JPS60165043A - Manufacture of flat type battery - Google Patents

Manufacture of flat type battery

Info

Publication number
JPS60165043A
JPS60165043A JP59021321A JP2132184A JPS60165043A JP S60165043 A JPS60165043 A JP S60165043A JP 59021321 A JP59021321 A JP 59021321A JP 2132184 A JP2132184 A JP 2132184A JP S60165043 A JPS60165043 A JP S60165043A
Authority
JP
Japan
Prior art keywords
electrode plate
glass
negative electrode
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021321A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP59021321A priority Critical patent/JPS60165043A/en
Publication of JPS60165043A publication Critical patent/JPS60165043A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a battery with high reliability by forming glass layers at the peripheral section of metal plates that comprise positive and negative electrode plates and overlapping both glass layers so as to be made to touch each other while a power generating element is being inserted in the central area thereof, then heating both layers of glass to be welded each other. CONSTITUTION:A glass layer 3b is formed on a negative electrode plate 2 from the peripheral end to the inside except the section in which the continuity with the negative electrode 6 in the central part is provided. A glass layer 3a is formed on the inner surface side peripheral section of a positive electrode plate 1. A nickel ribbon 7 is placed on the negative electrode 6 of a power generating element formed on the positive electrode plate 1 and the negative electrode plate 2 is overlapped on the positive electrode plate 1 so that the glass layer 3b and the glass layer 3a formed on the positive electrode plate 1 can be made to touch each other. Then, while a battery is being pressurized, the peripheral section of the battery is irradiated with YAG laser and the glass is melted, then the glass layers 3a and 3b are welded and sealed.

Description

【発明の詳細な説明】 〔技術分野および目的〕 本発明は薄形密閉電池の製造方法の改良に係り、超薄形
で密閉性、絶縁性にすぐれ、長期使用に対して信頼性の
高い薄形密閉電池を提供することを目的とする。
[Detailed Description of the Invention] [Technical Field and Objectives] The present invention relates to an improvement in the manufacturing method of a thin sealed battery, which is ultra-thin, has excellent sealing properties and insulation properties, and is highly reliable for long-term use. The purpose is to provide a sealed battery.

〔背景技術〕[Background technology]

従来の薄形密閉電池は、第3図に示すように、正極板1
と負極板2との間に発電要素とセラミンク製スペーサ1
1とを配置し、セラミック製スペーサ11と極板間をハ
ンダ12.13で接合することによって形成されていた
。しかしながら、極板間の絶縁に使用されているスペー
サの厚みは一般に正極板や飯極板に使用される金属板よ
りも厚く、しかもスペーサ表面のメタライジング層の厚
みやハンダ層の厚みも加わるため、この構造では電池を
極薄化することができず、薄形メモリカードなどの用途
に適用できなかった。
A conventional thin sealed battery has a positive electrode plate 1 as shown in FIG.
A power generation element and a ceramic spacer 1 are placed between the negative electrode plate 2 and the negative electrode plate 2.
1, and bonded the ceramic spacer 11 and the electrode plate with solder 12 and 13. However, the thickness of the spacer used for insulation between the electrode plates is generally thicker than the metal plate used for the positive electrode plate and the rice electrode plate, and the thickness of the metallizing layer and the solder layer on the surface of the spacer are also added. However, this structure did not allow the battery to be made extremely thin and could not be applied to applications such as thin memory cards.

そこで、極薄化をはかるために、樹脂封止をすることも
考えられるが、それによって極薄化が達成しえたとして
も、現在の技術では樹脂封止部分の密閉性や樹脂自体の
気体透過性の問題があり、長期使用に対する信頼性にお
いて欠けるところがあった。
Therefore, resin sealing may be considered in order to achieve ultra-thinness, but even if ultra-thinness can be achieved by doing so, current technology does not allow for the sealing of the resin sealing part or the gas permeability of the resin itself. However, there were problems with the performance and reliability for long-term use.

〔発明の概要〕[Summary of the invention]

本発明は上述した従来技術の欠点を解消するもので、正
極板および負極板となる金属板の周縁部にガラス層を形
成し、上記金属板をその中央部ムこ発電要素を介在させ
つつガラス屓同士が当接するように重ね、加熱してガラ
ス同士を溶着させることによって封止し、超薄形で密閉
性、絶縁性が高く長期使用に対する信頼性の高い電池が
得られるようにしたものである。
The present invention solves the above-mentioned drawbacks of the prior art, and involves forming a glass layer on the periphery of a metal plate that will become a positive electrode plate and a negative electrode plate. The glasses are stacked so that their shells are in contact with each other and sealed by heating and welding the glass to each other, resulting in an ultra-thin, airtight, highly insulating battery that is highly reliable for long-term use. be.

〔実施例〕〔Example〕

第1図は本発明の方法により製造された薄形密閉電池の
一例を示す断面図であり、第2図は第1図に示す電池の
製造中における要部拡大断面図である。
FIG. 1 is a sectional view showing an example of a thin sealed battery manufactured by the method of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the battery shown in FIG. 1 during manufacture.

本実施例による電池は固体薄膜二次電池で、図中、1は
5US430板よりなる正極板、2は5US430板よ
りなる負極板、3はガラス層、4はTi32薄膜よりな
る正極、5ば固体電解質層、6はリチウム薄膜よりなる
負極、7は負極6と負極板2との導通をとるためのニッ
ケルリボンである。
The battery according to this embodiment is a solid thin film secondary battery, and in the figure, 1 is a positive electrode plate made of a 5US430 plate, 2 is a negative electrode plate made of a 5US430 plate, 3 is a glass layer, 4 is a positive electrode made of a Ti32 thin film, and 5 is a solid The electrolyte layer 6 is a negative electrode made of a lithium thin film, and 7 is a nickel ribbon for establishing electrical conduction between the negative electrode 6 and the negative electrode plate 2.

この電池の詳細およびその製造方法は次に示すとおりで
ある。
Details of this battery and its manufacturing method are as follows.

負極板2は厚さ0.1 mmで、電池製造に際し、その
内面側に第2図に示されるように中央部の負極6との導
通をとる部分を除いて周端から内方に向けて約50μm
の厚さでガラスJW3bが形成される。
The negative electrode plate 2 has a thickness of 0.1 mm, and when manufacturing the battery, as shown in FIG. Approximately 50μm
Glass JW3b is formed with a thickness of .

上記ガラスN3bを構成するガラスはB203−PbO
系ガラスでその融点は約430℃であり、熱膨張率は約
105 Xl0−7/’cである。ガラス層3bの負極
板2への形成は、負極板2を電気炉巾約800°Cで1
0分間加熱して負極板2の表面をあらかじめ酸化してお
き、ガラス層の形成予定部分に上記ガラスの粉末を塗布
し、電気炉内窒素雰囲気中で1000°Cに加熱し、ガ
ラスを負極板に溶着させることによって行なわれた。こ
の負極側のガラスIW3bが負極板2の周縁部のみなら
ず正極側に比べてかなり中央部側にわたって形成されて
いるのは、ガラス層3bによって負極板2と正極4との
接触を避は内部短絡の発生を防止しようとするためであ
り、もし他の手段(たとえばポリイミド樹脂コーティン
グ)などで上記短絡発生を防止するならばガラス層3b
は負極板2の周縁部だけでも充分である。
The glass constituting the above glass N3b is B203-PbO
This glass has a melting point of about 430°C and a coefficient of thermal expansion of about 105 Xl0-7/'c. To form the glass layer 3b on the negative electrode plate 2, the negative electrode plate 2 is heated in an electric furnace at a width of about 800°C.
The surface of the negative electrode plate 2 is oxidized in advance by heating for 0 minutes, and the glass powder is applied to the area where the glass layer is to be formed, and heated to 1000°C in a nitrogen atmosphere in an electric furnace to form the glass into the negative electrode plate. This was done by welding it to. The reason why the glass IW 3b on the negative electrode side is formed not only at the periphery of the negative electrode plate 2 but also over the center part compared to the positive electrode side is that the glass layer 3b prevents contact between the negative electrode plate 2 and the positive electrode 4 from inside. This is to prevent the occurrence of short circuits, and if the short circuits are prevented by other means (for example, polyimide resin coating), the glass layer 3b
The peripheral edge of the negative electrode plate 2 alone is sufficient.

正極板1は負極板2と同様に厚さ0.1 mmの5US
430板で形成されており、その内面側周縁部には前記
負極側と同様の方法により厚さ約50μmの8203=
PbO系のガラス層3aが形成されている。 − この正極板1は薄膜電池の基板としての役目も兼ねてお
り、ガラスN3aをマスキングして正極板2上にケミカ
ルペーパーディポジシロン法により厚さ約50μmのT
iS2の薄膜を形成して正極4とし、ついで該正極4上
にスパッタ法により厚さ約10μmのLi4Si04−
Li3PO4のアモルファス薄膜を形成して固体電解質
層5とし、さらにその上に蒸着法により厚さ約10μm
のリチウムの薄膜を形成して負極6とした。
Like the negative electrode plate 2, the positive electrode plate 1 is made of 5US with a thickness of 0.1 mm.
430 plate, and a 8203=8203 plate with a thickness of about 50 μm is formed on the inner peripheral edge of the plate using the same method as for the negative electrode side.
A PbO-based glass layer 3a is formed. - This positive electrode plate 1 also serves as a substrate for a thin film battery, and by masking the glass N3a, a T with a thickness of approximately 50 μm is placed on the positive electrode plate 2 using a chemical paper depositillon method.
A thin film of iS2 is formed as a positive electrode 4, and then Li4Si04- with a thickness of about 10 μm is deposited on the positive electrode 4 by sputtering.
An amorphous thin film of Li3PO4 is formed to form the solid electrolyte layer 5, and then a layer of about 10 μm thick is formed by vapor deposition on top of the solid electrolyte layer 5.
A thin film of lithium was formed to form a negative electrode 6.

このようにして正極板1上に形成された発電要素の負極
6上に厚さ30μmのニッケルリボン7を載置し、ニッ
ケルリボン7と負極板2の中央部におけるガラス層を形
成していない部分が当接するようにしつつ、負極板2を
ガラスN3bと正極板1上に形成したガラスN3aとが
当接するようにして正極板l上に重ねた。
A nickel ribbon 7 with a thickness of 30 μm is placed on the negative electrode 6 of the power generation element formed on the positive electrode plate 1 in this way, and the central part of the nickel ribbon 7 and the negative electrode plate 2 where no glass layer is formed is placed. The negative electrode plate 2 was stacked on the positive electrode plate l so that the glass N3b and the glass N3a formed on the positive electrode plate 1 were in contact with each other.

っギIマmm尤+nrx+ f?Jk<?−VA /−
1,、w /LIJ力10W、速度40mm/sec 
)を電池の外周部にそって照射し、ガラスを溶融させて
ガラスIW3aとガラス層3bを溶着して封止し、第1
図に示すような電池を製造した。なお第1図におけるガ
ラスN3は正極板1上に形成したガラスN3aと負極板
2上に形成したガラス1mJ3bとが溶着して形成され
たものである。
Ggi Ima mm + nrx + f? Jk<? -VA/-
1,,w/LIJ force 10W, speed 40mm/sec
) along the outer periphery of the battery to melt the glass and weld and seal the glass IW 3a and the glass layer 3b.
A battery as shown in the figure was manufactured. Note that the glass N3 in FIG. 1 is formed by welding the glass N3a formed on the positive electrode plate 1 and the glass 1mJ3b formed on the negative electrode plate 2.

ガラスの融点は極板を構成する金属に比べて著しく低い
ため、低出力のレーザ加熱でガラス間を溶着できるので
、溶着時の正極板1や負極板2の溶融はまったくなかっ
た。加熱手段としてはレーザ加熱以外にもプラズマアー
クなども採用可能であるが、電池内容物への熱影響を考
えると局部加熱が可能なレーザによるのが最も好ましい
Since the melting point of glass is significantly lower than that of the metal constituting the electrode plates, the glasses can be welded together by low-power laser heating, so that the positive electrode plate 1 and the negative electrode plate 2 were not melted at all during welding. In addition to laser heating, a plasma arc or the like can be used as the heating means, but in view of the thermal effect on the battery contents, it is most preferable to use a laser that can locally heat the battery.

得られた電池の気密度をヘリウムリークディテクターで
測定したところ、リークばI XXl0−9at・cc
/sec −air以下であり、高気密度であった。ま
た得られた電池の総厚は約0.3 mmであり、超薄形
であった。
When the airtightness of the obtained battery was measured using a helium leak detector, it was found that the leakage was IXXl0-9at・cc.
/sec-air or less, and the airtightness was high. Moreover, the total thickness of the obtained battery was about 0.3 mm, and it was extremely thin.

この電池の正極板1と負極板2との間の絶縁祇抗を50
0■の直流電圧を印加した絶縁抵抗針により測定したと
ころ、1000MΩ以上であって高い絶縁性を有してい
た。
The insulation resistance between the positive electrode plate 1 and the negative electrode plate 2 of this battery is 50
When measured with an insulation resistance needle to which a DC voltage of 0.0 cm was applied, the resistance was 1000 MΩ or more, indicating high insulation properties.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば超薄形でかつ密閉性
、絶縁性にすぐれ、長期使用に対する信頼性の高い電池
が提供される。
As described above, the present invention provides a battery that is ultra-thin, has excellent sealing properties and insulation properties, and is highly reliable for long-term use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により製造された薄形密閉電池の
一例を示す断面図であり、第2図は第1図に示す電池の
製造中における要部拡大断面図である。第3図は従来法
による薄形密閉電池を示す断面図である。 1・・・正極板、 2・・・負極板、 3・・・ガラス
層、3a・・・ガラス層、 3b・・・ガラス層、4・
・・正極、5・・・固体電解質、 6・・・負極 特許出願人 日立マクセル株式会社 代理人 弁理士 三 輪 鐵 雄1 官1図 六2図 ″+?3図
FIG. 1 is a sectional view showing an example of a thin sealed battery manufactured by the method of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the battery shown in FIG. 1 during manufacture. FIG. 3 is a sectional view showing a conventional thin sealed battery. DESCRIPTION OF SYMBOLS 1... Positive electrode plate, 2... Negative electrode plate, 3... Glass layer, 3a... Glass layer, 3b... Glass layer, 4...
...Positive electrode, 5...Solid electrolyte, 6...Negative electrode Patent applicant Hitachi Maxell Co., Ltd. Agent Patent attorney Tetsuo Miwa 1 Government 1 Figure 62 Figure 62''+?3 Figure

Claims (1)

【特許請求の範囲】 (11正極板および負極板となる金属板の周縁部にガラ
ス層を形成し、上記金属板をその中央部に発電要素を介
在させつつガラス層同士が当接するように重ね、加熱し
てガラス同士を溶着させることによって封止することを
特徴とする薄形密閉電池の製造方法。 (2)加熱をレーザ加熱で行なう特許請求の範囲第1項
記載の薄形密閉電池の製造方法。
[Claims] (11) A glass layer is formed on the periphery of a metal plate serving as a positive electrode plate and a negative electrode plate, and the metal plates are stacked so that the glass layers are in contact with each other with a power generation element interposed in the center. A method for manufacturing a thin sealed battery, characterized in that the thin sealed battery is sealed by heating and welding the glasses together. (2) The thin sealed battery according to claim 1, wherein the heating is performed by laser heating. Production method.
JP59021321A 1984-02-07 1984-02-07 Manufacture of flat type battery Pending JPS60165043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021321A JPS60165043A (en) 1984-02-07 1984-02-07 Manufacture of flat type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021321A JPS60165043A (en) 1984-02-07 1984-02-07 Manufacture of flat type battery

Publications (1)

Publication Number Publication Date
JPS60165043A true JPS60165043A (en) 1985-08-28

Family

ID=12051885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021321A Pending JPS60165043A (en) 1984-02-07 1984-02-07 Manufacture of flat type battery

Country Status (1)

Country Link
JP (1) JPS60165043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230812A (en) * 2014-06-04 2015-12-21 セイコーインスツル株式会社 Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230812A (en) * 2014-06-04 2015-12-21 セイコーインスツル株式会社 Electrochemical cell

Similar Documents

Publication Publication Date Title
JP5057142B2 (en) Method for joining ceramic member and metal member, method for producing fuel cell stack structure, and fuel cell stack structure
JPH11233133A (en) Battery in which laminated sheet is used for sheath case
JP2000348695A (en) Thin battery and its manufacture
WO2012011361A1 (en) Electrochemical device
WO2005015659A1 (en) Cell coated with film and manufacturing method thereof
JP2017041449A (en) Thin film battery package
CN104733656A (en) Ceramic sealing battery
JP2013020968A (en) Secondary battery
CN204632818U (en) A kind of ceramic seal battery
WO2018198461A1 (en) Lithium ion secondary battery
JP4666131B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JPS60165043A (en) Manufacture of flat type battery
JPH01197967A (en) Thermal battery
JP7171351B2 (en) LAMINATED SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
JPH11353995A (en) Manufacture of thin thermal fuse
JP2016197491A (en) Jacket material for battery and battery using the same
JPS61198564A (en) Solid electrolyte battery
JP2020057485A (en) Laminate-type secondary battery and method for producing the same
JP7426518B1 (en) All solid state battery
JP2005129366A (en) Secondary battery, and its manufacturing method and device
JP2019220333A (en) Stacked battery and method for manufacturing stacked battery
JP2001085274A (en) Electronic double layer capacitor and its manufacture
JP2009511743A (en) Stable joint formed by thermal spraying
JPS60165042A (en) Manufacture of flat type battery
JPH0243096Y2 (en)