JPS6016486B2 - Localized quenching of steel using resistance heating - Google Patents

Localized quenching of steel using resistance heating

Info

Publication number
JPS6016486B2
JPS6016486B2 JP15317179A JP15317179A JPS6016486B2 JP S6016486 B2 JPS6016486 B2 JP S6016486B2 JP 15317179 A JP15317179 A JP 15317179A JP 15317179 A JP15317179 A JP 15317179A JP S6016486 B2 JPS6016486 B2 JP S6016486B2
Authority
JP
Japan
Prior art keywords
steel
steel material
electrode
quenching
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15317179A
Other languages
Japanese (ja)
Other versions
JPS5675515A (en
Inventor
隆敏 鈴木
英男 太刀川
宗久 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP15317179A priority Critical patent/JPS6016486B2/en
Publication of JPS5675515A publication Critical patent/JPS5675515A/en
Publication of JPS6016486B2 publication Critical patent/JPS6016486B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は、抵抗発熱を利用して鋼材を効率よく局部的に
焼入れする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently locally hardening steel materials using resistance heating.

鋼材を利用した各種製品において、その使用形態よりし
て、その部品のある部分は、強度、耐摩耗性等の点から
高い硬さを必要とするのに対し、他の部分は、王として
靭性、加工性等の点から高い伸びを必要とする場合が多
い。
In various products using steel materials, depending on the way they are used, certain parts of the parts require high hardness in terms of strength, wear resistance, etc., while other parts require high toughness. , high elongation is often required from the viewpoint of workability.

このような場合に、硬さを必要とする箇所についてのみ
部分的に暁入れる方法をとれば、一旦全体を焼入れた後
、硬さを必要としない箇所にのみ焼戻すとの複雑な工程
を経る必要がないので、組織の安定性もよく、かつ熱エ
ネルギーの節約にもなる。そこで、このような局部的焼
入れ法は、種々に開発され、すでに火炎焼入れ法、高周
波焼入れ法、電子ビーム法等が実用化されている。しか
し、火炎焼入れは熱エネルギーが4・さし、ので、加熱
時間がかかり、能率的ではなく、また高周波焼入れは、
短時間で焼入れすることができるが部分的に正確な齢入
れは困難である。さらに、電子ビーム焼入れは、微少部
分の焼入れまで可能であるが、薄肉の鋼材に適用するこ
とは、熱歪を生じやすいので、事実上適用が困難である
。このような従来の局部的焼入れ法は一長一短を有して
おり薄肉の鋼材に適用できる焼入れ法がなかった。そこ
で、本発明者らは研究を重ねた結果、短時間に効率よく
、かつ局部的に焼入れが可能であり、薄肉の鋼材に適用
しても、熱歪を発生させることのない局部的競入法の開
発に成功した。すなわち、少なくとも一対の電極により
鋼材を執着押圧し(以下これを第1工程という)、しか
る後に通電により鋼材を局部的に抵抗発熱させて該鋼材
のオーステナィト化温度以上に加熱し(以下これを第2
工程という)、さらに電流を停止後電極を鋼材に連続的
に球着押圧することにより加熱された鋼材を急冷するこ
と(以下これを第8工程という)を勤徴とする抵抗発熱
による鋼材の局部的焼入れ法ある。本方法により鋼材の
焼入れを行えば、加熱は鋼材の固有抵抗による内部発熱
を利用するので、外部からの加熱に〈らべて熱効率がよ
く、短時間に行われる。
In such cases, if you use a method of partially tempering only the parts that require hardness, you will go through a complicated process of first hardening the entire part and then tempering only the parts that do not require hardness. Since this is not necessary, the stability of the tissue is improved and thermal energy is also saved. Therefore, various local hardening methods have been developed, and flame hardening methods, induction hardening methods, electron beam methods, etc. have already been put into practical use. However, flame quenching uses 4.5 mm of thermal energy, so it takes a long time to heat and is not efficient, and induction quenching is
Although it can be hardened in a short time, it is difficult to harden parts accurately. Furthermore, although electron beam hardening is capable of hardening even minute portions, it is practically difficult to apply it to thin steel materials because thermal distortion tends to occur. Such conventional local quenching methods have advantages and disadvantages, and there is no quenching method that can be applied to thin-walled steel materials. Therefore, as a result of repeated research, the present inventors have found that it is possible to quench locally in a short period of time, efficiently, and without causing thermal strain even when applied to thin steel materials. successfully developed the law. That is, the steel material is pressed firmly with at least one pair of electrodes (hereinafter referred to as the first step), and then the steel material is heated locally by resistive heating to a temperature higher than the austenitizing temperature of the steel material (hereinafter this is referred to as the first step). 2
(hereinafter referred to as the 8th step), and after stopping the current, the heated steel material is rapidly cooled by continuously pressing the electrode onto the steel material (hereinafter referred to as the 8th step). There is a hardening method. When steel is quenched using this method, heating utilizes internal heat generation due to the inherent resistance of the steel, so it is more efficient and takes less time than external heating.

また「冷却も電極との固体接触により行うので、急速か
つ完全に行うことができる。したがって、全体として短
い処理時間で、熱効率よく、焼入れを行うことができ、
その結果得られる鋼材には熱歪もなく、かつ焼入れ硬度
も高い。本発明の方法で、被処理材となりうる鋼材は焼
入れにより硬化する性質を有する鋼であれば、その鋼種
は問わない。通常の他の焼入れ法では、冷却速度が遅い
ため充分な焼きが入りにくいとされている炭素量の低い
鋼種、例えば自動車用外板に使用されているSPCC材
などに、本発明の方法は特に有用である。本発明の方法
を適用する上で、被処理材である鋼材の形状は円状、角
状、板状のいずれでもよい。
In addition, ``cooling is also performed through solid contact with the electrode, so it can be done quickly and completely.Therefore, quenching can be done in a short overall processing time and with high thermal efficiency.
The resulting steel material has no thermal distortion and has high quenched hardness. In the method of the present invention, any type of steel can be used as the material to be treated, as long as it has the property of being hardened by quenching. The method of the present invention is particularly useful for steel types with low carbon content, such as SPCC materials used for automobile outer panels, which are difficult to harden sufficiently due to the slow cooling rate using other ordinary hardening methods. Useful. When applying the method of the present invention, the shape of the steel material to be treated may be circular, square, or plate-like.

しかし、あまり肉厚の大きい被処理材の焼入れは、必要
な通電量が非常に大きくなり、電源の容量との関係で実
用上困難である。逆に、従来法によっては熱歪が発生し
て焼入れが困難であるとされていた薄肉の鋼材について
は、通電量にも問題がなく、本発明の方法の効果が大き
い。第1図に示すように第1工程で使用する電極1,2
は、被処理材3を挟圧し、その間で通電するため、対向
した少なくとも一対の電極でなければならない。
However, hardening of a material with a large wall thickness requires a very large amount of current, which is practically difficult due to the capacity of the power supply. On the other hand, for thin steel materials that are difficult to harden due to thermal strain caused by conventional methods, there is no problem with the amount of current applied, and the method of the present invention is highly effective. As shown in Figure 1, electrodes 1 and 2 used in the first step
must be at least a pair of electrodes facing each other in order to clamp the material 3 to be treated and conduct electricity between them.

しかし、二対以上の電極を使用すれば、同時に一複数の
箇所の症入れが可能となるので、効率的である。電極の
材料は、熱および電気の伝導度が高く、かつ機械的強度
、特に高温 度が大きい材料であるのが好ましい。
However, if two or more pairs of electrodes are used, it is possible to treat one or more locations at the same time, which is more efficient. The material of the electrode is preferably a material that has high thermal and electrical conductivity and high mechanical strength, particularly high temperature.

例えばスポット溶接の電極材料として使用されている銅
、あるいはクロム鋼合金等が適当である。一対の電極は
必ずしも、両者とも同一の材料である必要はない。両者
が同一の材料であれば、第2図aに示すように焼入れ硬
化部31は、鋼材の両表面から内部に向って等距離の所
に形成される。他方、両電極の材料が異なり、両者の電
気伝導度が異なる場合は、第2図bに示すように焼入れ
硬化部81は抵抗の大きい電極1側に片寄って形成され
る。電極の形状は、通電時の電流分布、冷却時の冷却効
果あるいは高温度の電極の変形に密接な関係を有する。
For example, copper, which is used as an electrode material for spot welding, or a chromium steel alloy is suitable. The pair of electrodes do not necessarily need to be made of the same material. If both are made of the same material, the quench hardened portions 31 are formed at equal distances inward from both surfaces of the steel material, as shown in FIG. 2a. On the other hand, if the two electrodes are made of different materials and have different electrical conductivities, the quench hardened portion 81 is formed biased towards the electrode 1 side, which has a higher resistance, as shown in FIG. 2b. The shape of the electrode has a close relationship with the current distribution during energization, the cooling effect during cooling, and the deformation of the electrode at high temperatures.

電極の先端と鋼材との接触面が少ないと接触面での電流
密度が高まり、接触面が高温になり鋼材と電極が溶着し
やすくなり好ましくない。また同時に電極の先端部分に
よる鋼材の脱熱効果も少なくなり、鋼材を急冷すること
ができなくなる。したがって、鋼材との接触面がなるべ
く多い電極の形状、すなわち、第3図a,bに示すよう
な、いわゆる平型、あるいは円錐台型の形状が望ましい
。また開□部を有する鋼材の開口部の周辺のみを暁入れ
る場合は、鋼材の焼入れ部分の形状と同一の説端形状を
有する電極を使用すれば、熱効率よく焼入れを行うこと
ができる。電極による鋼材の熱の脱熱効果を高めるため
に、冷却水流通路1 1,21、および冷却水流出通路
12,22を有する第4図に示すような水冷機構を設け
ることができる。この機構は、また、同時に、電極先端
の高温による軟化を防ぎ、先端の変形を防止することに
も役立つ。電極による挟着押圧は、少なくとも、鋼材と
電極がその全面において通電可能な程度に接触している
ことを確保できる程度の加圧力を有することが必要であ
る。
If the contact surface between the tip of the electrode and the steel material is small, the current density at the contact surface increases, the temperature of the contact surface becomes high, and the steel material and the electrode are likely to be welded together, which is undesirable. At the same time, the heat removal effect of the steel material by the tip portion of the electrode decreases, making it impossible to rapidly cool the steel material. Therefore, it is desirable that the electrode have a shape that has as much contact surface as possible with the steel material, that is, a so-called flat shape or a truncated cone shape as shown in FIGS. 3a and 3b. In addition, when only the periphery of the opening of a steel material having an opening is to be heated, hardening can be performed with good thermal efficiency by using an electrode having the same shape as the shape of the hardened portion of the steel material. In order to enhance the heat removal effect of the steel material by the electrodes, a water cooling mechanism as shown in FIG. 4 having cooling water flow passages 11, 21 and cooling water outflow passages 12, 22 can be provided. This mechanism also serves to prevent the tip of the electrode from softening due to high temperatures and to prevent deformation of the tip. The clamping and pressing by the electrodes needs to have at least a pressing force that can ensure that the steel material and the electrode are in contact with each other to the extent that electricity can be passed over the entire surface thereof.

接触が弱いと、接触面での接触電気抵抗が大きくなり、
電極と鋼材が溶着する危険がある。しかし、電極による
押圧があまりに強いと、高温になって軟化した鋼材表面
に電極による圧こんを生ずることがあるので好ましくな
い。第2工程は、鋼材を球圧している電極に通電して、
局部的に抵抗発熱を生じさせて該鋼材をオーステナイト
化温度以上に加熱する工程である。各鋼材をオーステナ
イト化温度にまで加熱するために必要な電流値は、すで
に明らかになっている各鋼材のオーステナイト化温度に
加熱するために必要な熱エネルギー量と、各鋼材の固定
抵抗との関係で、具体的に決定されうる。抵抗発熱は、
通常接触電気抵抗の大きい鋼材の表面部から生ずる。
If the contact is weak, the electrical contact resistance at the contact surface will increase,
There is a risk of welding between the electrode and the steel material. However, if the pressure applied by the electrodes is too strong, it is not preferable because the electrodes may cause indentations on the surface of the steel material, which has been softened by the high temperature. The second step is to energize the electrode that presses the steel material,
This is a process of heating the steel material to a temperature higher than the austenitizing temperature by locally generating resistance heat generation. The current value required to heat each steel material to its austenitizing temperature is determined by the relationship between the amount of thermal energy required to heat each steel material to its austenitizing temperature and the fixed resistance of each steel material, which has already been determined. can be specifically determined. Resistance heating is
Usually occurs on the surface of steel materials with high contact electrical resistance.

しかし、発熱しても、電極により脱熱されるので昇温さ
れず、結局加熱による昇温は鋼材の中心部に生ずる結果
となる。第2図aは鋼材内での昇温の生じている部分を
も示している。しかし、抵抗発熱する箇所は、先に述べ
たように一方の電極の材質を変えて電気抵抗値を相互に
異ならしめることによっても変化する。また、相互の電
極と鋼材との接触面での電流密度や接触抵抗が異なる場
合も、電流密度が高い、あるいは接触抵抗が大きい接触
面の方に、抵抗発熱が片寄って生ずる。第8工程は、電
流を停止後、電極を継続的に球着押圧することにより鋼
材を急冷する工程である。
However, even if heat is generated, the temperature is not raised because the heat is removed by the electrodes, and the temperature rise due to heating ends up occurring in the center of the steel material. FIG. 2a also shows the portion where the temperature rise occurs within the steel material. However, the location where resistance heats up can also be changed by changing the material of one of the electrodes and making the electrical resistance values different from each other, as described above. Furthermore, even if the current density or contact resistance at the contact surfaces between the electrodes and the steel material differs, resistance heat generation is biased towards the contact surfaces where the current density is high or the contact resistance is large. The eighth step is a step of rapidly cooling the steel material by continuously pressing the electrode with the ball after stopping the current.

鋼材がオーステナィト化温度以上に加熱された状態で通
電を停止すると、鋼材中に生じた熱は、空気や、周囲の
鋼材より熱伝導率の高い電極を通じて急速に脱熱される
When the electricity is stopped while the steel is heated above the austenitizing temperature, the heat generated in the steel is rapidly removed through air and electrodes that have higher thermal conductivity than the surrounding steel.

しかし、その電極による鋼材の脱熱効果を良好にしてお
くためには、電極を押圧して、鋼材に完全に密着させて
いることが必要である。さらに電極の脱熱効果を高める
ために、電極に水冷機構を設けるのがよい。本発明方法
により、電極を鋼材に接触させることによって、急速な
冷却が可能になったので、従来、冷却が遅いために焼入
れ効果が充分でなかった低炭素鋼についても、充分な焼
入れ効果を得ることができるようになった。また、本方
法によれば、熱が焼入れ部以外の周囲の鋼材へ伝導する
前に、電極を通じて脱熱してしまうので、従来の周囲へ
の熱伝導に起因して生じた熱歪の発生を防止することが
できる。なお、冷却のための押圧時間は通常1秒もあれ
ば充分である。以上の方法により、鋼材を焼入れすれば
、短時間で熱効率よく、焼入れを行うことができ、その
得られた鋼材には熱歪もなく、かつ焼入れ硬さも大きい
However, in order for the electrode to have a good heat removal effect from the steel material, it is necessary to press the electrode and bring it into complete contact with the steel material. Furthermore, in order to enhance the heat removal effect of the electrode, it is preferable to provide the electrode with a water cooling mechanism. By bringing the electrode into contact with the steel material, the method of the present invention enables rapid cooling, so it is possible to obtain a sufficient hardening effect even for low carbon steel, which conventionally did not have a sufficient hardening effect due to slow cooling. Now I can do it. In addition, according to this method, heat is removed through the electrode before it is conducted to the surrounding steel materials other than the quenched part, which prevents the occurrence of thermal distortion that would otherwise occur due to heat conduction to the surrounding area. can do. Note that 1 second is usually sufficient for the pressing time for cooling. By quenching a steel material using the above method, the quenching can be carried out in a short time and with good thermal efficiency, and the obtained steel material has no thermal distortion and has a high quenched hardness.

以下、本発明の方法を適用した鋼材の焼入れ硬さ、およ
び各鋼種についての電流値、時間等の最通焼入れ条件を
求めた実験例を示す。
Hereinafter, an experimental example will be shown in which the quenching hardness of steel materials to which the method of the present invention is applied and through-quenching conditions such as current value and time for each steel type were determined.

実験例 1 第1表に示す組成を有する各鋼種について、氷水焼入れ
、および本発明方法の嫌入により得られる硬さを実験し
た。
Experimental Example 1 For each steel type having the composition shown in Table 1, an experiment was conducted to determine the hardness obtained by ice water quenching and hardening according to the method of the present invention.

なお、各鋼種については、前処理の影響を除いて同一条
件の下で比較を行うため、以下のような工程を経て、各
鋼種について二本づつ暁準材を作成した。すなわち、各
鋼種の供試材を厚さ約1.5柳に圧延し、ソルトバス中
で950℃、30分間保持した後、空冷した。実験を行
う前に表面を研摩して、厚さを1帆とした。そして、こ
の二本の暁準材の硬さの平均を測定した。その結果を第
2表のaに示した。そして、内一本を950℃、3ひげ
間加熱した後、氷水焼入れを行い、硬さを測定した。そ
の結果を第2表のbに示した。また、他の一本を電極先
端が直径13肋の銅製電極を使用して17.歌A(キロ
ァンベァ)で1/3秒速露し、加熱した後、通電を停止
し、1秒間保持して冷却を行って本発明の方法を適用し
、焼入れを行った。その結果を第2表のcに示した。第
1表第2表 本発明方法の焼入れにより、一般にすぐれた焼入れ硬さ
が得られるとされている氷水焼入れより少なくとHv5
0はすぐれた硬さが得られている。
In addition, in order to compare each steel type under the same conditions excluding the influence of pretreatment, two Akatsuki semi-standard materials were created for each steel type through the following steps. That is, test materials of each steel type were rolled to a thickness of approximately 1.5 willows, held at 950° C. for 30 minutes in a salt bath, and then cooled in air. Before conducting the experiment, the surface was polished to a thickness of 1 sail. Then, the average hardness of these two Akatsuki materials was measured. The results are shown in Table 2 a. Then, one of the pieces was heated at 950°C for 3 whiskers, then quenched in ice water, and the hardness was measured. The results are shown in Table 2, b. In addition, the other one was made using a copper electrode with a diameter of 13 ribs at the tip. After rapid exposure for 1/3 second with Uta A (Kiranbaa) and heating, the current was stopped and held for 1 second to cool down, and the method of the present invention was applied to perform quenching. The results are shown in Table 2, c. Table 1 Table 2 The quenching method of the present invention has a Hv5 lower than that of ice water quenching, which is generally said to provide excellent quenching hardness.
0 indicates excellent hardness.

しかも、炭素量が少ないSPCC材についてみれば、従
来氷水焼き入れでは2倍程度しか焼入れ硬さが上らない
とされていたものを、3倍以上の硬さにまで高めること
ができている。このように本発明方法は、氷水焼入れと
同等以上のすぐれた焼入れ性を有する方法であり、特に
従来充分な焼入れが困難と考えられていた低炭素鋼の焼
入れに有効であることがわかる。実験例 2 第1表の各鋼種を対象に、本発明方法を適用した場合の
、所期の焼入れ硬さを得るために必要な電流値について
実験を行った。
Moreover, when looking at SPCC materials with a small amount of carbon, it was previously thought that ice-water quenching would only increase the hardness by about twice as much, but it has been possible to increase the hardness to more than three times as much. As described above, it can be seen that the method of the present invention has excellent hardenability equivalent to or better than ice-water hardening, and is particularly effective for hardening low carbon steel, which was previously thought to be difficult to harden sufficiently. Experimental Example 2 Experiments were conducted on the current values necessary to obtain the desired quenching hardness when the method of the present invention was applied to each of the steel types shown in Table 1.

銅製電極を使用して、細Aから2必Aまで電流値を変化
させ、0.9砂一率に通電した後、1秒間保持して冷却
させた。
Using a copper electrode, the current value was varied from a fine A to 2 A, and after energizing at a rate of 0.9 sand, it was held for 1 second to cool down.

その結果を第3表に示す。焼入れ硬さが、氷水焼入れの
硬さと同等程度得られた場合を○印、過小電流のためH
v200より小さい硬さに止まった場合を×印、また、
鋼材が高熱になってしまった為、電極と鋼材が溶着して
しまった場合を△印とした。第3表 高炭素量の鋼種ほど、低電流値でも適正な焼入れ硬度が
得られている。
The results are shown in Table 3. If the quenching hardness is equivalent to the hardness obtained by ice water quenching, mark ○, and mark H because the current is too low.
If the hardness remains smaller than v200, mark it with an x.
The case where the electrode and the steel material were welded together due to the steel material becoming so hot was marked with a △ mark. Table 3 shows that the higher the carbon content of the steel, the more appropriate quenching hardness can be obtained even at a low current value.

これは、一般に知られているように高炭素鋼ほどオース
テナィト化温度が低下する一方で、炭素量の増大につれ
て、鋼材の固定抵抗が増大するので、両者が相まって、
低電流による抵抗発熱であっても、オーステナイト化温
度まで鋼材を加熱することができるためである。実験例
3 本発明方法の焼入れにおける通電時間と焼入れ硬さとの
関係を調べた。
This is because, as is generally known, the higher the carbon steel, the lower the austenitizing temperature, but as the carbon content increases, the fixed resistance of the steel material increases.
This is because the steel material can be heated to the austenitizing temperature even with resistance heat generation due to a low current. Experimental Example 3 The relationship between current application time and hardening hardness in hardening according to the method of the present invention was investigated.

SPCC材の試験片(縦50欄×横2仇舷×厚さ0.7
9舷)を対象に、先端のチップの直径20肋の調整電極
を使用して、17・斑Aの電流を、1/6秒から1/2
秒まで変化させて通電し、その後電極により固体冷却を
行った。嫌入硬化部は、第4図に示すように形成された
。鱗入硬化部の硬度を、暁入部の中心を原点として、両
端に向って測定した。その結果を第4図に示す。なお、
図中の○印は1/現@、△印は1/鏡砂および×印は1
/a酸通電時の数値を示している。第4図から明らかな
ごとく、通電時間を1/6秒から1/2欧こ変化させて
も、硬さはほとんど変化したいない。
SPCC material test piece (vertical 50 columns x width 2 broadside x thickness 0.7
Using an adjustment electrode with a diameter of 20 ribs on the tip of the tip, apply a current of 17 points A from 1/6 seconds to 1/2
Electricity was applied for up to 2 seconds, and then solid cooling was performed using electrodes. The repellent hardened portion was formed as shown in FIG. The hardness of the scaled hardened part was measured from the center of the scaled part as the origin toward both ends. The results are shown in FIG. In addition,
In the diagram, ○ mark is 1/current @, △ mark is 1/Kagami-suna and × mark is 1
/a indicates the value when acid current is applied. As is clear from FIG. 4, even if the current application time is changed from 1/6 seconds to 1/2 seconds, the hardness hardly changes.

結局焼入れ硬さは第2表から示されるように、主として
炭素含有量により左右されるものであると考えられる。
以上の実験例から明らかなごとく、鋼材の抵抗発熱を利
用した本発明方法は、従来焼入れ効果が非常にすぐれて
いるとされていた氷水焼入れと同等以上の焼入れ深さを
、短時間の通電および冷却により得られるものである。
After all, as shown in Table 2, it is thought that the quenched hardness is mainly influenced by the carbon content.
As is clear from the above experimental examples, the method of the present invention, which utilizes resistance heat generation in steel materials, can achieve a hardening depth equal to or greater than that of ice-water hardening, which is conventionally considered to have an extremely excellent hardening effect, with short-time energization and It is obtained by cooling.

実施例中央に関口部を有するJIS規格SIOC相当の
鋼製ワッシャ(内径6側×外径13肋×厚さ1肌)の閉
口部周辺を焼入れるため、スポット溶接機の冷却機構を
有する電極の先端部分に、ワッシャの焼入れ所望部分と
同一の形状で直径13側の銅製の一対の電極チップを装
着した。
Example: In order to harden the periphery of the closing part of a steel washer (inner diameter 6 sides x outer diameter 13 ribs x thickness 1 skin) equivalent to JIS standard SIOC which has a seal opening in the center, an electrode with a cooling mechanism of a spot welding machine was used. A pair of copper electrode tips having a diameter of 13 and having the same shape as the desired hardened portion of the washer were attached to the tip portion.

その電極チップにより、ワツシャの両面を挟着し、3.
0k9/柵の押圧力を加えつつ、電極に1.1雛Aの電
流を0.9段間通電した。そして通電停止後、1秒間継
続的に押圧して急冷させた。そして焼入れの終ったワツ
シャの暁入硬化部の最高硬さは、Hv425であった。
ところが、このワツシヤの焼入れ前の硬さは、Hv12
5であったので、本方法による焼入れの効果が充分に出
ている。なお、参考までに、同一のワッシャを950℃
で30分加熱後、氷水暁入れした後、その硬さを測って
みたところ、Hv325であった。
3. Sandwich both sides of the washer with the electrode tip.
A current of 1.1 chick A was applied to the electrode for 0.9 stages while applying a pressing force of 0k9/fence. Then, after the current supply was stopped, pressure was continuously applied for 1 second to cause rapid cooling. The maximum hardness of the day-hardened part of the washer after quenching was Hv425.
However, the hardness of this washer before quenching is Hv12.
5, the effect of hardening by this method is fully evident. For reference, the same washer was heated to 950℃.
After heating it for 30 minutes and pouring it into ice water, I measured its hardness and found it to be Hv325.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の一例を示す説明図、第2図は、
鋼材内部で焼入れ硬化部の形成させる部位を示す説明図
、第3図は、本発明方法に使用することのできる電極の
形状を示す説明図、第4図は、水冷機構を有する電極の
説明図、第5図は、通電時間と糠入れ硬さとの関係を示
す図である。 1,2・・・電極、11,21・・・電極冷却水流入通
路、12,22・・・電極冷却水流出通路。 第1図第3図 第2図 第4図 第5図
FIG. 1 is an explanatory diagram showing an example of the method of the present invention, and FIG.
FIG. 3 is an explanatory diagram showing the shape of an electrode that can be used in the method of the present invention. FIG. 4 is an explanatory diagram of an electrode having a water cooling mechanism. , FIG. 5 is a diagram showing the relationship between energization time and rice bran hardness. 1, 2... Electrode, 11, 21... Electrode cooling water inflow passage, 12, 22... Electrode cooling water outflow passage. Figure 1 Figure 3 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも一対の電極により鋼材を挾着押圧し、し
かる後に通電により鋼材を局部的に抵抗発熱させて該鋼
材のオーステナイト化温度以上に加熱し、さらに電流を
停止後、電極を継続的に挾着押圧して加熱された鋼材を
急冷することを特徴とする抵抗発熱による鋼材の局部的
焼入れ法。
1. Clamp and press the steel material with at least one pair of electrodes, then apply electricity to locally generate resistance heat to the steel material to a temperature higher than the austenitizing temperature of the steel material, and then stop the current and continue clamping the electrodes. A method of localized quenching of steel materials using resistance heating, which is characterized by rapidly cooling the steel material that has been heated by pressing.
JP15317179A 1979-11-26 1979-11-26 Localized quenching of steel using resistance heating Expired JPS6016486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15317179A JPS6016486B2 (en) 1979-11-26 1979-11-26 Localized quenching of steel using resistance heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15317179A JPS6016486B2 (en) 1979-11-26 1979-11-26 Localized quenching of steel using resistance heating

Publications (2)

Publication Number Publication Date
JPS5675515A JPS5675515A (en) 1981-06-22
JPS6016486B2 true JPS6016486B2 (en) 1985-04-25

Family

ID=15556597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15317179A Expired JPS6016486B2 (en) 1979-11-26 1979-11-26 Localized quenching of steel using resistance heating

Country Status (1)

Country Link
JP (1) JPS6016486B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176190U (en) * 1985-04-23 1986-11-04
JPS61295994A (en) * 1985-06-21 1986-12-26 株式会社 キト− Transporter with delivery rail

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839728A (en) * 1981-09-02 1983-03-08 Toshiba Corp Laser hardening method
JPS6286117A (en) * 1985-10-14 1987-04-20 Nippon Steel Corp Electric direct heating method
JP4165856B2 (en) 2001-03-28 2008-10-15 高周波熱錬株式会社 Manufacturing method, heat treatment apparatus and heat treatment method for flanged parts
KR101542969B1 (en) * 2013-09-04 2015-08-07 현대자동차 주식회사 Blank forming device using electric direct heating method and the manufacturing method using this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176190U (en) * 1985-04-23 1986-11-04
JPS61295994A (en) * 1985-06-21 1986-12-26 株式会社 キト− Transporter with delivery rail

Also Published As

Publication number Publication date
JPS5675515A (en) 1981-06-22

Similar Documents

Publication Publication Date Title
US20080115863A1 (en) Method for improving the performance of seam-welded joints using post-weld heat treatment
US7451630B2 (en) Heat treatment strategically strengthened door beam
WO2008088834A1 (en) Method for improving the performance of seam-welded joints using post-weld heat treatment
US5911844A (en) Method for forming a metallic material
JPS6016486B2 (en) Localized quenching of steel using resistance heating
JPS591678A (en) Production of composite tool steel for hot working
JP5918710B2 (en) Manufacturing method of welded joint
JP5763036B2 (en) Manufacturing method of steel product having fine ferrite grain boundary precipitation type martensite structure
US2416742A (en) Harrow disk
JP6175101B2 (en) Steel products with fine ferrite grain boundary precipitation type martensite structure
KR100482222B1 (en) A Method of Flash Butt Welding for High Carbon Steel
JPH1053811A (en) Manufacture of steel member
JPS5581089A (en) Resistance heating joining method
JPS5852428A (en) Heat treatment for improving stress of shaft
Taweejun et al. Microstructure and mechanical properties of resistance spot welding joints of carbonitrided low-carbon steels
JPS5938329A (en) Method for hardening spring
JPS60141377A (en) Spot welding method
JPS62117744A (en) Surface hardening method of clad material
JPS5832594A (en) Welding method
JP2022154099A (en) molding method
JPS5579825A (en) Hardening method for concave portion such as hole of small diameter
JPH08155642A (en) Cladding by welding repair method of hot die
US7728259B2 (en) Method and device for heat treating a shaped part
RU2104845C1 (en) Method of electric surface welding
JPH0569178A (en) Postheating device and induction heating coil device for butt welding machine