JPS60165126A - Data carrier system in power line carrier control system - Google Patents

Data carrier system in power line carrier control system

Info

Publication number
JPS60165126A
JPS60165126A JP2099784A JP2099784A JPS60165126A JP S60165126 A JPS60165126 A JP S60165126A JP 2099784 A JP2099784 A JP 2099784A JP 2099784 A JP2099784 A JP 2099784A JP S60165126 A JPS60165126 A JP S60165126A
Authority
JP
Japan
Prior art keywords
zero cross
carrier
zero
cross point
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099784A
Other languages
Japanese (ja)
Inventor
Takashi Hara
敬 原
Yoshihide Kabasawa
義英 椛沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Home Technology Corp
Original Assignee
Toshiba Home Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Home Technology Corp filed Critical Toshiba Home Technology Corp
Priority to JP2099784A priority Critical patent/JPS60165126A/en
Publication of JPS60165126A publication Critical patent/JPS60165126A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/542Methods of transmitting or receiving signals via power distribution lines using zero crossing information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5425Methods of transmitting or receiving signals via power distribution lines improving S/N by matching impedance, noise reduction, gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To ensure noise prevention and limit of application of current and also load control by superimposing a carrier from a transmitter on a position except a zero cross point and its vicinity of a power frequency to transmit the carrier. CONSTITUTION:A zero cross point is detected by the input of a zero cross point detecting signal from a zero cross detecting section 233, the period at each bit is picked up and after 3ms is elapsed from the detection of the trailing of the signal, the carrier is controlled so as to be transmitted for, e.g., 4ms. Then the control above is performed until the transmission data does not exist any more. A signal on the center part of which the carrier is superimposed except the zero cross point and its vicinity of the AC frequency is outputted from a transmitter 23. Since a receiver receiving such signal has no carrier at the zero cross point and its vicinity, the zero cross point is detected from the power waveform only and a 1 pulse of zero cross point detecting signal is generated. Thus, the load is controlled always in synchronization with the zero cross point.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は例えば屋内電力線を使用してデータ伝送を行
なう電力線搬送制御システムにおけるデータ搬送方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a data transmission method in a power line transport control system that performs data transmission using, for example, an indoor power line.

[発明の技術的背景とその問題点コ 例えば屋内電力線を使用してデータ伝送を行なう電力線
搬送制御システムとしては第1図に示すように商用交流
電源1に接続された電力線2に送信I3を接続するとと
もに複数の受信機4−1.4−2、・・・4−nを接続
し、送信機3から電源周波数にデータ処理した信号を搬
送波として重畳させ、それを受信機4−1〜4−nで受
信してデータ解析を行ないそれぞれ負荷5−1.5−2
、・・・5−nを制御するようにしている。この場合、
送信機3からは第2図の(a)に示すように通信の開始
を示すスタートフラグSTF、制御内容を示すコマンド
CMD、受信チャンネルを示すアドレスADR,信頼性
確認の為のチェックサムC3Mからなるデータを送り、
このデータを受けた受信機4−1〜4−nからは第2図
の(b)に示すように応答信号であるアクノリッジAC
Kが送信機3側に送られるようになっている。
[Technical background of the invention and its problems] For example, in a power line carrier control system that transmits data using indoor power lines, as shown in FIG. At the same time, a plurality of receivers 4-1, 4-2, . -n and performs data analysis, each with a load of 5-1.5-2
, . . 5-n are controlled. in this case,
As shown in FIG. 2(a), the transmitter 3 sends a start flag STF indicating the start of communication, a command CMD indicating control details, an address ADR indicating the reception channel, and a checksum C3M for confirming reliability. send the data,
The receivers 4-1 to 4-n that received this data send an acknowledge signal, which is a response signal, as shown in FIG. 2(b).
K is sent to the transmitter 3 side.

ところで、このようなシステムではノイズの防止や投入
電流の制限等のためゼロクロス制御方式がとられている
。このゼロクロス制御方式の原理は、交流電圧のゼロ点
に負荷のオン・オフを行なうことで過渡的な電流変化を
最小にすることにある。具体的には例えば第3図に示す
ように交流型I11に電力線2を介してゼロクロス検出
回路6を接続するとともにオン・オフ回路7を介して負
荷8を接続し、さらに前記オン・オフ回路7にスイッチ
9を接続している。そして前記ゼロクロス検出回路6を
第4図に示すように交流電源1にトランス10を介して
全波整流回路11を接続し、その全波整流回路11にダ
イオード12及び抵抗13を直列に介してツェナーダイ
オード14を接続し、そのツェナーダイオード14に抵
抗15を介してトランジスタ16を接続している。また
、前記全波整流回路11に抵抗17.18の直列分圧回
路を接続し、その分圧点を前記トランジスタ16のベー
スに接続している。なお、前記ツェナーダイオード14
にはコンデンサ19が並列に接続されている。
Incidentally, in such a system, a zero-cross control method is used to prevent noise, limit input current, and the like. The principle of this zero-cross control method is to minimize transient current changes by turning the load on and off at the zero point of the AC voltage. Specifically, for example, as shown in FIG. 3, a zero cross detection circuit 6 is connected to the AC type I 11 via a power line 2, and a load 8 is connected via an on/off circuit 7. Switch 9 is connected to. As shown in FIG. 4, the zero-cross detection circuit 6 is connected to the AC power source 1 through a transformer 10 to a full-wave rectifier circuit 11, and to the full-wave rectifier circuit 11 a diode 12 and a resistor 13 are connected in series. A diode 14 is connected, and a transistor 16 is connected to the Zener diode 14 via a resistor 15. Further, a series voltage dividing circuit including resistors 17 and 18 is connected to the full-wave rectifier circuit 11, and the voltage dividing point thereof is connected to the base of the transistor 16. Note that the Zener diode 14
A capacitor 19 is connected in parallel.

このものにおいては、ゼロクロス検出回路6で第5図に
示すように交流の電源周波数をトランス10及び全波整
流回路11を介して全波波形イとして検出し、その電源
周波数のゼロクロス点をトランジスタ16のベース電圧
がTonより低いときオフし、そのTon以上のときオ
ンすることで波形口どして検出し、1パルスのゼロクロ
ス点検出信号を出力するようにしている。そして前記ス
イッチ9をオンしたときオン・オフ回路7はゼロクロス
検出回路6からゼロクロス検出信号が供給されるタイミ
ングで負荷8を動作制御するようにしている。
In this device, the zero-crossing detection circuit 6 detects the AC power frequency as a full-wave waveform A through the transformer 10 and the full-wave rectifier circuit 11 as shown in FIG. When the base voltage is lower than Ton, it is turned off, and when it is higher than Ton, it is turned on to detect the waveform and output a one-pulse zero-crossing point detection signal. When the switch 9 is turned on, the on/off circuit 7 controls the operation of the load 8 at the timing when the zero-cross detection signal is supplied from the zero-cross detection circuit 6.

しかしながら従来、このようなゼロクロス制御方式を取
る電力線搬送制御システムにおいては第6図に示すよう
に交流電源周波数の全域に対して搬送波を重畳させて伝
送するものであったため、そのゼロクロス点及びその近
傍(第6図のA部分)では第7図に示すように搬送波の
ためトランジスタ16のベースに印加される電圧が何回
もTonレベルを上下することになり、このためゼロク
ロス検出が1パルスのみで行われることがなく数パルス
になり、正しいゼロクロス点を検出することが出来なく
なり、ノイズ防止や電流制限が不完全になる等の問題が
あった。また負荷制御に誤動作を招く虞れがあった。
However, in conventional power line carrier control systems that use such a zero-crossing control method, as shown in Figure 6, carrier waves are transmitted by superimposing them over the entire AC power frequency range, so the zero-crossing point and its vicinity are (Part A in Figure 6) As shown in Figure 7, the voltage applied to the base of the transistor 16 increases and decreases the Ton level many times due to the carrier wave, so zero cross detection is performed with only one pulse. This causes problems such as the number of pulses is reduced to several, making it impossible to detect the correct zero-crossing point, and making noise prevention and current limiting incomplete. Additionally, there is a risk of malfunction in load control.

[発明の目的] この発明はこのような問題を解決するために為されたも
ので、ゼロクロス検出を確実に1パルスで行なうことが
でき、ノイズ防止や投入電流の制限を確実にできるとと
もに負荷制御を確実にできる電力線搬送制御システムに
おけるデータ搬送方式を提供することを目的とする。
[Purpose of the Invention] This invention was made to solve these problems, and it is possible to reliably perform zero cross detection with one pulse, ensure noise prevention and limit the input current, and improve load control. The purpose of the present invention is to provide a data transport method in a power line transport control system that can reliably ensure the following.

[発明の概要] この発明は、商用交流電源の電力線に送信機及び受信機
を接続し、送信部からデータ処理した高周波な信号を搬
送波として電源周波数に重畳させて電力線上を搬送させ
、受信機でその搬送波を受信して電源周波数のゼロクロ
ス点を基準にして負荷a制御を行なう電り線搬送制御シ
ステムにおいて、送信機からの搬送波を電源周波数のゼ
ロクロス点及びその近傍を除いた位置に重畳させて搬送
することにある。
[Summary of the Invention] The present invention connects a transmitter and a receiver to a power line of a commercial AC power source, superimposes a high frequency signal data-processed from the transmitter on the power frequency as a carrier wave, and transmits it on the power line. In a power line carrier control system that receives the carrier wave and performs load a control based on the zero-crossing point of the power supply frequency, the carrier wave from the transmitter is superimposed on the position excluding the zero-crossing point of the power supply frequency and its vicinity. The purpose is to transport the vehicle.

[発明の実施例] 以下、この発明の一実施例を図面を参照して説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第8図に示すように、商用交流電源21に電力線22を
接続している。前記電力線22に送信機23を接続して
いる。前記送信機23は結合部231、送信部232、
クロック検出部233、キーボード234、表示部23
5及びこれらを制御するマイクロプロセッサ236から
なり、前記送信部232はマイクロプロセッサ236に
制御されて前記結合部231を介して電力線22にデー
タ処理された信号を搬送波として出力している。
As shown in FIG. 8, a power line 22 is connected to a commercial AC power source 21. As shown in FIG. A transmitter 23 is connected to the power line 22. The transmitter 23 includes a coupling section 231, a transmitting section 232,
Clock detection section 233, keyboard 234, display section 23
The transmission section 232 is controlled by the microprocessor 236 and outputs a data-processed signal to the power line 22 as a carrier wave via the coupling section 231.

前記ゼロクロス検出部233は第4図で述べた内容と同
じ原理で電源周波数のゼロクロス点を検出し、そのゼロ
クロス点検出信号を前記マイクロプロセッサ236に供
給している。前記マイクロプロセッサ236は第9図に
示す流れ因に基づくプログラム制御を行なっている。す
なわち、先ず送出データの準備を行ない、続いてゼロク
ロス検出部233からのゼロクロス点検出信号の入力に
よりゼロクロス点を検出してビット毎の同期を取り、そ
の信号の立ち下がりを検出してから3msの経過を待っ
て搬送波を例えば4ms間送出する制御を行なう。そし
て以上の制御を送出デ゛−夕が無くなるまで行なう。な
お、キーボード234は送信機23に指示を与える信号
の入力部を形成し、表示部235は受信1jlH図示せ
ず)の動作状態を表示するようにして−)る。
The zero-crossing detection section 233 detects the zero-crossing point of the power supply frequency using the same principle as described in FIG. 4, and supplies the zero-crossing point detection signal to the microprocessor 236. The microprocessor 236 performs program control based on the flow factors shown in FIG. That is, first, the sending data is prepared, then the zero-crossing point is detected by inputting the zero-crossing point detection signal from the zero-crossing detection section 233, synchronization is established for each bit, and the falling edge of the signal is detected. After waiting for the elapsed time, control is performed to transmit the carrier wave for, for example, 4 ms. The above control is continued until there is no more data to send. The keyboard 234 forms an input section for signals that give instructions to the transmitter 23, and the display section 235 displays the operating status of the receiver 1jlH (not shown).

このように構成された本発明実施例装置においては、例
えば電源周波数が50Hzであれば搬送波は第10図の
(a)に示すようにゼロクロス点検出信号の時間間隔(
10ms)に対して3msの遅れもって第10図の(b
)に示すように間の4ms間だけ送出される。しかして
送信機23からは第11図に示すように交流周波数のゼ
ロクロス点及びその近傍を除く、換言すれば中央部に搬
送波を乗せた信号が出力されるようになる。従って、こ
のような信号を受信した受信機ではゼロクロス点及びそ
の近傍には搬送波が無いので、電源波形からのみゼロク
ロス点を検出することができ、第5図で述べたように1
パルスのゼロクロス点検出信号を発生することになる。
In the device according to the embodiment of the present invention configured in this manner, for example, if the power supply frequency is 50 Hz, the carrier wave is transmitted at the time interval (
(b) in Fig. 10 with a delay of 3 ms.
), it is transmitted for only 4 ms in between. As shown in FIG. 11, the transmitter 23 outputs a signal excluding the zero-crossing point of the AC frequency and its vicinity, in other words, carrying the carrier wave in the center. Therefore, since there is no carrier wave at or near the zero-crossing point in a receiver receiving such a signal, the zero-crossing point can be detected only from the power supply waveform, and as described in Figure 5, the zero-crossing point can be detected only from the power supply waveform.
A pulse zero-crossing point detection signal is generated.

従って、負荷制御は常にゼロクロス点に同期して行われ
るようになり、ノイズの防止や投入電流の制限が確実に
できるとともに負荷側■が誤動作なく確実にできる。
Therefore, load control is always performed in synchronization with the zero-crossing point, ensuring noise prevention and limiting the input current, and also ensuring that the load side (2) does not malfunction.

次にこの発明の他の実施例を図面を参照して説明する。Next, another embodiment of the invention will be described with reference to the drawings.

なお、前記実施例と同一部分には同一符号を付して詳細
な説明は省略する。
Note that the same parts as in the above embodiment are given the same reference numerals, and detailed explanations will be omitted.

これは第12図に示すように、送信機23に受信部23
7を設け、さらに電力線22に結合部241、送信部2
42、ゼロクロス検出部243、受信部247、マイク
ロプロセッサ246からなる受信1幾24を接続してい
る。前記マイクロプロセッサ246にリレー244を接
続するとともに発光ダイオード245と抵抗248との
直列回路を接続している。そして前記電力線22に前記
リレー244の常開接点mを介して負荷25を接続して
いる。前記受信機24の結合部241、送信部242、
ゼロクロス検出部243、受信部247は前記受信機2
3の結合部231、送信部232、ゼロクロス検出部2
33、受信部237と同一の構成を持つものである。前
記受信部237.247は第13図に示すように交流周
波数に乗った搬送波を検出してパルス状の受信(8号を
作りマイクロプロセッサ236.246に供給するもの
である。前記マイクロプロセッサ246は前記受信部2
47からの受信信号を受けるとそのパルス数をカウント
し、そのパルス数が予め設定した所定値以上のとき(第
13図のくb))は例えば「1」とし、その所定値に達
しないとき(第13図の(a))は「O」として判断す
るようにしている。勿論、送信1M23における搬送波
の送出方法は前述した実施例と同様である。
As shown in FIG.
7 is provided, and a coupling section 241 and a transmitting section 2 are further connected to the power line 22.
42, a receiving section 24 consisting of a zero-cross detecting section 243, a receiving section 247, and a microprocessor 246 is connected. A relay 244 is connected to the microprocessor 246, and a series circuit of a light emitting diode 245 and a resistor 248 is also connected. A load 25 is connected to the power line 22 via a normally open contact m of the relay 244. A coupling section 241 of the receiver 24, a transmitting section 242,
The zero cross detection section 243 and the reception section 247 are connected to the receiver 2.
3 coupling section 231, transmitting section 232, zero cross detecting section 2
33 and has the same configuration as the receiving section 237. As shown in FIG. 13, the receiving sections 237 and 247 detect a carrier wave on an alternating current frequency, generate a pulse-like signal (No. 8), and supply it to the microprocessor 236 and 246. The receiving section 2
When the received signal from 47 is received, the number of pulses is counted, and when the number of pulses is greater than a preset value (Fig. 13, b)), it is set to, for example, "1", and when it does not reach the predetermined value, the number of pulses is counted. ((a) in FIG. 13) is determined as "O". Of course, the carrier wave sending method in the transmission 1M23 is the same as in the embodiment described above.

このような構成であれば、受信機24てのゼロクロス点
の検出は前記実施例と同様1パルスで確実にでき、前記
同様の効果が1qられるものである。
With such a configuration, the zero-crossing point can be reliably detected by the receiver 24 with one pulse as in the embodiment described above, and the same effect as described above can be obtained by 1q.

さらにこの実施例では搬送波を受信するとパルス信号に
変換してそのパルス数をカラン1へし、第14図に計数
値によるヒストグラムを示すように統計的手法を利用し
てそのパルス数が予め設定された所定値以上なければ「
1」の信号として判断しないようにしているので、ノイ
ズが交流周波数に混入してもそれはrOJと判別される
のでノイズによる誤動作はない。また搬送波の周波数が
少々変動してもそれによる悪影響はない。さらにまた、
ビット単位でのrOJ r1J判別だけでなく、幾通り
もの層別ができるので、コード化し高密度のデータ転送
ができ、回線の利用効率を向上することができる。
Furthermore, in this embodiment, when a carrier wave is received, it is converted into a pulse signal and the number of pulses is set to 1, and the number of pulses is set in advance using a statistical method as shown in the histogram based on the counted values in FIG. If the value is not greater than the specified value, “
1" signal, so even if noise mixes into the AC frequency, it will be determined as rOJ, so there will be no malfunction due to noise. Further, even if the frequency of the carrier wave changes slightly, there is no adverse effect due to it. Furthermore,
Since rOJ and r1J can be determined not only in bits but also in many ways, it is possible to code and transfer high-density data, thereby improving line utilization efficiency.

「発明の効果」 以上詳述したようにこの発明によれば、ゼロクロス検出
を確実に1パルスで行なうことができ、ノイズ防止や投
入電流の制限を確実にできるとともに負荷制御を確実に
できる電力線搬送シリ御システムにおけるデータ搬送方
式を提供できるものである。
``Effects of the Invention'' As detailed above, according to the present invention, zero cross detection can be reliably performed with one pulse, noise can be prevented, input current can be restricted, and load control can be ensured through power line transport. It is possible to provide a data transport method in a serial control system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電力線搬送制御システムを示すブロック図、第
2図は搬送信号の構成を示す図、第3図はゼロクロス制
御方式を説明するためのブロック図、第4図は第3図に
おけるゼロクロス検出回路の構成を示す回路図、第5図
はゼロクロス検出を説明するための波形図、第6図及び
第7図は従来における搬送波検出の問題点を説明するた
めの波形図、第8図はこの発明の一実施例を示す回路図
、第9図は同実施例におけるマイクロプロセッサの制御
プログラムを示す流れ図、第10図は同実施例における
ゼロクロス検出信号と搬送波との重畳タイミングを示す
波形図、第11図は同実施例における交流周波数信号と
搬送波との重畳信号を示す波形図、第12図はこの発明
の他の実施例を示す回路図、第13図は同実施例におけ
る交流周波数信号と搬送波との重畳信号及び搬送波検出
信号とコードとの関係を示す波形図、第14図は同実施
例における搬送波検出信号とコードとの関係を統計的に
示すヒストグラムである。 21・・・商用交流電源、22・・・電力線、23・・
・送信機、231・・・結合部、232・・・送信部、
233・・・ゼロクロス検出部、236・・・マイクロ
プロセラv124・・・受信機、25・・・負荷。 出願人代理人 弁理士 鈴江武彦 第1[1 第2r′1 (a) (b) 第4図 第5図 第6 N 第7− 第10図 22 第12r71
Fig. 1 is a block diagram showing the power line carrier control system, Fig. 2 is a diagram showing the configuration of the carrier signal, Fig. 3 is a block diagram for explaining the zero-cross control method, and Fig. 4 is the zero-cross detection in Fig. 3. A circuit diagram showing the configuration of the circuit, FIG. 5 is a waveform diagram to explain zero-cross detection, FIGS. 6 and 7 are waveform diagrams to explain the problems of conventional carrier wave detection, and FIG. 9 is a flowchart showing a microprocessor control program in the embodiment; FIG. 10 is a waveform diagram showing the timing of superimposition of a zero-cross detection signal and a carrier wave in the embodiment; FIG. FIG. 11 is a waveform diagram showing a superimposed signal of an AC frequency signal and a carrier wave in the same embodiment, FIG. 12 is a circuit diagram showing another embodiment of the present invention, and FIG. 13 is a waveform diagram showing an AC frequency signal and a carrier wave in the same embodiment. FIG. 14 is a waveform diagram showing the relationship between the superimposed signal and the carrier detection signal and the code, and FIG. 14 is a histogram statistically showing the relationship between the carrier detection signal and the code in the same embodiment. 21...Commercial AC power supply, 22...Power line, 23...
- Transmitter, 231... coupling section, 232... transmitting section,
233...Zero cross detection unit, 236...Micro processor v124...Receiver, 25...Load. Applicant's agent Patent attorney Takehiko Suzue No. 1 [1 No. 2r'1 (a) (b) Fig. 4 Fig. 5 Fig. 6 N No. 7- Fig. 10 22 No. 12r71

Claims (1)

【特許請求の範囲】[Claims] 商用交流電源の電力線に送信機及び受信機を接続し、前
記送信機からデータ処理した。高周波な信号を搬送波と
して電源周波数に重畳させて前記電力線上を搬送させ、
前記受信機でその搬送波を受信して前記電源周波数のゼ
ロクロス点を基準にして負荷制御を行なう電力線搬送制
御システムにおいて、前記送信機からの搬送波を前記電
源周波数のゼロクロス点及びその近傍を除いた位置に重
畳させて搬送することを特徴とした電力線搬送制御シス
テムにおけるデータ搬送方式。
A transmitter and receiver were connected to the power line of a commercial AC power source, and data from the transmitter was processed. Superimposing a high frequency signal as a carrier wave on the power supply frequency and transmitting it on the power line,
In a power line carrier control system in which the receiver receives the carrier wave and performs load control based on the zero-crossing point of the power frequency, the carrier wave from the transmitter is located at a position excluding the zero-crossing point of the power frequency and its vicinity. A data transport method in a power line transport control system that is characterized by superimposing data on and transporting data.
JP2099784A 1984-02-08 1984-02-08 Data carrier system in power line carrier control system Pending JPS60165126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099784A JPS60165126A (en) 1984-02-08 1984-02-08 Data carrier system in power line carrier control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099784A JPS60165126A (en) 1984-02-08 1984-02-08 Data carrier system in power line carrier control system

Publications (1)

Publication Number Publication Date
JPS60165126A true JPS60165126A (en) 1985-08-28

Family

ID=12042751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099784A Pending JPS60165126A (en) 1984-02-08 1984-02-08 Data carrier system in power line carrier control system

Country Status (1)

Country Link
JP (1) JPS60165126A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963888A (en) * 1972-10-20 1974-06-20
JPS5392155A (en) * 1977-01-25 1978-08-12 Tokyo Electric Power Co Inc:The Method of detecting phase angle standard for phase pulse signal receiver
JPS58141637A (en) * 1982-02-15 1983-08-23 松下電工株式会社 Interrupt system for power line carriage control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963888A (en) * 1972-10-20 1974-06-20
JPS5392155A (en) * 1977-01-25 1978-08-12 Tokyo Electric Power Co Inc:The Method of detecting phase angle standard for phase pulse signal receiver
JPS58141637A (en) * 1982-02-15 1983-08-23 松下電工株式会社 Interrupt system for power line carriage control system

Similar Documents

Publication Publication Date Title
US4642607A (en) Power line carrier communications system transformer bridge
CN109639366B (en) Signal pulse width modulation and demodulation method based on two-wire bus communication
JPS60165126A (en) Data carrier system in power line carrier control system
JPS6234425A (en) Line of electric force carrier communicator
JPS6232728A (en) Electric light line carrier remote control device
JPS61161032A (en) Power line carrier control system
JPS61121541A (en) Data transmitter using power supply line as transmission line
JPS60248942A (en) Controlling device of air conditioner
JPS60165127A (en) Data carrier system in power line carrier control system
JPH02200096A (en) Signal transmission system
JPS60100844A (en) Parallel communication controller
JPS61172450A (en) Noise quantity detector
JPS59160359A (en) Binary signal transmitter
JPH03285429A (en) Signal transmission system
JP2001077732A (en) Communication equipment, communication system and communication method
JPS61270929A (en) Wireless transmission system
JPH02200095A (en) Signal transmission system
US7515554B2 (en) Half-duplex communication control method
JPS62107541A (en) Power line carrier communication repeater
JPS6328376B2 (en)
JPS6213135A (en) Power line carrier communication system
JPS58130688A (en) Remote supervisory system
JPS61131632A (en) Data format system for multiplex transmission
JPH0450781B2 (en)
JPS61161031A (en) Power line carrier control system