JPS60165041A - Manufacture of thin type sealed battery - Google Patents

Manufacture of thin type sealed battery

Info

Publication number
JPS60165041A
JPS60165041A JP59021318A JP2131884A JPS60165041A JP S60165041 A JPS60165041 A JP S60165041A JP 59021318 A JP59021318 A JP 59021318A JP 2131884 A JP2131884 A JP 2131884A JP S60165041 A JPS60165041 A JP S60165041A
Authority
JP
Japan
Prior art keywords
spacer
electrode plate
battery
positive electrode
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021318A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP59021318A priority Critical patent/JPS60165041A/en
Publication of JPS60165041A publication Critical patent/JPS60165041A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To prevent the adhesion of solder to the side of a spacer and obtain a thin type battery without shortcircuit and with good sealing properties by performing the solder joint between the spacer and a plate using the laser local heating. CONSTITUTION:Presoldered positive electrode plate 6, negative electrode plate 5, and spacer 7 are loaded on a support jig 11 made of iron and pressurized and fixed by a press jig 12. Then the circumferential section of a battery is irradiated with pulse YAG laser and the negative electrode plate 5 and the spacer 7 are joined by melting presoldered solders 8a and 8b in the negative electrode 5 and the spacer 7. Furthermore, the support jig 12 is lifted and a battery is loaded on the support jig 11 by inverting the top and bottom of the battery, then the support jig 12 is lowered again. While the battery is being pressurized, the circumferential section of the battery is irradiated with pulse YAG laser and the positive electrode plate 6 and the spacer 7 are joined by melting solders 9a and 9b presoldered on the positive electrode plate 6 and the spacer 7.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は薄形密閉電池の製造方法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for manufacturing a thin sealed battery.

〔背景技術〕[Background technology]

従来、この種の電池の封止は、セラミック製スペーサま
たはガラス製スペーサの表面にメタライジングを施し、
このスペーサと極板とを炉内加熱によりハンダ接合する
ことによって行なわれてきた。このとき、ハンダ量が少
ないと充分な密閉性が得られず、多いとスペーサの側面
にハンダがはみ出して付着し、このスペーサの側面に付
着したハンダによって電池が短絡するため、ハンダ量や
加熱条件の調整がきわめて難しく、歩留りが悪かった。
Traditionally, this type of battery is sealed by metallizing the surface of a ceramic or glass spacer.
This has been accomplished by soldering the spacer and the electrode plate together by heating in a furnace. At this time, if the amount of solder is small, a sufficient seal cannot be obtained, and if it is too much, the solder will protrude and adhere to the sides of the spacer, and the battery will short circuit due to the solder attached to the sides of the spacer. It was extremely difficult to adjust and the yield was poor.

〔発明の目的〕[Purpose of the invention]

本発明はスペーサと極板とをハンダによって接合する際
に、ハンダがスペーサ側面に付着するのを防止し、短絡
がなく、かつ密閉性が良好な薄形密閉電池を提供するこ
とを目的とする。
An object of the present invention is to provide a thin sealed battery that prevents solder from adhering to the side surface of the spacer when joining a spacer and an electrode plate with solder, is free from short circuits, and has good sealing performance. .

〔発明の概要〕[Summary of the invention]

本発明はスペーサと極板とのハンダによる接合をレーザ
による局部加熱によって行なうことにより、スペーサ側
面へのハンダの付着を防止し、短絡がなく、かつ密閉性
が良好な薄形電池が得られるようにしたものである。
The present invention prevents adhesion of solder to the side surfaces of the spacer by joining the spacer and the electrode plate with solder using local heating using a laser, thereby making it possible to obtain a thin battery that is free from short circuits and has good sealing performance. This is what I did.

レーザ加熱によるスペーサと極板とのハンダ接合に際し
ては、接合しようとする極板をあらかじめハンダの融点
以下の温度に予備加熱しておくことが好ましい。これは
レーザ加熱では局部的に急速に加熱されかつ急速に冷却
されるため極板やスペーサはほとんど温度があがらない
ので、溶融ハンダの濡れが悪く、均一なハンダ接合が行
ないにくり、安定して密閉性の高い電池を得ることがむ
つかしい面があり、極板を予備加熱しておいて極板やス
ペーサ(極板を加熱するとハンダを通してスペーサも昇
温するようになる)に対するハンダの濡れを向上させ、
安定して密閉性の高い電池が得られるようにするためで
ある。
When soldering a spacer and an electrode plate by laser heating, it is preferable to preheat the electrode plates to be joined to a temperature below the melting point of the solder. This is because laser heating locally heats up quickly and cools down quickly, so the temperature of the electrode plates and spacers hardly rises, which makes it difficult for the molten solder to wet, making it difficult to form a uniform solder joint, resulting in a stable and stable solder joint. It is difficult to obtain a highly sealed battery, so preheating the electrode plate improves the wetting of the solder to the electrode plate and spacer (heating the electrode plate causes the solder to pass through and the spacer also heats up). let me,
This is to ensure that a battery with stable and high sealing performance can be obtained.

〔実施例〕〔Example〕

実施例1 ′ 第1図に示す厚さ0.7 +nmで平面形状が15mm
 X 15mmの正方形の薄形電池を第3図に示す方法
により封止して製造した。
Example 1' The thickness is 0.7 + nm and the planar shape is 15 mm as shown in Figure 1.
A square thin battery measuring 15 mm in diameter was sealed and manufactured by the method shown in FIG.

電池は固体薄膜二次電池で、図中、1はガラス基板であ
り、2はガラス基板1上にケミカルベーパーディポジシ
ョン法によって形成したTLS2薄膜よりなる正極であ
り、3は上記正極2上にスパッタ法によって形成したL
i4Si04−Li3PO4の薄膜よりなる固体電解質
層で、4は該固体電解質層3上に形成したリチウム薄膜
より負極である。5は負極板で、この負極板5の内面は
図示していないが内部短絡を避けるため負極4と接触す
る中央部を除いてポリイミド樹脂でコーティングされて
いる。6は正極板で、この正極板6と正極2とは図示し
ていないが導電ペーストによって導通している。7はセ
ラミック製のスペーサであり、スペーサ7と負極板5と
の間およびスペーサ7と正極板6との間はハンダ8.9
で接合され、電池内部が密閉構造になるように封止され
ている。
The battery is a solid thin film secondary battery, and in the figure, 1 is a glass substrate, 2 is a positive electrode made of a TLS2 thin film formed on the glass substrate 1 by chemical vapor deposition, and 3 is a positive electrode made of a TLS2 thin film formed on the positive electrode 2 by sputtering. L formed by the method
A solid electrolyte layer made of a thin film of i4Si04-Li3PO4, and 4 is a negative electrode of the lithium thin film formed on the solid electrolyte layer 3. Reference numeral 5 denotes a negative electrode plate. Although not shown, the inner surface of the negative electrode plate 5 is coated with polyimide resin except for the central portion that contacts the negative electrode 4 to avoid internal short circuits. Reference numeral 6 denotes a positive electrode plate, and although not shown, the positive electrode plate 6 and the positive electrode 2 are electrically connected through a conductive paste. 7 is a ceramic spacer, and solder 8.9 is used between the spacer 7 and the negative electrode plate 5 and between the spacer 7 and the positive electrode plate 6.
The inside of the battery is sealed to form a hermetic structure.

上記電池の詳細ならびにその製造方法は次に示すとおり
である。
Details of the above battery and its manufacturing method are as follows.

正極板6および負極板5としては厚さ0.1闘の銅−ス
テンレス鋼−ニソケルの3層クラツド板を使用し、銅面
を接合面とした。
As the positive electrode plate 6 and the negative electrode plate 5, three-layer clad plates of copper-stainless steel-nisokel having a thickness of 0.1 mm were used, and the copper surface was used as the bonding surface.

スペーサ7は、アルミナ系セラミックスを用い、厚さ0
.4 mmで断面が0.4 mmX1.5 mmの長方
形状で第2図に示すように平面形状が外寸15mm X
 15mmの正方形状のリング状に成形されたものであ
る。
The spacer 7 is made of alumina ceramics and has a thickness of 0.
.. It has a rectangular shape with a cross section of 4 mm and a cross section of 0.4 mm x 1.5 mm, and the planar shape has an external dimension of 15 mm x as shown in Figure 2.
It is molded into a 15 mm square ring shape.

そして、このスペーサ7は表面にモリブデン・マンガン
系のメタライジングを施し、さらにそのメタライズ層上
に銅メッキを施して接合面とした。
The surface of the spacer 7 was coated with molybdenum-manganese metallization, and the metallized layer was further plated with copper to form a bonding surface.

使用したハンダ8.9はビスマス−錫−鉛合金からなる
融点約145℃の低融点ハンダで、第4図に示すように
あらかじめ正極板6、負極板5およびスペーサ7の接合
面に約30μ川の厚さで予備ハンダ付けをした。
The solder 8.9 used is a low melting point solder made of bismuth-tin-lead alloy with a melting point of about 145°C, and as shown in FIG. I pre-soldered it to a thickness of .

上記のように予備ハンダ付けをした正極板6、負極板5
およびスペーサ7を用い、まず正極板6の中央部に前記
正極2、固体電解質N3および負極4からなる発電要素
をガラス基板1とともにのせ、正極2と正極板6とを導
電ペーストで導通させ、正極板6の周縁部にスペーサ7
を載置し、負極板5をスペーサ7上にのせ、第3図に示
すように鉄製の支え治具11上にのせ、押え治具12で
電池を加圧して固定した。
Positive electrode plate 6 and negative electrode plate 5 pre-soldered as above
First, using the spacer 7 and a power generating element consisting of the positive electrode 2, the solid electrolyte N3, and the negative electrode 4 is placed on the center of the positive electrode plate 6 together with the glass substrate 1, the positive electrode 2 and the positive electrode plate 6 are electrically connected with a conductive paste, and the positive electrode A spacer 7 is attached to the periphery of the plate 6.
The negative electrode plate 5 was placed on the spacer 7, and as shown in FIG. 3, it was placed on an iron supporting jig 11, and the battery was pressurized and fixed using a holding jig 12.

つぎに、パルスYAGレーザ(出力100 W、速度3
0mm/sec 、パルス発振数50pps ) 13
を電池の外周部にそって照射し、負極板5とスペーサ7
に予備ハンダ付けをしておいたハンダ8a、8bを溶融
させて負極板5とスペーサ7を接合した。この際、負極
板5の溶融は認められなかった。また、電池全体が過度
に加熱されることがないため、スペーサ7側面へのハン
ダ付着は生じなかった。
Next, a pulsed YAG laser (output 100 W, speed 3
0mm/sec, pulse oscillation number 50pps) 13
is irradiated along the outer periphery of the battery, and the negative electrode plate 5 and spacer 7 are
The negative electrode plate 5 and the spacer 7 were joined by melting the solders 8a and 8b that had been pre-soldered to the electrodes. At this time, no melting of the negative electrode plate 5 was observed. Furthermore, since the entire battery was not heated excessively, no solder was attached to the side surface of the spacer 7.

つぎに、押え治具12を引き上げ、電池の上下を反転さ
せて支え治具11上に載置し、再度、押え治具12を降
下させて電池を加圧しながら、パルスYAGレーザを前
記と同条件で電池の外周部に照射し、正極板6とスペー
サ7に予備ハンダ付けをしておいたハンダ9a、9bを
溶融させて正極板6とスペーサ7とを接合した。もとよ
り、正極板6の溶融は認められなかったし、またスペー
サ7側面へのハンダ付着は生じなかった。
Next, the holding jig 12 is pulled up, the battery is turned upside down and placed on the supporting jig 11, and the holding jig 12 is lowered again to pressurize the battery while applying the pulsed YAG laser in the same manner as above. The positive electrode plate 6 and spacer 7 were joined together by irradiating the outer periphery of the battery under certain conditions to melt the solders 9a and 9b that had been preliminarily soldered to the positive electrode plate 6 and spacer 7. Naturally, no melting of the positive electrode plate 6 was observed, and no adhesion of solder to the side surfaces of the spacer 7 occurred.

得られた電池の気密度をヘリウムリークディテクターで
測定したところリークはI Xl0−”atm *cc
/sec ・air以下であり、高気密性であった。
When the airtightness of the obtained battery was measured using a helium leak detector, the leakage was found to be IXl0-"atm*cc
/sec・air or less, and the airtightness was high.

上記のようにして固体薄膜二次電池を100個製造した
が、いずれも開路電圧が2.5■以上あり、短絡はまっ
たく認められなかった。
One hundred solid thin film secondary batteries were produced in the manner described above, and all had open circuit voltages of 2.5 or more, and no short circuits were observed.

ちなみに、上記同様の固体薄膜二次電池を炉内加熱(1
80℃、10分)による封止によって100個製造した
が、開路電圧が2.5■に満たないものが10個あった
By the way, a solid thin film secondary battery similar to the above was heated in a furnace (1
Although 100 pieces were manufactured by sealing at 80° C. for 10 minutes, 10 pieces had an open circuit voltage of less than 2.5 μ.

実施例2 支え治具11および押え治具12をあらかじめ電気炉中
100℃で加熱しておき、この加熱した支え治具11と
押え治具12を用い、レーザ照射前に正極板6、負極板
5をあらかじめ約10秒間加熱しておいたほかは実施例
1と同様にして固体薄膜二次電池を製造した。
Example 2 The support jig 11 and the presser jig 12 are heated in advance at 100° C. in an electric furnace, and the heated support jig 11 and presser jig 12 are used to separate the positive electrode plate 6 and the negative electrode plate before laser irradiation. A solid thin film secondary battery was produced in the same manner as in Example 1, except that Sample No. 5 was heated for about 10 seconds in advance.

上記方法によれば、極板があらかじめ加熱されているた
め、ハンダの濡れがよく、密閉性の良好な固体薄膜二次
電池が安定して得られた。もとよりスペーサへのハンダ
付着による短絡はまったくなかった。
According to the above method, since the electrode plates were heated in advance, a solid thin film secondary battery with good solder wetting and good sealing performance was stably obtained. Of course, there were no short circuits caused by solder adhesion to the spacers.

上記のように予備加熱を加えた方法で電池を1000個
製造したが、ヘリウムリークディテクターによる気密度
が1×10−9a10−9at/5eclIair以下
に達しないものはわずか2個にすぎなかった。これに対
し実施例1の方法によるときは製造した1000個の電
池のうちヘリウムリークディクタ−による気密度が1×
1O−9atIIl@cc/5ec−air以下に達し
ないものが15個あった。
Although 1,000 batteries were manufactured using the method of preheating as described above, only 2 batteries did not reach an airtightness of 1 x 10-9a10-9at/5eclIair or less as measured by a helium leak detector. On the other hand, when the method of Example 1 was used, the airtightness due to the helium leak detector was 1× out of 1000 batteries manufactured.
There were 15 cases that did not reach 1O-9atIIl@cc/5ec-air or less.

なお実施例ではレーザとしてパルスYAGレーザを用い
たが、それに限られることなく、たとえば連続発振式Y
AGレーザ、連続発振式炭酸ガスレーザ、パルス発振式
炭酸ガスレーザなども用いることができる。また予備加
熱手段としてあらかじめ電気炉中で加熱した治具を用い
たが、予備加熱は必ずしも治具によらなくてもよいし、
また治具の加熱も治具中にヒータを内蔵させるなどによ
って行なってもよく、実施例で示した方法に限られるこ
とはない。
In the example, a pulsed YAG laser was used as the laser, but the laser is not limited to this, and for example, a continuous wave YAG laser may be used.
An AG laser, continuous oscillation type carbon dioxide laser, pulse oscillation type carbon dioxide laser, etc. can also be used. Furthermore, although a jig preheated in an electric furnace was used as a preheating means, preheating does not necessarily have to be done using a jig.
Furthermore, the heating of the jig may also be performed by incorporating a heater into the jig, and is not limited to the method shown in the embodiment.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば短絡がなく、かつ良
好な密閉性を有する薄形密閉電池が提供される。
As described above, the present invention provides a thin sealed battery that is free from short circuits and has good sealing properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る薄形密閉電池の一例を示す断面図
で、第2図は第1図に示す電池に用いたスペーサの平面
図、第3図は第り図に示す電池の製造中の側面図、第4
図は第3図に示す製造中の電池の要部拡大断面図である
。 2・・・正極、 3・・・固体電解質、 4・・・負極
、5・・・負極板、 6・・・正極板、 7・・・スペ
ーサ、8.9・・・ハンダ、13・・・レーザ照射前 左2図
FIG. 1 is a sectional view showing an example of a thin sealed battery according to the present invention, FIG. 2 is a plan view of a spacer used in the battery shown in FIG. 1, and FIG. 3 is a fabrication of the battery shown in FIG. Middle side view, 4th
The figure is an enlarged cross-sectional view of the main parts of the battery under manufacture shown in FIG. 3. 2...Positive electrode, 3...Solid electrolyte, 4...Negative electrode, 5...Negative electrode plate, 6...Positive electrode plate, 7...Spacer, 8.9...Solder, 13...・Left 2 diagram before laser irradiation

Claims (2)

【特許請求の範囲】[Claims] (1)正極板と負極板との間に発電要素とセラミ1ツク
製またはガラス製のスペーサを配置し、極板とスペーサ
との間をハンダで接合して気密封止する薄形密閉電池の
製造にあたり、ハンダによる接合をレーザで局部加熱す
ることによって行なうことを特徴とする薄形密閉電池の
製造方法。
(1) A thin sealed battery in which a power generation element and a spacer made of ceramic or glass are placed between the positive electrode plate and the negative electrode plate, and the electrode plate and the spacer are joined with solder for an airtight seal. A method for manufacturing a thin sealed battery, characterized in that during manufacturing, joining by solder is performed by locally heating with a laser.
(2) レーザ加熱に際し極板を特徴とする特許請求の
範囲第1項記載の薄形密閉電池の製造方法。
(2) A method for manufacturing a thin sealed battery according to claim 1, characterized in that the electrode plate is used during laser heating.
JP59021318A 1984-02-07 1984-02-07 Manufacture of thin type sealed battery Pending JPS60165041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021318A JPS60165041A (en) 1984-02-07 1984-02-07 Manufacture of thin type sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021318A JPS60165041A (en) 1984-02-07 1984-02-07 Manufacture of thin type sealed battery

Publications (1)

Publication Number Publication Date
JPS60165041A true JPS60165041A (en) 1985-08-28

Family

ID=12051802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021318A Pending JPS60165041A (en) 1984-02-07 1984-02-07 Manufacture of thin type sealed battery

Country Status (1)

Country Link
JP (1) JPS60165041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003504A1 (en) * 1991-08-09 1993-02-18 Yuasa Corporation Thin battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993003504A1 (en) * 1991-08-09 1993-02-18 Yuasa Corporation Thin battery
US5378557A (en) * 1991-08-09 1995-01-03 Yuasa Corporation Film type battery

Similar Documents

Publication Publication Date Title
JP6513773B2 (en) Electrochemical cell
JPS604270A (en) Manufacture of solar battery
WO2012011362A1 (en) Electrochemical device
JP2012028490A (en) Electrochemical device
JPS6240859B2 (en)
JPS60165041A (en) Manufacture of thin type sealed battery
JPH05199056A (en) Manufacture of piezoelectric vibrator
JPS61138473A (en) Sodium-sulfur cell and manufacture thereof
KR950012947B1 (en) An oscillator
JPS61214355A (en) Manufacture of flat cell
JPS6266561A (en) Thin type solid electrolyte battery
JPS6065446A (en) Flat type sealed battery
JPS61214354A (en) Manufacture of flat cell
JPS62295368A (en) Sodium-sulphur cell and its manufacture
JPS62205676A (en) Laser device
JPS5851460A (en) Manufacture of enclosed cell
JPS6065444A (en) Flat type sealed battery
JPS62283554A (en) Manufacture of cell with lead terminal
JPS6326947A (en) Sodium-sulfur battery and its manufacture
JPS60165043A (en) Manufacture of flat type battery
JPS63174267A (en) Manufacture of flat plate type cell
JPS5851461A (en) Manufacture of enclosed cell
JPH11126838A (en) Electronic device
JP2004056193A (en) Piezoelectric vibrator and manufacturing method thereof
JPH035346A (en) Positive electrode joining device