JPS60164263A - Ground fault point locator - Google Patents

Ground fault point locator

Info

Publication number
JPS60164263A
JPS60164263A JP2016284A JP2016284A JPS60164263A JP S60164263 A JPS60164263 A JP S60164263A JP 2016284 A JP2016284 A JP 2016284A JP 2016284 A JP2016284 A JP 2016284A JP S60164263 A JPS60164263 A JP S60164263A
Authority
JP
Japan
Prior art keywords
circuit
line
fault
fault point
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016284A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
鈴木 愿
Genzaburo Kotani
源三郎 小谷
Wataru Kashiwamori
栢森 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016284A priority Critical patent/JPS60164263A/en
Publication of JPS60164263A publication Critical patent/JPS60164263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To make the equipment simple and inexpensive by measuring the distance to a fault point from affected current generated in the power system in case of a ground fault in one line. CONSTITUTION:A change-over switch 103 is connected to the lower position in case of a fault in one line. A multiplier 104 outputs a zero phase current I02 on the side of the sound circuit as introduced through the changeover switch 103 as 2-fold component. Then, an addition circuit 105 adds components applied from input terminals 101 and 102 and outputs I01 (zero phase current of the affected circuit)+I02. Then, an arithmetic circuit 107 divides the output component of the multiplier 104 by the output component of the addition circuit 105, subsequently, integrates the total length Lkm (total length of the parallel 2-line system) from a memory circuit 106 to compute the distance (x) to the fault point and outputs it to an output terminal 108.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は電力系統の平行2回線の地絡故障点標定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a ground fault point locating device for two parallel circuits in a power system.

〔従来技術〕[Prior art]

電力系統の故障点標定装置としては、衝撃波全印加する
方法や故障サージ全利用する方法等進行波を利用したも
のが有ることが既に知られている。
It is already known that there are fault point locating devices for power systems that utilize traveling waves, such as a method that applies all of the shock waves and a method that uses all of the fault surge.

しかし、進行波を送慰#路に印加し、または受信するv
cTri必らず結合装置全通さなければならない事−1
))ら装置が複雑で高価なものとなる欠点があったO 〔発明の概要〕 この発明は従来のものの欠点を除去することケ目的にな
されたもので、l#!地絡故障時に電力系統に発生する
故障電流Lす故障点迄の距1llIを計測するようにし
た装置1 ?提供する。
However, when applying or receiving a traveling wave to the consolation path, v
The cTri must be passed through the entire coupling device-1
)) has the drawback that the device becomes complicated and expensive. Device 1 designed to measure the distance from the fault point to the fault current L generated in the power system at the time of a ground fault. provide.

〔発明の実織例〕[Example of actual invention]

第1図は平行2回線の電力系統を示し之図で、illに
べ源、+21 Vi変圧器、+31 tri中性点抵抗
、′41は母線、(61け平行2回線系統の1号線、(
6)はその2号線、(7)は母線、(8)は変圧器、(
9)け負荷、(10)は故障点、(Ill及び(121
け平行2回線系統の1号線及び2号線の零相電流成分?
導出する変流器、T100)はこの発明の一実施例の地
絡故障点標定装置ケ示す。
Figure 1 shows a parallel two-circuit power system, with an ill base source, a +21 Vi transformer, a +31 tri neutral point resistor, '41 a bus bar, (line 1 of a 61-parallel two-circuit system,
6) is the line 2, (7) is the busbar, (8) is the transformer, (
9) is the load, (10) is the failure point, (Ill and (121)
What are the zero-sequence current components of line 1 and line 2 of a parallel two-line system?
The derived current transformer (T100) shows a ground fault point locating device according to an embodiment of the present invention.

第2図は第1図の故障点(1ωで1#il地絡故障が発
生した時の対称分目f[r示した図で、シυけ正相回路
、(2)は逆相回路、@Vi岑相同相回路ハ)、叩は第
1図の変流器(Ill 、 02’ K相当する故障点
標定装置(100)の設置点Klかt′また変流器全ボ
す。また、図中の記号は次の如くである。
Figure 2 is a diagram showing the symmetrical division f[r when a 1 #il ground fault occurs at the fault point (1ω) in Figure 1, where the shw is a positive phase circuit, (2) is a negative phase circuit, @Vi 岑 phase in-phase circuit C), the current transformer in Figure 1 (Ill, 02'K), the installation point Kl or t' of the fault point locating device (100) corresponding to K, and all the current transformers. The symbols in the figure are as follows.

E :電源 ZSI:送電側背後の正相インピーダンスz82:送a
st++背後の逆相インピーダンスXTS :送電側背
後の零相インピーダンスz1:平行2回線部分の単位〔
km〕当りの正相インピーダンス zQ: 平行2回線部分の単位[:km]当りの逆相イ
ンピーダンス zo二平行2回線部分の単位〔−〕当りの零相インピー
ダンス ZRI:受電側背後の正相インピーダンスZR2:受電
側背後の逆相インピーダンスXTR:受電側背後の零相
インピーダンスR:負荷インピーダンス Rg:故障点抵抗 3RN8 :電源側の中性点抵抗 X :故障点標定装置の設置点から故障点迄の距離[k
m] L :平行2回線の亘長〔km〕 zm:単位〔km〕当りの回勝間相互インビーグンス エo1:平行2回線系統の1号線の零相電流Io* :
平行2回線系統の2号線の零相鑵流工F :故障点電流 第3図は、第2図の零相回路で回aIW相互インビーダ
ンスケ詳細に図示したものである。第3図より1号線に
流れる零相電流による電圧師下々2号#lに流れる零相
電流にLる電圧降下が等しいことから次の+11式が成
立する。
E: Power supply ZSI: Positive sequence impedance behind power transmission side z82: Transmission a
Reverse-sequence impedance behind st++
positive-sequence impedance per unit [km] of the parallel two-line section zQ: negative-sequence impedance per unit [-] of the two-parallel line section ZRI: positive-sequence impedance behind the receiving side ZR2 : Negative phase impedance behind the power receiving side [k
m] L: Length of two parallel circuits [km] zm: Mutual immunity between circuits per unit [km] o1: Zero-sequence current Io of line 1 of two parallel circuits system:
Zero-phase iron flow circuit F of line 2 of parallel two-circuit system: Fault point current Figure 3 shows the circuit aIW mutual impedance flow in detail in the zero-phase circuit of Figure 2. From FIG. 3, since the voltage drop L due to the zero-sequence current flowing in line 1 is equal to the zero-sequence current flowing in voltage regulator No. 2 #l, the following equation +11 is established.

xZo工o l+xZmIoz−xZmIox+LZo
工02−(L−xlZmIo2+(L−x)Zo工02
−(L−x)Zm工02・・・+11式 +11式を整理すねは x(Zo−Zm)工ox+=(2L−XNZO−Zm)
IOllとなることから故障点迄の距1?I Xは次の
(2)式で捷る。
xZo ol+xZmIoz-xZmIox+LZo
Engineering 02-(L-xlZmIo2+(L-x)Zo Engineering 02
-(L-x) Zm 02...+11 formula + 11 formula is organized as x(Zo-Zm) ox+=(2L-XNZO-Zm)
Distance 1 from becoming IOll to failure point? IX is calculated using the following equation (2).

(2)式は平行2回線系統の1号線で11Id地絡故障
が発生した時の故障点距離を計測する式であるが、2す
線で故障が発生した時#′i+21式中の工0λと工0
2分14換した式になることから次の(3)式で計測出
来る。
Equation (2) is a formula to measure the fault point distance when a 11Id ground fault occurs in line 1 of a parallel two-line system, but when a fault occurs in line 2, #'i + 0λ in the equation 21 and work 0
Since the equation is a 2/14 conversion, it can be measured using the following equation (3).

iM4図は地絡故障点標定装置(lOO)を示す図で、
−(101)は1号、雇の苓相峨流工Of成分の入力端
子、(102)は2号線の零相°鴫流成分の入力端子、
(103)は故障検出器(図示略)に裏り応動する入力
切替スイッチ、(,104)は倍率器% (叫5)は加
算回路、(106)は平行2回線系統の亘長L [k+
n) k記憶する装置、(10’7)は割算と積算ケ兼
ねた演算回路、(狽8)は出力1子會示す。
Diagram iM4 is a diagram showing the earth fault point locating device (lOO).
- (101) is the input terminal of the 1st line, the input terminal of the line 2, the input terminal of the 0 phase o phase stream component,
(103) is an input selector switch that responds to a fault detector (not shown), (,104) is a multiplier (5) is an adder circuit, and (106) is the length L [k+] of the parallel two-line system.
n) A device for k storage, (10'7) is an arithmetic circuit that also serves as division and addition, and (8) is an output 1 child.

次K !IIIJ作について説明する。Next K! I will explain the works by IIIJ.

第4図は、1号mVC故障が発生しt場合の様相全図示
したもので、故障発生時1号線の故障か2υ゛線の故障
かを保農継電器寺による故障検出器c図ホ略)で検出し
て1琴線故障の時VCは切替スイッチ(103)が図面
上で下側に接続する工うK h’Jt成(2琴線故障の
時Vcは図【lII上で上側に接続する工う構成)する
。倍率器(104)では切替スイッチ(103)を介し
て尋人され7j 工02 (平行2回線系統の2号線の
零相電流)全2倍数分にして出力する。次に加算回11
 (105)では入力端子(101)、(102)がら
印加さ?た成分?加算して工H+Io2成分が出力され
る。そして、演算回路(lo’7)で倍率器(11)4
1の出力成分を加算回路(105)の出力成分で割算し
て、その結果、記憶回路(泣)からの亘長L Cm) 
(平行2回線系統の亘長)奮積算して上記(2)式に示
される故障点迄の距#X%−演算して出力端子(X)8
) Vc小出力る。
Figure 4 shows a complete diagram of the situation when a No. 1 mVC failure occurs.When a failure occurs, it is determined whether the failure occurs in the No. 1 line or the 2υ゛ line by using the fault detector provided by Hono Relay Electrical Temple (Figure C omitted). When the 1st string failure is detected, VC is set to K h'Jt, which the changeover switch (103) connects to the lower side on the drawing (when the 2nd string failure is detected, VC is set to the upper side on the diagram [II]). configuration). In the multiplier (104), the current is multiplied by a changeover switch (103) and outputted as a total double (zero-sequence current of line 2 of the parallel two-line system). Next, addition 11
In (105), is the voltage applied to input terminals (101) and (102)? Ingredients? After addition, the H+Io2 component is output. Then, the arithmetic circuit (lo'7) multiplier (11) 4
Divide the output component of 1 by the output component of the adder circuit (105), and as a result, the length L Cm from the storage circuit (c)
(Length of parallel two-line system) The distance to the failure point shown in equation (2) above is computed by #X% - output terminal (X) 8
) Vc small output.

もし、2号線側で故障が発生し之場合は故障検出器KL
り切替スイッチ(103)が図面上で上側に接続される
ため上記13)式で示さtまた距離Xが演算さねて出力
端子(108)に出力されることになる。
If a failure occurs on the Line 2 side, the failure detector KL
Since the selector switch (103) is connected to the upper side in the drawing, the distance t and the distance X shown in equation 13) are output to the output terminal (108) without being calculated.

このように上記実施例によハば、故障発生時の故障小流
から故障点迄の距離が8F測で@た事になる。
In this way, according to the above embodiment, the distance from the fault stream to the fault point when a fault occurs is measured at 8F.

なお、上記実施例では故障検出器による工O1とIO2
の切替えケ切替スイッチ(1O3)で説明したが、スイ
ッチ機構でなく、1号線用、2号線用に並行して績#、
後演算処理部で必要とする成分の演算全行なって故障意
志の距離全演算してもよいことけどうまでもない。
In addition, in the above embodiment, the fault detector detects the operation O1 and IO2.
As explained in the changeover switch (1O3), it is not a switch mechanism, but a parallel switch for line 1 and line 2.
It would be pointless if the post-processing section performs all the computations for the necessary components and then calculates all the distances that are likely to fail.

〔発り1の効果〕 以ヒのように、この発明に工ねば、故障発生時K ’i
(i:力糸軌に発生する故障嘔流刀為ら故障意志の距離
全計測するように構成したので、装置が簡単で安価にで
きる効果がある。
[Effect of Origin 1] As shown below, if this invention is not modified, K'i will be reduced when a failure occurs.
(i: Since the device is configured to measure the entire distance from the failure occurrence occurring in the force line trajectory to the failure intention, the device is simple and inexpensive.

44、図面の簡単な説明 第1図は平行2回線の車力系統を示した図、第2図は・
g1図で1線地絡故障が発生した時の対称分+o+路を
ホした図、第3図は8g2図の零相回路を詳細に示した
図、M4図はこの発明に係る地絡故障点標定装置t T
h示した図である。
44. Brief explanation of the drawings Figure 1 shows a vehicle power system with two parallel circuits, and Figure 2 shows...
Figure g1 shows the symmetrical +o+ path when a one-line ground fault occurs, Figure 3 shows the zero-phase circuit of Figure 8g2 in detail, and Figure M4 shows the ground fault point according to this invention. Location device t T
It is a figure shown in h.

図Vζおいて、(101)は工o1入力端子、(xoz
)t/′1IO11入力端子、(103)は切替スイッ
チ、(104)は倍率器、(1051は加算回路、(1
06)は記憶装置、(107)は演算回路、(加8)は
出方端子である。
In the diagram Vζ, (101) is the input terminal of the factory o1, (xoz
) t/'1IO11 input terminal, (103) is a changeover switch, (104) is a multiplier, (1051 is an adder circuit, (1
06) is a storage device, (107) is an arithmetic circuit, and (+8) is an output terminal.

なお、図中、同一符号は同−又は相当部分を示す。In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

代理人 大岩増雄 第1図 第2図 第3図Agent Masuo Oiwa Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 電力系統の平行2回線における故障点を標定するものV
C′J3いて、上記平行2回線の健全回線側の零相電流
を4人して2倍にする倍率器と上記平行2回線の故障N
線側の零相電流と健全回線側の零相゛市流ケそれぞれ導
入して加算する加算回路と、上記倍率器の出力及び上記
平行2回線の亘長り並びに上記加算回路の出力から故障
点までの距離を算出する演算回路と?備えた地絡故障点
標定装置。
Locating the fault point in two parallel circuits of the power system V
C'J3, there is a multiplier that doubles the zero-sequence current on the healthy line side of the two parallel circuits by four people, and a failure N of the two parallel circuits.
An adder circuit that introduces and adds the zero-sequence current on the line side and the zero-sequence current on the healthy line side, and determines the fault point from the output of the multiplier, the length of the two parallel lines, and the output of the adder circuit. An arithmetic circuit that calculates the distance to? Equipped with a ground fault fault location device.
JP2016284A 1984-02-06 1984-02-06 Ground fault point locator Pending JPS60164263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016284A JPS60164263A (en) 1984-02-06 1984-02-06 Ground fault point locator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016284A JPS60164263A (en) 1984-02-06 1984-02-06 Ground fault point locator

Publications (1)

Publication Number Publication Date
JPS60164263A true JPS60164263A (en) 1985-08-27

Family

ID=12019459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016284A Pending JPS60164263A (en) 1984-02-06 1984-02-06 Ground fault point locator

Country Status (1)

Country Link
JP (1) JPS60164263A (en)

Similar Documents

Publication Publication Date Title
US4366474A (en) Identification of electric power network phases experiencing disturbances
US4530025A (en) Current ratio-differential relay
JPS60164263A (en) Ground fault point locator
JPH0373825B2 (en)
JPH0510633B2 (en)
JPS62249078A (en) Fault point locating system
JPS6039571A (en) Marking device of parallel multi-circuit ground-fault point
JP2778148B2 (en) Ground fault line selection relay for shared multi-line system
JPH0510632B2 (en)
JP2747028B2 (en) Step-out detection relay
JPH0510634B2 (en)
JPH0574788B2 (en)
JPH0437651B2 (en)
JPS607886B2 (en) Ground fault distance determination method
SU1377951A1 (en) Power direction relay
JPH04140016A (en) Method and device for locating ground fault, and ground fault distance relay
JPS61106028A (en) System stabilizer
JPH0374344B2 (en)
JPH09308085A (en) Distribution line ground relay
JPH0374346B2 (en)
JPH0224580A (en) Locating system of ground fault point
JPH0573183B2 (en)
JPS5866528A (en) Ground-fault protecting relay unit
JPS6124899B2 (en)
JPH0374345B2 (en)