by nitrogen or hydrogen gas by using nozzles 18a-18d provided at central parts of the reactor 11 in correspondence with the chambers, a chlorine gas is fed into some of the chambers, while a silicon gas and a dopant gas are fed into some other ones of the chambers. Accordingly, a series of steps for vapor growth are continuously conducted in conjunction with the movement of the wafer 20.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、高周波電力や赤外線ランプなどにより加熱さ
れるサセブlの周囲に気苦室を形成11、該サセプタ上
IC載置[、た基板ウェハ表面上に半導体物質のエピタ
キシャル膜?気相成長させる気相エビクキシャル方法及
びその装置に係り、特に基板ウェハ(以下、単にウェハ
といり)の処理を枚葉式で連続的に行なう方法及びその
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to forming an air chamber 11 around a susceptor heated by high-frequency power, an infrared lamp, etc., and placing an IC on the susceptor. Epitaxial film of semiconductor material on wafer surface? The present invention relates to a vapor phase epitaxy method and apparatus for vapor phase growth, and particularly to a method and apparatus for continuously processing substrate wafers (hereinafter simply referred to as wafers) in a single wafer manner.

〔従来技術〕[Prior art]

半導体の製造に際し、半導体製造装置の処理能力の増大
例えばウェハの大口佳化等の要請に伴い気相成長装置に
おいても、従来のバッチ処理方式である縦型横型及びバ
レル型装置等の大型化が進んでいる。これに対しウェハ
の処理を1枚づつ連続して行う連続型の気相成長装置へ
の要求が高まっているが、既に実用化されているCVD
の場合と比較して、気相エピタキシャルの場合には一般
に、約12 Tl 0℃の高温に耐える反応炉材料及び
構造が必要なこと、また爆発性を帯びる水素ガスやS 
i H4カス等を用いるため、反応炉の気密性が安全上
重要であること、さらにエピタキシャル成長はウェハの
温度に非常に敏感であり、低温においては多結晶膜が成
長してしまうため、非反応部に対する反応ガスの隔離が
必要である手等が重要な課題であった。
When manufacturing semiconductors, as the throughput of semiconductor manufacturing equipment increases, such as the need for larger wafers, the size of conventional batch processing systems, such as vertical, horizontal, and barrel-type equipment, is increasing in vapor phase growth equipment as well. It's progressing. In response, there is an increasing demand for continuous vapor phase growth equipment that processes wafers one by one, but CVD, which is already in practical use, is
In contrast, gas phase epitaxial methods generally require reactor materials and structures that can withstand high temperatures of about 12 Tl and 0°C, and that they require reactor materials and structures that can withstand explosive temperatures such as hydrogen gas and S
i Since H4 scum etc. are used, the airtightness of the reactor is important for safety, and epitaxial growth is very sensitive to wafer temperature, and a polycrystalline film will grow at low temperatures, so An important issue was the need for isolation of reactive gases.

この理由のため、気相エビクキシャル成長ヲウエハ1枚
づつの連続処理にて行う方式は、ウェハの反応炉内にお
ける搬送方法及び治具とその材質が問題であることや、
反応炉内でのカスの供給と分離の位置的制御さらには反
応炉内での位置的及び時間的温度制御が困難であること
もあり、実用化されないでいた。このため、気相エピタ
キシャル成長は、バッチ処理装置にて生産されねばなら
ず、ウェハの搬出入をも含め、完全自動化が困難であり
、さらに他の工程では連続処理の装置が主流になりつつ
あるのに対1、それらとの連結においても支障′fきた
1つつあった。
For this reason, the method of continuous processing of vapor phase eviaxial growth one wafer at a time has problems with the method of transporting the wafer in the reactor, the jig and its material, and
It has not been put to practical use because it is difficult to control the position of supply and separation of scum within the reactor, as well as to control the position and temporal temperature within the reactor. For this reason, vapor phase epitaxial growth must be produced using batch processing equipment, making it difficult to fully automate the process, including the loading and unloading of wafers, and continuous processing equipment is becoming mainstream for other processes. However, there were also problems in connecting with them.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、約1■述(、たよりな困難を解決[。 The purpose of the present invention is to solve the following difficulties:

て気相エピタキシャル成長を連続的に行うことにより自
動化を容易に1、その結釆生腫性紮同上させることがで
きるように1.た連続型気相成長方法およびm fit
 ?提供することにある。
By continuously performing vapor phase epitaxial growth, automation can be easily achieved.1. Continuous vapor phase growth method and m fit
? It is about providing.

〔発明の要点〕[Key points of the invention]

本発明は、複数の室を有する反応炉を用い、気相成長の
一連の工程ケ複数個に分離(5、その谷々を前記各基i
C遅続的に割り当てウェハを前記各室に順次込り込み、
各室を気相成長の各工程に必安な温度に加熱し、かつそ
れぞれのも呈を窒素及び或いは水素カスにて置換すると
共に、そのうちの一部の室においては塩化水素カスを流
入させ、また他の一部の室においてはシリコン系ガス及
びドーパントカス′f流入させて気相成長の一連の工程
をウェハの移動と共に連続的に付い得るようにした連続
型気相成長方法およびそのための装置にある。
The present invention uses a reactor having a plurality of chambers, and separates a series of steps of vapor phase growth into a plurality of steps (5.
C. Sequentially loading the allocated wafers into each of the chambers,
Each chamber is heated to a temperature necessary for each step of vapor phase growth, and each chamber is replaced with nitrogen and/or hydrogen sludge, and hydrogen chloride sludge is introduced into some of the chambers. In addition, in some other chambers, silicon-based gas and dopant gas are allowed to flow in, so that a series of vapor phase growth steps can be performed continuously as the wafer moves, and an apparatus therefor. It is in.

〔発明の実施例〕[Embodiments of the invention]

以下本発明について一実施例を示し、た図により説明す
るu第1図および第2図において反応炉11は基台3J
に対し耐熱性O−リング32によV密閉されており、そ
してA室12、B室+3、C室14そしてD%1504
室がそれぞれ中間に4つの空間16を置いて縦壁17に
エリ仕切られている。各基12,13,14.15には
反応炉11の中央に各室にそれぞれに対応1〜で設けら
れたノズルI8aないり、 18 d (これら全総称
してノズル18という)からN2 、 N2 、 Hc
L、S i系ガス。
Hereinafter, one embodiment of the present invention will be shown and explained with reference to the drawings. In Figs. 1 and 2, the reactor 11 is shown on the base 3J
V-sealed by a heat-resistant O-ring 32, and A chamber 12, B chamber +3, C chamber 14, and D%1504.
Each room is partitioned by vertical walls 17 with four spaces 16 in the middle. In each group 12, 13, 14.15, there are nozzles I8a and 18d (all collectively referred to as nozzles 18) provided in each chamber in the center of the reactor 11, respectively. , Hc
L, Si-based gas.

(8iH4,8rH2ctz、 5ict4等ンドーパ
ントガス(P)ia、 B2H6等)のガスが各室に各
々独立して噴出するようになっており、4つの空間l6
1Cはノズル+8の中心の・U路19からN2ガスが噴
出するようになっている。しかして各室12. 13.
14゜15と4つの空間16のそれぞれは第2図に示し
fcように反応炉11の中央エリ下方において連通して
いるが、各室+2.13,14.15のそれぞれはその
境界に空間+6がありかつ空間16にはH2ガスが常時
流入しているため、各室+2.1314.15に流入し
た反応ガスなどが空間16を飛びこえ他室にまで流入す
ることは生じに〈〈なっている。
(8iH4, 8rH2ctz, 5ict4, etc. dopant gas (P)ia, B2H6, etc.) gases are ejected into each chamber independently, and the four spaces l6
In 1C, N2 gas is spouted from U path 19 at the center of nozzle +8. However, each room 12. 13.
Each of the four spaces 16 and 14°15 communicates with each other below the central area of the reactor 11 as shown in FIG. , and H2 gas is constantly flowing into the space 16, so it is impossible for the reaction gas etc. that have flowed into each chamber to jump over the space 16 and flow into other chambers. There is.

反応炉11の第2図において上下方向のほぼ中央には、
上面にウエノ・20を載置する円盤状のカーボンから成
るa数のサセブ4Z33f支持する石英製のサセプタ基
台21が回転軸22に取付けられており、反応炉IJの
外周2個所にはそれぞれ搬入用のウェハと搬出用のウエ
ノ・が収納されるAカセット部23.Bカセット部24
及び、各カセット部と反応炉IIとのウエノ・移動の際
必要となるガス置換用のA予備室25.B予備室26が
設けである。なお、各カセット部23.24と各予備室
25.26との間のウエノ120の移動ならび25.2
6は常時窒素ガスが送られて窒素置換されでおり、ウェ
ハの移動の際のみゲートバルブ2Bの開閉が行われる。
In FIG. 2 of the reactor 11, approximately at the center in the vertical direction,
A susceptor base 21 made of quartz that supports a number of susceptors 4Z33f made of disk-shaped carbon on which Ueno 20 is placed is attached to the rotating shaft 22, and the susceptor base 21 is attached to the rotating shaft 22, and the susceptor base 21 is installed at two locations on the outer periphery of the reactor IJ. A cassette section 23.A cassette section 23 stores wafers for storage and wafers for transport. B cassette section 24
and A preliminary chamber 25 for gas replacement which is necessary when transferring the gas between each cassette section and reactor II. A B reserve room 26 is provided. In addition, the movement of the ueno 120 between each cassette section 23.24 and each preliminary chamber 25.26 and 25.2
6 is constantly supplied with nitrogen gas for nitrogen replacement, and the gate valve 2B is opened and closed only when the wafer is moved.

また29は各室+2.13. 菖4.15に設けたガス
の排気管であり、30は反応炉11の上面に設けられ、
各室のサセプタを加熱するための赤外光ランプ等の加熱
装置である。
Also, 29 is +2.13 for each room. 30 is a gas exhaust pipe provided on the iris 4.15, and 30 is provided on the upper surface of the reactor 11,
This is a heating device such as an infrared lamp for heating the susceptor in each chamber.

次に前述した実施例の動作を説明する。へカセット部2
3に置かれたウェハカセットから1枚のウェハ20を取
出し窒素置換されているA予備室25にベルト搬送機構
27により搬入し、次いでゲートバルブ28を開は窒素
置換されたA室I2に吸着ハンド34によりウェハ20
′tl−送る。その時点でノズル18aからA室】2に
供給されるカスが水素ガスに切り換り、A室+2は水素
置換されると共に、ウェハ20を載置したサセプタ33
は昇温され途中で800℃の定温就ヲ経て一定時間後(
後記するBないしD室の一定時間はこれと同じ)に31
50℃に昇温安定する。
Next, the operation of the embodiment described above will be explained. To cassette part 2
One wafer 20 is taken out from the wafer cassette placed in the wafer cassette 3 and carried into the A preliminary chamber 25, which is purged with nitrogen, by the belt transport mechanism 27.Then, the gate valve 28 is opened, and the suction hand is transferred to the A chamber I2, which is purged with nitrogen. Wafer 20 by 34
'tl-send. At that point, the scum supplied from the nozzle 18a to chamber A+2 is switched to hydrogen gas, and chamber A+2 is replaced with hydrogen, and the susceptor 33 on which the wafer 20 is placed
The temperature is raised, the temperature is kept constant at 800℃, and after a certain period of time (
The fixed time for rooms B and D, which will be described later, is the same as this).
Stable when heated to 50℃.

上記した一定時間経過後にサセプタ基台21が反時計方
向に90°回転することにエリウェハ20にサセプタ3
3に載1なされたまま水素置換され目50℃の加熱を1
でいるB室13に送られる。
When the susceptor base 21 rotates 90° counterclockwise after the above-mentioned certain period of time has elapsed, the susceptor 3 is attached to the wafer 20.
3. Placed in 1 and replaced with hydrogen, then heated at 50℃.
Sent to room B 13.

B室13ではウェハ2()が送られてくると約121)
0℃に加熱されると共にノズル18bから塩化水素ガス
が流され、エピタキシャル成長面となるウェハ表面層を
軽く気相エツチングする。
In chamber B 13, when wafer 2 () is sent, it is approximately 121)
While being heated to 0.degree. C., hydrogen chloride gas is flowed from the nozzle 18b to lightly vapor-etch the wafer surface layer which will become the epitaxial growth surface.

エツチングの終了と共に、塩化水素カスは水素カスに切
9挨り、B室+3は水素置換されると共に温度は115
0℃に戻される。B室13にウェハ20が入って一定時
間後すセブタ基台21が反時計方向IC90°回転する
ことにょリウェハ2oはC室14に送られる。C室14
は常にz50℃(エピタキシャル成*温度)に保たれて
おりウェハ温度の安定のためノズル18Cから供給され
る水素ガスでしばらく水素置換された後、8rcLa。
At the end of etching, the hydrogen chloride residue is reduced to hydrogen residue, the B chamber +3 is replaced with hydrogen, and the temperature is reduced to 115.
Returned to 0°C. After a certain period of time after the wafer 20 enters the B chamber 13, the wafer 2o is sent to the C chamber 14 by rotating the converter base 21 counterclockwise by 90 degrees IC. C room 14
is always maintained at z50°C (epitaxial growth temperature), and after being replaced with hydrogen for a while with hydrogen gas supplied from nozzle 18C to stabilize the wafer temperature, 8rcLa.

S iHz c t +!、8 iH4等の8i系ガス
およびPH3,或いB2H6等のドーパントガスが適宜
供給されて気相成長が行われる。あらかじめ設定された
気相成長時間経過後、室14は再び水素置換され、ウェ
ハ2゜がC呈に移動した時から一定時間経過後、サセプ
タ基台21が反時計方向に90″回転することによりウ
ェハ20は1150℃に加熱されているD室J5に送ら
れるuDD室5に送られたウェハ20が水素雰囲気中で
常温まで温度降下された後、D室+5を窒素置換する。
S iHz c t +! , 8i-based gas such as 8iH4 and a dopant gas such as PH3 or B2H6 are appropriately supplied to perform vapor phase growth. After a preset vapor phase growth time has elapsed, the chamber 14 is replaced with hydrogen again, and after a certain period of time has elapsed since the wafer 2° has moved to the C position, the susceptor base 21 is rotated 90″ counterclockwise. The wafer 20 is sent to the D room J5 which is heated to 1150° C. After the wafer 20 sent to the uDD room 5 is cooled down to room temperature in a hydrogen atmosphere, the room D +5 is replaced with nitrogen.

窒素置換されたD室+5内ノウエバ2()は、ゲートバ
ルブ28を開いて吸着ハンド35にエリN素置挨されて
匹るB予備室26に移され、適宜な時間後IBカセット
部24に送られる。ウェハ20がD室+5からB予備室
26に送られた時点で一定時間が経過しておりサセプタ
詰合21は反時計方向に90°回転する。
The nitrogen-substituted chamber D+5 interior bar 2 () is transferred to the B preliminary chamber 26 where the gate valve 28 is opened, and the suction hand 35 is loaded with nitrogen, and after an appropriate period of time, it is transferred to the IB cassette section 24. Sent. A certain period of time has passed when the wafer 20 is sent from the D chamber +5 to the B preliminary chamber 26, and the susceptor pack 21 is rotated 90 degrees counterclockwise.

これで1枚のウェハ20の気相成長は終了するが、引き
g(サセプタ基台2Iの反時ηF方向への902回転に
より空にな、つたサセプタ33がA室に送られた時点で
、新しいウェハ20がへカセット部23からA予備量2
5’に経て順次入室+2に搬入されることにエリ、ぞれ
ぞれのウェハ20は各室12.+3.14.15におい
て異った工程全同時に経ることになり、サセプタ基台2
Jの回転とともにエピタキシャル成長が連続的に行われ
る。
This completes the vapor phase growth of one wafer 20, but when the susceptor 33 is emptied due to the pull g (902 rotations of the susceptor base 2I in the counterclockwise ηF direction and sent to room A), The new wafer 20 is transferred from the cassette section 23 to the A reserve amount 2.
Each wafer 20 is transferred to each chamber 12. +3.14.15 All different processes will be performed at the same time, and the susceptor base 2
Epitaxial growth is performed continuously as J rotates.

なお、前述し、た温度とガスの関係を各室ごとに〃イム
チャート化したのが第3□□□である。この第3図から
明らかなように、ウェハ20ケある室から他の室へ送る
際には、各室の加熱を一定(口50℃)に[7でウェハ
20が受ける温[(熱)衝撃を小さく押えるようにして
いる。この移送時のウェハ20の温度は、各室における
工程中、最も時間が掛るC室7411Cおける気相成長
工程の温度にしておけば、気相成長がより効率よく行な
える利点がある。
Note that the third □□□ is a time chart of the above-mentioned relationship between temperature and gas for each chamber. As is clear from Fig. 3, when transferring 20 wafers from one chamber to another, the heating in each chamber is kept constant (50°C). I try to keep it small. If the temperature of the wafer 20 during this transfer is set to the temperature of the vapor phase growth process in chamber C 7411C, which takes the longest time among the processes in each chamber, there is an advantage that the vapor phase growth can be performed more efficiently.

第4図および8+!5図は本兜明の他の実施例を示1−
たものである。この例は反応炉4Iが長方形をなl−従
ってA室42.B室43.C案44そしてD室45は直
線的に並べられており、各室の間には縦壁47にエリ仕
切られた空間46のあること、\ ならびにサセプタ49を載置するサセプタ基)48が直
線的に移動することのみ先に説明した第1図および第2
図と異なり他は同−故詳しい説明は省略する。
Figure 4 and 8+! Figure 5 shows another example of Honkamei 1-
It is something that In this example, the reactor 4I has a rectangular shape, so the A chamber 42. Room B43. Plan C 44 and chamber D 45 are arranged in a straight line, and there is a space 46 partitioned by a vertical wall 47 between each chamber. Figures 1 and 2, which were explained earlier, only move
Unlike the figure, the other parts are the same, so a detailed explanation will be omitted.

ii1述した実施例は、反応炉11,41の各人ないし
D室12ないし15または42ないL245の各室の間
にそれぞれ空間喜6または46f設けて各室の雰囲気ガ
スが互いに他の隣接する室へ流入しないようにし、各室
の雰囲気を独立させるようにした例を示したが、この雰
囲気の独立を最も必要とする室は反応ガスを供給される
C室14または44であり、他の室はそれぞれの呈への
各ガスの供給量と排気itを適宜に定める程度で互いに
他に悪影響を及はさないようにすることが可能であり、
このため空間16または46は前記C室I4または44
の前後のみとしてもよい。
ii1 In the embodiment described above, a space 6 or 46f is provided between the reactors 11 and 41 and the D chambers 12 to 15 or 42 to L245, so that the atmosphere gas in each chamber is mutually adjacent to the other chambers. Although we have shown an example in which the atmosphere in each chamber is made independent by preventing it from flowing into the chamber, the chamber that most requires this independence of atmosphere is the C chamber 14 or 44 to which the reaction gas is supplied; The chambers can be configured so that they do not adversely affect each other by appropriately determining the amount of gas supplied to each chamber and the amount of gas exhausted.
Therefore, the space 16 or 46 is the C chamber I4 or 44.
It may be done only before and after.

〔発明の効果〕〔Effect of the invention〕

本発明の連続型気相成長方法および装置は以上説明した
ように、縦壁により複数に分割された反応炉の各室にウ
ェハを巡回ζせ、各室を所定温度に加熱」、た上で必要
なカスを流入させてそれぞれの工程會行うことにより気
相成長が連続的に行なわれる。
As explained above, in the continuous vapor phase growth method and apparatus of the present invention, a wafer is circulated through each chamber of a reactor divided into a plurality of chambers by vertical walls, and each chamber is heated to a predetermined temperature. Vapor phase growth is performed continuously by introducing the necessary waste and performing each process.

°また、反応ガスなどは案と室の間に設けられた空間に
よって隣接(7ている室への流入を阻止され、従来困難
とされていた連続気相成長が可能になった。さらに本発
明は連続型であり、自動化が容易であることから従来の
バッチ方式に比較すると生産性は飛躍的に高まりコスト
が低くなる等多くの利点を有する。
In addition, the space provided between the reactor and the chamber prevents the reaction gas from flowing into the adjacent chamber (7), making continuous vapor phase growth, which was previously considered difficult, possible.Furthermore, the present invention Since it is a continuous type and can be easily automated, it has many advantages such as dramatically higher productivity and lower costs compared to conventional batch systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示し第1図は
平面的な断面図、第2図は第1図の2−2線断面図、第
3図は各室の温度とカスの関係を示すタイムチャート第
4図および第5図は本発明の他の実施例を示し第4図は
平面的な断面図、第5図は第4図の5−5線断面図であ
る。 11.41・・・反応炉、12.42・・・A室、13
.43・・・B室、14.44・・・C室、15.45
・・・B室、16.47・・・空間、20・・・ウェハ
、21.48・・・サセブ4基台、23・・・Aカセッ
ト部、24・・・Bカセット部、25・・・A予備室、
26・・・B予備室、33.49・・・サセプタ ′+1図
Figures 1 and 2 show an embodiment of the present invention. Figure 1 is a planar sectional view, Figure 2 is a sectional view taken along the line 2-2 in Figure 1, and Figure 3 shows the temperature and temperature of each chamber. 4 and 5 are time charts showing the relationship between wastes. FIGS. 4 and 5 show other embodiments of the present invention, and FIG. 4 is a planar sectional view, and FIG. 5 is a sectional view taken along the line 5-5 in FIG. . 11.41...Reactor, 12.42...Room A, 13
.. 43...Room B, 14.44...Room C, 15.45
... Room B, 16.47... Space, 20... Wafer, 21.48... 4 susceptors, 23... A cassette section, 24... B cassette section, 25...・A spare room,
26...B spare room, 33.49...Susceptor'+1 figure

Claims (1)

【特許請求の範囲】 り複数の室を有する反応炉を用い、気相成長の一連の工
程を複数個に分割し、その各々を前記各室に連続的に割
り当て基板ウエノSを前記各室に送り込み、前記各室に
ある基板ウエノS分気相成長の各工程に必袂な温度に加
熱し、かつそれぞれの前記各室を窒素お工び或いは水紫
ガスにて置換すると共に、そのうちの一部の室VCおい
ては塩化カスを流入させまた他の一部の室においてはシ
リコンガスおよびドーパントカスを流入ζせて、気相成
長の一連の工程を基板ウェハの移動と共に連続的に行う
ことを可+iMに1−た連続型気相成長方法。 入ス)基板ウェハを各室間に移行ζせるとき各室の基板
ウェハの温度ゲはぼ同一にしたことを特徴とする特許請
求の範囲第1項記載の連続型気相成長方法。 3夕) 基板ウェハが各室間?移行すると負各室基板ウ
ェハの温度を気相成長温度近傍にまたこと全特徴とする
特許請求の範囲第1項記載の連続型気相成長方法。 1幻 それぞれが隔離されかつ上方を閉された複数の室
を有し、少なくとも反応ガスを供給される室とその前後
の室との間に窒間全設けた反応炉と、基板ウェハを直接
または間接的に載置して前記複数の室の下面へ順次移動
可能に設けられウェハ支持体と、前記複数の室のうち第
1番目の室と最後の室にそれぞれゲートパルプを介して
接続された基板ウェハの搬入、搬出用の予備室と、前記
複数の室にそれぞれ対応(、て設けられた基板ウェハの
加熱手段と、前記複数の室の各室に対して気相成長の各
工程に応じたガスをそれぞれ個別に供給および排気する
ガス給排手段と、前記空間にH2カスケ供給する手段と
からなる連続型気相成長装置。 5〜菖)ウェハ支持体が、回転可能に設けられた石英製
のサセプタ基台とその上に各基板ウェハ毎に対J6 t
−、て設けられたサセプタとで形成され、前記回転円板
の中心の囲りに複数の室が配置されている特許請求の範
囲8II4項記載の連続型気相成長装置。 5)複数の室が、−直線上に配列プれている特許請求の
範囲第4項記載の連続型気相成長装置。
[Claims] Using a reactor having a plurality of chambers, a series of steps of vapor phase growth is divided into a plurality of steps, and each of the steps is successively assigned to each of the chambers, and the substrate Ueno S is placed in each of the chambers. The substrates in each of the chambers are heated to the required temperature for each process of vapor phase growth, and each chamber is replaced with nitrogen gas or water purple gas. In one chamber VC, chloride gas is introduced, and in some other chambers, silicon gas and dopant gas are introduced to continuously perform a series of vapor phase growth steps as the substrate wafer is moved. A continuous vapor phase growth method that reduces the temperature to +iM. 2. A continuous vapor phase growth method according to claim 1, characterized in that when the substrate wafer is transferred between the chambers, the temperature variation of the substrate wafer in each chamber is made to be approximately the same. 3rd evening) Are the substrate wafers in each room? 2. The continuous vapor phase growth method according to claim 1, wherein the temperature of the substrate wafer in each negative chamber is brought close to the vapor phase growth temperature. 1 Illusion A reactor has a plurality of chambers, each of which is isolated and closed at the top, and a nitrogen gap is provided between at least the chamber to which a reaction gas is supplied and the chambers before and after the chamber, and a substrate wafer is directly or The wafer support is provided so as to be indirectly mounted and movable sequentially to the lower surface of the plurality of chambers, and is connected to the first chamber and the last chamber of the plurality of chambers through gate pulps, respectively. A preliminary chamber for loading and unloading substrate wafers, a heating means for substrate wafers provided in each of the plurality of chambers, and a heating means for each of the plurality of chambers corresponding to each step of vapor phase growth for each of the plurality of chambers. A continuous vapor phase growth apparatus comprising gas supply/exhaust means for individually supplying and exhausting gases, and means for supplying H2 cascade into the space. A susceptor base made of
8. The continuous vapor phase growth apparatus according to claim 8II, wherein a plurality of chambers are arranged around the center of the rotating disk. 5) The continuous vapor phase growth apparatus according to claim 4, wherein the plurality of chambers are arranged in a straight line.
JP2373584A 1984-02-09 1984-02-09 Method and apparatus for continuous-type vapor growth Pending JPS60165379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2373584A JPS60165379A (en) 1984-02-09 1984-02-09 Method and apparatus for continuous-type vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2373584A JPS60165379A (en) 1984-02-09 1984-02-09 Method and apparatus for continuous-type vapor growth

Publications (1)

Publication Number Publication Date
JPS60165379A true JPS60165379A (en) 1985-08-28

Family

ID=12118563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2373584A Pending JPS60165379A (en) 1984-02-09 1984-02-09 Method and apparatus for continuous-type vapor growth

Country Status (1)

Country Link
JP (1) JPS60165379A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120475A (en) * 1985-11-20 1987-06-01 Anelva Corp Low pressure vapor growth device
JPH01301589A (en) * 1988-03-14 1989-12-05 Epsilon Ltd Partnership Epitaxial growth of silicon
WO1994018358A1 (en) * 1993-02-05 1994-08-18 Kabushiki Kaisa Toshiba Vacuum film forming method and apparatus therefor
KR100537941B1 (en) * 1997-09-30 2006-02-28 지멘스 악티엔게젤샤프트 Formation of non-homogenous device layer using an inert gas shield

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120475A (en) * 1985-11-20 1987-06-01 Anelva Corp Low pressure vapor growth device
JPH066791B2 (en) * 1985-11-20 1994-01-26 日電アネルバ株式会社 Low pressure vapor phase growth equipment
JPH01301589A (en) * 1988-03-14 1989-12-05 Epsilon Ltd Partnership Epitaxial growth of silicon
WO1994018358A1 (en) * 1993-02-05 1994-08-18 Kabushiki Kaisa Toshiba Vacuum film forming method and apparatus therefor
KR100537941B1 (en) * 1997-09-30 2006-02-28 지멘스 악티엔게젤샤프트 Formation of non-homogenous device layer using an inert gas shield

Similar Documents

Publication Publication Date Title
EP1159465B1 (en) Method of atomic layer deposition
US6340499B1 (en) Method to increase gas residence time in a reactor
US6911112B2 (en) Method of and apparatus for performing sequential processes requiring different amounts of time in the manufacturing of semiconductor devices
US20050034664A1 (en) Apparatus for depositing
JPH1064836A (en) Vertical thermal treatment furnace
WO1998001890A1 (en) Method and apparatus for contactless treatment of a semiconductor substrate in wafer form
CN106997859A (en) The manufacture method of lining processor and semiconductor devices
JPS60184678A (en) Vacuum treating device
EP0164928A2 (en) Vertical hot wall CVD reactor
US20040178176A1 (en) Apparatus and method for cleaning a bell jar in a barrel epitaxial reactor
JPH02152251A (en) Manufacturing system of vertical-type semiconductor
JPH0722341A (en) Treatment device
JPS60165379A (en) Method and apparatus for continuous-type vapor growth
JP7147551B2 (en) Vapor deposition apparatus and carrier used therefor
JP3274602B2 (en) Semiconductor element manufacturing method and substrate processing apparatus
JP4305754B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
TW578215B (en) Method to produce components or its inter-products, vacuum-processing equipment and ultra-high-vacuum CVD-reactor
JPH02226721A (en) Treating apparatus and treating method
CN113604875B (en) Vapor phase epitaxy system and maintenance operation method thereof
JP2012134332A (en) Substrate processing method and substrate processing device
JPS5934627A (en) Heat treatment device for semiconductor
JP2942388B2 (en) Semiconductor manufacturing equipment
JP2792353B2 (en) Vapor phase growth equipment
JPH1192280A (en) Silicon epitaxial vapor-phase growth apparatus
JP2004095940A (en) Method of manufacturing semiconductor device