JPS60165058A - Solid electrolyte - Google Patents

Solid electrolyte

Info

Publication number
JPS60165058A
JPS60165058A JP59019448A JP1944884A JPS60165058A JP S60165058 A JPS60165058 A JP S60165058A JP 59019448 A JP59019448 A JP 59019448A JP 1944884 A JP1944884 A JP 1944884A JP S60165058 A JPS60165058 A JP S60165058A
Authority
JP
Japan
Prior art keywords
electrolyte
solid electrolyte
base material
substance
fibrillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59019448A
Other languages
Japanese (ja)
Inventor
Masatoshi Tamura
田村 政利
Noriko Shizukuda
雫田 徳子
Hiroaki Miyaji
博昭 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orient Watch Co Ltd
Original Assignee
Orient Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orient Watch Co Ltd filed Critical Orient Watch Co Ltd
Priority to JP59019448A priority Critical patent/JPS60165058A/en
Publication of JPS60165058A publication Critical patent/JPS60165058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a strong solid electrolyte with a homogeneous conductivity and good quality by homogeneously impregnating a fibrillar base material composed of a short-fibrous substance with an organic macromolecular substance and an electrolyte. CONSTITUTION:A base material 1 for holding an organic macromolecular compound 2 and an electrolyte 3, has a fibrillar structure composed of a vegetable, animal, mineral or synthetic-resin short-fibrous substance. For example, the base material 1 is prepared from filter paper, a nonwoven fabric or a polyacetylene film. After an organic macromolecular substance and an electrolyte are homogeneously dissolved in an organic solvent to prepare a solution, the fibrillar base material 1 is either immersed in or coated with the solution. After that, all or a part of the solvent is evaporated, thereby making a solid electrolyte.

Description

【発明の詳細な説明】 本発明は新規な固体電解質、さらに詳しくいえば、強度
が大きくかつ均一な電導塵を有する、品質の良好な固体
電解質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel solid electrolyte, and more particularly, to a high-quality solid electrolyte having high strength and uniform conductive dust.

近年、小型電子機器においては、ますます小型化や薄型
化の傾向にl)、それに伴い腕時計や電卓などの内蔵電
池としてよシ薄型軽量のものに対する要望が高まってい
る。
In recent years, there has been a trend towards smaller and thinner electronic devices, and as a result, there has been an increasing demand for thinner and lighter built-in batteries for wristwatches, calculators, and the like.

従来の薄型電池としては、例えば電解質としてプロピレ
ンカーボネート、γ−ブチロラクトン、テトラヒドロフ
ラ;イなどに過塩素酸リチウム、ホウフッ化リチウムな
、どを溶解して成る液体電解質を用いたリチウム系電池
、塩化亜鉛や塩化アンモニウムなどを含む液体電解質を
用いた二酸化マンガン−亜鉛電池などが知られている。
Conventional thin batteries include, for example, lithium-based batteries that use a liquid electrolyte made by dissolving lithium perchlorate, lithium fluoroborate, etc. in propylene carbonate, γ-butyrolactone, tetrahydrofuran, etc.; Manganese dioxide-zinc batteries using a liquid electrolyte containing ammonium chloride or the like are known.

しかしながら、これらの電池は液体電解質を用いている
ため、耐漏液性や保存性の点で必ずしも満足しうるもの
ではなかった。したがって、前記の耐漏液性や保存性全
改良するために、最近各種の固体電解質電池に関する研
究が盛んに行われている。
However, since these batteries use a liquid electrolyte, they are not necessarily satisfactory in terms of leakage resistance and storage stability. Therefore, research on various solid electrolyte batteries has recently been actively conducted in order to completely improve the leakage resistance and storage stability.

この電池に使用する固体電解質としては、例えば窒化リ
チウムやヨウ化リチウムを用いたもの(特開昭56−5
9474号公報、同57−72268号公報)、ヨウ化
リチウムに活性アルミナとゼオライトとを添加したもの
(特開昭58−111201号公報)、ポリアクリロニ
トリル粉体と過塩素酸すチウムとエチレンカーボネート
若しくはプロビレしかしながら、これらの固体電解質に
おいては粒子間の接触不良や各成分の分布のバラツキな
どに起因して電導塵にバラツキが生じやすくて、一定の
品質のものを得にくいという欠点がある。
As the solid electrolyte used in this battery, for example, one using lithium nitride or lithium iodide (Japanese Patent Application Laid-Open No. 56-5
No. 9474, No. 57-72268), lithium iodide with activated alumina and zeolite added (Japanese Unexamined Patent Publication No. 58-111201), polyacrylonitrile powder, stium perchlorate, and ethylene carbonate. However, these solid electrolytes have the disadvantage that it is difficult to obtain uniform quality because the conductive dust tends to vary due to poor contact between particles and variations in the distribution of each component.

1だ、エチレンカーボネートやプロピレンカーボネート
などの有機溶媒に高分子樹脂と電解質とを溶解し、乾燥
固化して成る固体電解質が提案されている(特開昭58
−75779号公報)。しかしながら、このものは均一
な電導塵は得られるものの強度に関しては必ずしも満足
しうるものではない。
1. A solid electrolyte has been proposed in which a polymer resin and an electrolyte are dissolved in an organic solvent such as ethylene carbonate or propylene carbonate, and then dried and solidified (Japanese Unexamined Patent Application Publication No. 1983-1982).
-75779). However, although this method produces uniform conductive dust, it is not necessarily satisfactory in terms of strength.

さらに、ろ紙、ガラス・フリット、多孔質セラミックス
などの多孔性媒体に電解質を含浸させたものも提案され
ている(%開昭56−136469号公報)。しかしな
がら、このものは強度は強いものの導電率に関しては十
分に満足しうるものではない。
Furthermore, porous media such as filter paper, glass frit, porous ceramics, etc. impregnated with electrolyte have also been proposed (Patent Publication No. 136,469/1982). However, although this material has high strength, it is not fully satisfactory in terms of electrical conductivity.

本発明者らは、このような従来提案されている固体電解
質が有する欠点を克服し、強度が大きくかつ均一な電導
塵を有する、品質の良好な固体電解質を提供すべく鋭意
研究を重ねた結果、短繊維から成るフィブリル構造の基
材に、有機高分子物質と電解質とを均一に含浸させたも
のがその目的に適合しうることを見出し、この知見に基
づいて本発明を完成するに至った。
The present inventors have conducted intensive research to overcome the drawbacks of the solid electrolytes that have been proposed in the past, and to provide a high-quality solid electrolyte that has high strength and uniform conductive dust. discovered that a base material with a fibrillar structure consisting of short fibers uniformly impregnated with an organic polymer substance and an electrolyte could be suitable for the purpose, and based on this knowledge, the present invention was completed. .

すなわち、本発明は、短繊維状物質から成るフィブリル
構造を有する基材に、有機高分子物質及び電解質を均一
含浸させて成る固体電解質全提供するものである。
That is, the present invention provides a solid electrolyte made by uniformly impregnating an organic polymeric substance and an electrolyte into a base material having a fibrillar structure made of a short fibrous substance.

本発明の固体電解質において、有機高分子物質と電解質
とを含浸させるのに用いる基材は、植物性、動物性、鉱
物性あるいは合成樹脂などの短繊維状物質から成るフィ
ブリル構造を有するものであって、このようなものとし
ては、例えばろ紙、不織布、ポリアセチレンフィルムな
どが好ましく挙げられる。
In the solid electrolyte of the present invention, the base material used to impregnate the organic polymer substance and the electrolyte may have a fibrillar structure made of a short fibrous material such as vegetable, animal, mineral, or synthetic resin. Preferred examples of such materials include filter paper, nonwoven fabric, and polyacetylene film.

本発明の固体電解質において用いる有機高分子物質とし
ては、熱可塑性を有し、かつ有機溶媒に可溶なものが好
ましく、例えばポリアクリロニトリル、ポリメタクリレ
ート、ポリフッ化ビニリデン、ポリスチレン、ポリビニ
ルクロリド、ポリビニルアセテートなどが挙げられる。
The organic polymer used in the solid electrolyte of the present invention preferably has thermoplasticity and is soluble in an organic solvent, such as polyacrylonitrile, polymethacrylate, polyvinylidene fluoride, polystyrene, polyvinyl chloride, polyvinyl acetate, etc. can be mentioned.

また、本発明の固体電解質において用いる電解質として
は、例えば過塩素酸リチウム、ホウフッ化リチウム、リ
ンフッ化リチウム、ヨウ化リチウム、フッ化リチウム、
塩化リチウム、シュウ化リチウムLどのリチウム塩が好
ましく挙げられる。
Further, examples of the electrolyte used in the solid electrolyte of the present invention include lithium perchlorate, lithium borofluoride, lithium phosphorus fluoride, lithium iodide, lithium fluoride,
Preferred examples include lithium salts such as lithium chloride and lithium oxalide.

本発明の固体電解質は例えば次のようにして製造するこ
とができる。
The solid electrolyte of the present invention can be manufactured, for example, as follows.

すなわち、酢酸エチルのよう々エステル類、アセトンや
メチルエチルケトンのようなケトン類、N、N−ジメチ
ルホルムアミドのよりなアミド類、トリエタノールアミ
ンのよう々アミン類などの有機溶媒に、前記の有機高分
子物質及び電解質を均一に溶解させ、次いで得られた溶
液中に前記のフィブリル構造を有する基材を浸漬するか
、又はこの基材に該溶液を塗布したのち、溶媒の全部又
は大部分を揮散させることによって得られる。
That is, the above organic polymer is added to an organic solvent such as esters such as ethyl acetate, ketones such as acetone and methyl ethyl ketone, amides such as N,N-dimethylformamide, and amines such as triethanolamine. The substance and the electrolyte are uniformly dissolved, and then the base material having the fibrillar structure is immersed in the resulting solution, or the solution is applied to the base material, and then all or most of the solvent is evaporated. obtained by

あるいは、前記有機高分子物質を電解質溶媒に係シない
溶媒、例えばメチレンクロリドやトリクロロエチレンな
どに溶解し、このものに、前記溶媒よシ沸点の高いエチ
レンカーボネートやプロピレンカーボネートのよりなカ
ーボネート系などの溶媒に前記電解質を溶解したものを
加えて混合し、次いでフィブリル構造を有する基材を前
記と同様に処理することによって得られる。
Alternatively, the organic polymer substance is dissolved in a solvent that is not related to the electrolyte solvent, such as methylene chloride or trichloroethylene, and this is mixed with a carbonate-based solvent such as ethylene carbonate or propylene carbonate, which has a higher boiling point than the solvent. It can be obtained by adding and mixing a solution of the electrolyte, and then treating the base material having a fibril structure in the same manner as described above.

この際、フィブリル構造を有する基材は、予め例えばl
 X I Q torr程度の真空雰囲気下で脱ガスし
ておいて使用することが好ましく、また基材としてポリ
アセチレンフィルム、電解質として過塩素酸リチウムを
用いる場合は、予め該ポリアセチレンフィルムをパンシ
ベーション台二酸化シリコン法などで不導体化処理して
、ポリアセチレンフィルムと過塩素酸リチウムとの反応
を防止することが必要である。さらに溶媒の蒸発は室温
放置によってもよいが、無酸化炉において70〜80℃
の温度に加熱して行うのが好ましい。
At this time, the base material having a fibril structure is prepared in advance, for example, by
It is preferable to use the film after degassing it in a vacuum atmosphere of about It is necessary to prevent the reaction between the polyacetylene film and lithium perchlorate by applying a passivation treatment using a method or the like. Furthermore, the solvent may be evaporated by leaving it at room temperature, but in a non-oxidizing furnace at 70 to 80°C.
It is preferable to carry out heating to a temperature of .

なお、有機高分子物質としてポリアクリロニトリル、電
解質として過塩素酸リチウムを用いる場合の有用な有機
溶媒の例を次表に示す。
The following table shows examples of useful organic solvents when polyacrylonitrile is used as the organic polymer material and lithium perchlorate is used as the electrolyte.

このようにして得られた本発明の固体電解質の構成モデ
ルを添付図面に示す。図において1は短繊維状物質、2
は有機高分子物質及び3は電解質である。
The structural model of the solid electrolyte of the present invention thus obtained is shown in the attached drawings. In the figure, 1 is a short fibrous substance, 2
is an organic polymer substance and 3 is an electrolyte.

この固体電解質においては、そのたわみ性化及び薄型化
は、フィブリル構造を有する基材の形状によって制御す
ることができ、ま、た電導度を大きくするために、有機
高分子物質の量はできるだけ少なくシ、かつ有機溶媒は
完全に蒸発させないようにするのがよい。
In this solid electrolyte, its flexibility and thickness can be controlled by the shape of the base material having a fibrillar structure, and the amount of organic polymer material is kept as small as possible in order to increase the conductivity. In addition, it is preferable to prevent the organic solvent from completely evaporating.

本発明の固体電解質は、均一かつ大きな電導度を有し、
その上フィブリル構造を有する基材を用いているために
強度が大きくてたわみ性があシ、さらに熱可塑性の有機
溶媒に可溶な有機高分子物質ヲ用いているために、ポリ
アセチレンフィルムや金属箔などの電極に対して溶媒接
着や熱圧着が可能であるなど優れた特徴を有している。
The solid electrolyte of the present invention has uniform and high conductivity,
Furthermore, because it uses a base material with a fibrillar structure, it has high strength and flexibility.Furthermore, because it uses an organic polymer substance that is soluble in thermoplastic organic solvents, polyacetylene film and metal foil It has excellent features such as being able to be bonded by solvent or thermocompression to other electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の固体電解質の構造を示す説明図であって、
図中符号1は短繊維状物質、2は有機高分子物質及び3
は電解質である。 特許出願人 オリエント時計株式会社 代理人 阿 形 明
The figure is an explanatory diagram showing the structure of the solid electrolyte of the present invention,
In the figure, 1 is a short fibrous material, 2 is an organic polymer material, and 3 is a short fibrous material.
is an electrolyte. Patent applicant: Orient Watch Co., Ltd. Agent Akira Agata

Claims (1)

【特許請求の範囲】 l 短繊維状物質から成るフィブリル構造を有する基材
に、有機高分子物質及び電解質を均一に含浸させて成る
固体電解質。 2 有機高分子物質が熱可塑性を有し、かつ有機溶媒に
可溶なものである特許請求の範囲第1項記載の固体電解
質。 3 電解質がリチウム塩である特許請求の範囲第1項又
は第2項記載の固体電解質。
[Scope of Claims] 1. A solid electrolyte made by uniformly impregnating an organic polymer substance and an electrolyte into a base material having a fibrillar structure made of a short fibrous substance. 2. The solid electrolyte according to claim 1, wherein the organic polymer substance has thermoplasticity and is soluble in an organic solvent. 3. The solid electrolyte according to claim 1 or 2, wherein the electrolyte is a lithium salt.
JP59019448A 1984-02-07 1984-02-07 Solid electrolyte Pending JPS60165058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019448A JPS60165058A (en) 1984-02-07 1984-02-07 Solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019448A JPS60165058A (en) 1984-02-07 1984-02-07 Solid electrolyte

Publications (1)

Publication Number Publication Date
JPS60165058A true JPS60165058A (en) 1985-08-28

Family

ID=11999588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019448A Pending JPS60165058A (en) 1984-02-07 1984-02-07 Solid electrolyte

Country Status (1)

Country Link
JP (1) JPS60165058A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237361A (en) * 1987-03-26 1988-10-03 Matsushita Electric Ind Co Ltd Solid electrolyte compact
JPS63239776A (en) * 1987-03-27 1988-10-05 Japan Synthetic Rubber Co Ltd Solid electrolyte sheet and its manufacture
JPH01122567A (en) * 1987-11-06 1989-05-15 Japan Synthetic Rubber Co Ltd Manufacture of solid electrolyte sheet
JPH01195677A (en) * 1988-01-29 1989-08-07 Matsushita Electric Ind Co Ltd Flexible solid electric chemical element
DE3920129A1 (en) * 1988-06-21 1989-12-28 Ricoh Kk ELECTROCHEMICAL DEVICE
FR2687405A1 (en) * 1992-02-13 1993-08-20 Inst Nat Polytech Grenoble MACROMOLECULAR MATERIAL BASED ON POLYSACCHARIDES AND ION CONDUCTIVE MATERIAL CONTAINING THE SAME.
FR2777699A1 (en) * 1998-04-16 1999-10-22 Alsthom Cge Alcatel POLYMER SOLID POLYACRYLONITRILE ELECTROLYTE
JP2000340260A (en) * 1999-05-27 2000-12-08 Toshiba Battery Co Ltd Polymer lithium secondary battery
JP2005530882A (en) * 2002-06-21 2005-10-13 アンスティテュ ナシオナル ポリテクニク ド グルノーブル Strengthening materials with ionic conduction, electrodes and their use in electrolytes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237361A (en) * 1987-03-26 1988-10-03 Matsushita Electric Ind Co Ltd Solid electrolyte compact
JPH0576139B2 (en) * 1987-03-27 1993-10-22 Japan Synthetic Rubber Co Ltd
JPS63239776A (en) * 1987-03-27 1988-10-05 Japan Synthetic Rubber Co Ltd Solid electrolyte sheet and its manufacture
JPH01122567A (en) * 1987-11-06 1989-05-15 Japan Synthetic Rubber Co Ltd Manufacture of solid electrolyte sheet
JPH0576136B2 (en) * 1987-11-06 1993-10-22 Japan Synthetic Rubber Co Ltd
JPH01195677A (en) * 1988-01-29 1989-08-07 Matsushita Electric Ind Co Ltd Flexible solid electric chemical element
DE3920129A1 (en) * 1988-06-21 1989-12-28 Ricoh Kk ELECTROCHEMICAL DEVICE
DE3920129C2 (en) * 1988-06-21 1991-02-21 Ricoh Co., Ltd., Tokio/Tokyo, Jp
FR2687405A1 (en) * 1992-02-13 1993-08-20 Inst Nat Polytech Grenoble MACROMOLECULAR MATERIAL BASED ON POLYSACCHARIDES AND ION CONDUCTIVE MATERIAL CONTAINING THE SAME.
FR2777699A1 (en) * 1998-04-16 1999-10-22 Alsthom Cge Alcatel POLYMER SOLID POLYACRYLONITRILE ELECTROLYTE
EP0951088A3 (en) * 1998-04-16 1999-11-03 Alcatel Polyacrylonitrile-based solid polymer electrolyte
JP2000340260A (en) * 1999-05-27 2000-12-08 Toshiba Battery Co Ltd Polymer lithium secondary battery
JP2005530882A (en) * 2002-06-21 2005-10-13 アンスティテュ ナシオナル ポリテクニク ド グルノーブル Strengthening materials with ionic conduction, electrodes and their use in electrolytes

Similar Documents

Publication Publication Date Title
CN101399329B (en) Manufacturing method of positive pole plate of lithium-sulfur cell
CN101388441B (en) Electrolyte film and porous substrate and preparation thereof, lithium ion secondary battery
US6280878B1 (en) Electrode and lithium secondary battery using this electrode
US4740433A (en) Nonaqueous battery with special separator
CN1285084A (en) Separators for electrochemical cells
JP3078800B1 (en) Method for producing negative electrode for non-aqueous secondary battery
JPS60165058A (en) Solid electrolyte
US4216247A (en) Method of manufacturing positive electrode for nonaqueous cell
CN1272870C (en) Films for electrochemical component and method for production thereof
JP2000357533A (en) Polycarbonate electrolyte and polymer lithium battery containing the same
CN102437369A (en) Lithium ion battery
JP2003007357A (en) Non-aqueous electrolyte air battery
CN105870382B (en) Lithium ion battery composite diaphragm and preparation method thereof
EP3399578A1 (en) Method for producing positive electrode active material slurry
CN102522559A (en) Composite water-soluble bonding agent for preparing lithium ion battery
KR100384384B1 (en) Lithium ion polymer battery having superior temperatrure property and process for preparing the same
JP2003173780A (en) Coating composition for anode, anode plate, and nonaqueous electrolyte solution secondary battery
JPS63121247A (en) Negative electrode of secondary battery
KR100777971B1 (en) Gellable separators containing functional inorganic additives and rechargeable lithium batteries using them
JPS63190318A (en) Electric double-layer capacitor
JP2000077059A (en) Battery and its manufacture
JP2975773B2 (en) Manufacturing method of manganese dry battery separator
JPWO2013099816A1 (en) Molten salt battery and manufacturing method of molten salt battery
JPH03225750A (en) Positive electrode sheet for lithium battery
DE3112454C2 (en) Organic solvent treated positive electrodes containing manganese dioxide and methods of making them