JPS60164256A - Salt concentration sensor for sea water - Google Patents

Salt concentration sensor for sea water

Info

Publication number
JPS60164256A
JPS60164256A JP2144884A JP2144884A JPS60164256A JP S60164256 A JPS60164256 A JP S60164256A JP 2144884 A JP2144884 A JP 2144884A JP 2144884 A JP2144884 A JP 2144884A JP S60164256 A JPS60164256 A JP S60164256A
Authority
JP
Japan
Prior art keywords
electrodes
seawater
circuit
salt concentration
sea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2144884A
Other languages
Japanese (ja)
Inventor
Masaru Sonomura
園村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2144884A priority Critical patent/JPS60164256A/en
Publication of JPS60164256A publication Critical patent/JPS60164256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To stabilize a continuous measurement for a long time by measuring the salt concentration of sea water based on an oscillation frequency. CONSTITUTION:A salt concentration sensor is made up of an operation amplifier 1 comprising a C-MOSIC and the like and an oscillation circuit 10 composed of a feedback circuit 4 comprising a resistance 2 and a capacitor 3 connected between input and output terminals 1A and 1B of the amplifier. A pair of electrodes 5A and 5B as opposed to each other being isolated and made immersible into sea water W serve as a resistance element of the circuit 4. When the electrodes 5A and 5B are sunk into sea, current flows between the electrodes according to salt concentration of sea water and the sensor makes an oscillation.

Description

【発明の詳細な説明】 この発明は海水の塩分濃度センサーに関する。[Detailed description of the invention] This invention relates to a seawater salinity sensor.

海水の塩分濃度は海水の性質を代表するものであり、海
洋に生息する生物は、それに依存している。従って、水
産資源、漁業資源の調査、探査には海水の塩分濃度の測
定は必須の要件である。
The salinity of seawater represents the properties of seawater, and organisms living in the ocean depend on it. Therefore, measurement of seawater salinity is an essential requirement for the investigation and exploration of fisheries resources.

従来、海水の塩分濃度の測定手段として海水の導電性を
利用した電気測定法が知られており、直流ブリッジを使
用し、海水中に隔離対向させた一対の電極間の電気的抵
抗を測定することによシ塩分濃度を測定するものが一般
的に知られている。
Conventionally, electrical measurement methods that utilize the conductivity of seawater have been known as a means of measuring the salinity of seawater.This method uses a DC bridge to measure the electrical resistance between a pair of electrodes isolated and facing each other in seawater. In particular, devices that measure salinity concentration are generally known.

しかしながら、この種測定装置は、直流電圧を用いるか
ら電極間で海水が電解され、この結果、通常マイナス電
極の表面に海水中の懸濁物が電気的に遊離付着し、これ
が電極間の抵抗を増加させる原因となっていた。
However, since this type of measurement device uses DC voltage, seawater is electrolyzed between the electrodes, and as a result, suspended matter in the seawater is electrically attached to the surface of the negative electrode, which increases the resistance between the electrodes. It was causing an increase.

このため、上記測定装置は、頻繁に電極表面の清掃、研
摩を行なう必要があり、保守管理が面倒である欠点がち
シ、また長時間の連続測定もなし得ない欠点があった。
For this reason, the above-mentioned measuring device has the disadvantage that the electrode surface must be frequently cleaned and polished, maintenance is troublesome, and continuous measurement cannot be performed for a long period of time.

さらに、海中における塩分濃度を測定する場合、水深に
応じた長い導体を必要とするから、これらの固有抵抗も
無視し得す、正確な測定を期するための調整もやっかい
であるといった欠点もあった。
Furthermore, when measuring salt concentration in the sea, a long conductor is required depending on the depth of the water, which has the disadvantage that the resistivity of these conductors can be ignored, and adjustments to ensure accurate measurements are troublesome. Ta.

この発明は上記欠点に鑑み、電解に起因する電極の汚損
がなく、長期にわたる連続測定が可能であシ、また、深
海における塩分濃度測定も容易に行なえる海水の塩分濃
度センサーを提供することを目的としてなされたもので
あって正帰還作用を行なうIC回路、の入出力間に抵抗
とコンデンサとから成る帰環回路を接続して成る発振回
路において、隔離して対向され、かつ、海中に浸漬可能
とされた一対の電極が前記帰環回路の抵抗素子とされ、
該一対の電極を海水中に浸漬した際の導電抵抗に応じた
周波数で前記発振回路を発振させるよう構成したことを
特徴とするものである。
In view of the above-mentioned drawbacks, it is an object of the present invention to provide a seawater salinity sensor that does not cause electrode contamination due to electrolysis, can perform continuous measurement over a long period of time, and can easily measure salinity in the deep sea. This is an oscillation circuit that is made for this purpose and consists of a feedback circuit consisting of a resistor and a capacitor connected between the input and output of an IC circuit that performs a positive feedback action. The pair of electrodes made possible are used as resistance elements of the return circuit,
The device is characterized in that the oscillation circuit is configured to oscillate at a frequency corresponding to the conductive resistance when the pair of electrodes are immersed in seawater.

以下、この発明を実施例によシ、説明する。The present invention will be explained below using examples.

第1図は、この発明の構成ブロック図である。FIG. 1 is a configuration block diagram of the present invention.

この発明の海水の塩分濃度センサーAは、−個又は複数
個のC−MO,SICなどから成るオペアンプあるいは
論理回路とこのC−MO5ICIの入出力端IA、IB
間に、抵抗2とコンデンサ3とから成る帰環回路4を接
続して成る発振回路10において、隔離して対向され、
がっ、海水W中に浸漬可能とされた一対の電極5.A、
5Bが前記帰環回路4の抵抗素子とされ、抵抗2と共に
一体となって、回路4Aを形成し、該一対の電極5A、
5Bを海水中に浸漬した際の導電抵抵R′に応じた周波
数Tで、前記発信回路1oを発振させるよう構成されて
いる。
The seawater salinity sensor A of the present invention consists of an operational amplifier or logic circuit composed of one or more C-MOs, SICs, etc., and input/output terminals IA and IB of the C-MO5ICI.
In an oscillation circuit 10 formed by connecting a return circuit 4 consisting of a resistor 2 and a capacitor 3 between them, they are isolated and opposed to each other,
A pair of electrodes that can be immersed in seawater W5. A,
5B is a resistance element of the return circuit 4, which together with the resistance 2 forms a circuit 4A, and the pair of electrodes 5A,
The oscillating circuit 1o is configured to oscillate at a frequency T corresponding to the conductive resistance R' when the oscillator 5B is immersed in seawater.

第2図は、上記ICインバータlとして、2個のc −
u、 o sインバータ11.12を用いた場合の回路
構成図を示し、直結された2個のC−MOSインバータ
の入出力端IA、IB間が、コンデンサ3により接続さ
れ、かつ、第1段目のC−MOSインバータ11の入出
力端IA、113’が、抵抗2、及び電極5’A、5B
から成る回路4Aで接続されて構成されている。
FIG. 2 shows two c-
A circuit configuration diagram in the case of using u, o s inverter 11.12 is shown, in which input and output terminals IA and IB of two directly connected C-MOS inverters are connected by a capacitor 3, and the first stage The input/output terminals IA and 113' of the second C-MOS inverter 11 are connected to the resistor 2 and the electrodes 5'A and 5B.
It is configured by being connected by a circuit 4A consisting of.

次に、上記実施例の作動を説明する。Next, the operation of the above embodiment will be explained.

電極5A、5Bが空気中にあるときは、帰環回路4は遮
断された状態にあシ、従って、海水の塩分濃度センサー
Aは発振せず、C−MOSインバータ11,12のきわ
めて小さな休息電流が流れるに留まる。
When the electrodes 5A and 5B are in the air, the return circuit 4 is cut off, so the seawater salinity sensor A does not oscillate, and the C-MOS inverters 11 and 12 have extremely small resting currents. Flows and stays.

しかし、電極5A、5Bが海中に沈められると、電極間
に、海水の塩分濃度に応じた電流が流れ、電極5A、5
Bが実質的に抵抗としての作用を営む。
However, when the electrodes 5A and 5B are submerged in the sea, a current flows between the electrodes depending on the salt concentration of the seawater, and the electrodes 5A and 5B
B essentially acts as a resistance.

従って、帰環回路4は閉成され、海水の塩分濃度センサ
ーAが、発振する。
Therefore, the return circuit 4 is closed and the seawater salinity sensor A oscillates.

このときの、発振周期Tは、 但し、VTur:第1段目のC−MOSインバータのス
レッショルド電圧、 VDD : c−Mosイyバー#)を原電圧、R:電
極5A、5B間の実質抵抗値R′と、抵抗2の抵抗値R
“の和 C:コンデンサ3の容量 で表わせる。
At this time, the oscillation period T is as follows: VTur: threshold voltage of the first stage C-MOS inverter, VDD: c-MOS ybar#) is the original voltage, R: actual resistance between electrodes 5A and 5B. value R' and the resistance value R of resistor 2
"Sum C: Can be expressed as the capacitance of capacitor 3.

上式において、VTHI菅vDD及びCFi、回路構成
時に一定値として、設定可能なものであるから、発振周
期Tは、海水の塩分濃度に応じた導電性により変化する
こととなシ、従って、上記回路よシ出力される発振周期
Tは、海水の塩分濃度を示すこととなるのである。
In the above equation, since VTHI vDD and CFi can be set as constant values when configuring the circuit, the oscillation period T will vary depending on the conductivity depending on the salinity concentration of seawater. The oscillation period T output from the circuit indicates the salt concentration of seawater.

この発振作動中、海水中に浸漬された電極5A、5Bに
は、第3図に示すように、VTHIよシVDD + V
Tux 及U VTHI −VDD ニ変化する交番電
流が流れる。
During this oscillation operation, the electrodes 5A and 5B immersed in seawater have VTHI and VDD + V
A varying alternating current flows through Tux and UVTHI-VDD.

しかも、電極5A、5B間における導電性は、海水中に
解離状態にあるプラスイオンとマイナスイオンの濃度に
よって生じるから、上記交番電流の周期も、上記イオン
濃度と関係し、具体的には、海水W中に解離状態にある
グラスイオン及びマイナスイオンがそれぞれ、一対の電
極5A、5B間にかかる電位を中和する方向に移動し、
このようにして、両電極間の電位がVTHIまで中和さ
れると、突然電位が反転し、前述と逆の方向へプラスイ
オン、マイナスイオンが移動することとなる。従って、
電極5A、5Bに海水中の懸濁物が付着してしまうのも
防止されるのである。
Moreover, since the conductivity between the electrodes 5A and 5B is caused by the concentration of positive ions and negative ions dissociated in seawater, the period of the alternating current is also related to the ion concentration, and specifically, the period of the alternating current is related to the ion concentration. Glass ions and negative ions in a dissociated state during W move in a direction to neutralize the potential applied between the pair of electrodes 5A and 5B,
In this way, when the potential between both electrodes is neutralized to VTHI, the potential is suddenly reversed, and positive ions and negative ions move in the opposite direction to that described above. Therefore,
This also prevents suspended matter in seawater from adhering to the electrodes 5A and 5B.

上記実施例として、C−MOSインバータを2段構成と
した場合を示したが、第4図(イ)、(ロ)に示すよう
に、3段構成としても良く、さらlこそれ以」二の多段
構成としても良い。
In the above embodiment, the C-MOS inverter has a two-stage configuration, but as shown in FIGS. It is also possible to have a multi-stage configuration.

なお、各実施例において、抵抗2を可変抵抗とした場合
を示したが、これは、標準液で、周波数を決定し、ある
いは、海水のイオン濃度に一対してのスパン調整を可能
とするためであって、実用的には、ある標準抵抗で代用
することが可能である。
In each example, the case where the resistor 2 is a variable resistor is shown, but this is because the frequency can be determined with the standard solution or the span can be adjusted in response to the ion concentration of seawater. Therefore, in practical terms, it is possible to substitute a certain standard resistance.

十記各実施例につき、海水、水道水、蒸留水の三種の液
体につき、1週間にわたって、連続して塩分濃度検出試
験を行なったところ、海水、水道水については、測定精
度4桁で、安定した数値を示し、長期安定性にも優れる
ことが判明した。
For each of the above examples, a salt concentration detection test was conducted continuously for one week on three types of liquids: seawater, tap water, and distilled water, and the measurement accuracy was 4 digits and stable for seawater and tap water. It was found that the product showed excellent long-term stability.

この発明は、以上のように、海水の塩分濃度を発振周波
数により測定し得る構成としたので、海中に浸漬される
電極に、その間に流れる交番電流によって、特定のイオ
ンが特定の電極に付着するといったことが防止され、長
期にわたって連続測定が可能となり、壕だ、装置も、I
C回路を用いることにより著るしく小型に出来、従って
耐圧、水密容器も容易に得られ、深海における測定も容
易に行なえるといった効果を有する。
As described above, this invention has a configuration in which the salinity concentration of seawater can be measured by the oscillation frequency, so that specific ions are attached to specific electrodes due to the alternating current flowing between the electrodes that are immersed in the sea. It is possible to perform continuous measurements over a long period of time, and the trenches, equipment, and I
By using the C circuit, it is possible to significantly reduce the size, and therefore, a pressure-resistant and watertight container can be easily obtained, and measurements in the deep sea can be easily performed.

なお、本発明は、塩分濃度測定の他に海水検知スイッチ
などにも利用可能である。
Note that the present invention can be used not only for measuring salinity concentration but also for seawater detection switches and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例の回路を示す構成ブロック
図、第2図は、[10の実施例の構成ブロック図、第3
図は、第2図の作動説明図、第4図(イ)、(ロ)はさ
らに他の実施例の構成ブロック図である。 A・・海水の塩分濃度センサー、l・・・1cインバー
タ、2・・・抵抗、3・・・コンデンサ、4・・・帰環
回路、5A、5B・・・一対の電極、10・・発信回路
、11.12− C−MOSインバータ。 118 72/B 41fl
FIG. 1 is a configuration block diagram showing a circuit of an embodiment of the present invention, FIG. 2 is a configuration block diagram of a tenth embodiment, and FIG.
The figure is an explanatory diagram of the operation of FIG. 2, and FIGS. 4(a) and 4(b) are block diagrams of the configuration of still another embodiment. A...Seawater salinity sensor, l...1c inverter, 2...resistor, 3...capacitor, 4...return circuit, 5A, 5B...pair of electrodes, 10...transmission Circuit, 11.12- C-MOS inverter. 118 72/B 41fl

Claims (1)

【特許請求の範囲】[Claims] (1) 正帰還作用を行なうIC回路の入出力間に抵抗
とコンデンサとから成る帰環回路を接続して成る発振回
路において、隔離して対向され、かつ、海水中に浸漬可
能とされた一対の電極が前記帰環回路の抵抗素子とされ
、該一対の電極を海水中に浸漬した際の導電抵抗に応じ
た周波数で前記発振回路を発振させるよう構成したこと
を特徴とする海水の塩分濃度センサー。
(1) In an oscillator circuit consisting of a feedback circuit consisting of a resistor and a capacitor connected between the input and output of an IC circuit that performs positive feedback, a pair of isolated and opposing elements that can be immersed in seawater. The electrode is used as a resistance element of the return circuit, and the oscillation circuit is configured to oscillate at a frequency corresponding to the conductive resistance when the pair of electrodes is immersed in seawater. sensor.
JP2144884A 1984-02-06 1984-02-06 Salt concentration sensor for sea water Pending JPS60164256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2144884A JPS60164256A (en) 1984-02-06 1984-02-06 Salt concentration sensor for sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2144884A JPS60164256A (en) 1984-02-06 1984-02-06 Salt concentration sensor for sea water

Publications (1)

Publication Number Publication Date
JPS60164256A true JPS60164256A (en) 1985-08-27

Family

ID=12055241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2144884A Pending JPS60164256A (en) 1984-02-06 1984-02-06 Salt concentration sensor for sea water

Country Status (1)

Country Link
JP (1) JPS60164256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267652A (en) * 1986-05-16 1987-11-20 Matsushita Electric Ind Co Ltd Electrical conductivity measuring instrument for hydroponics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124274A (en) * 1974-08-23 1976-02-27 Seiko Instr & Electronics Aad henkankairo
JPS5253497A (en) * 1975-10-13 1977-04-30 Sandoz Ag Measuring apparatus for specific electric conductivity of solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124274A (en) * 1974-08-23 1976-02-27 Seiko Instr & Electronics Aad henkankairo
JPS5253497A (en) * 1975-10-13 1977-04-30 Sandoz Ag Measuring apparatus for specific electric conductivity of solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267652A (en) * 1986-05-16 1987-11-20 Matsushita Electric Ind Co Ltd Electrical conductivity measuring instrument for hydroponics

Similar Documents

Publication Publication Date Title
US3479873A (en) Self-cleaning electrodes
EP0429439A1 (en) Improved technique for the measurement of high purity water.
JP2005519279A (en) Stabilized conductivity detection system
JPS6117949A (en) Solid ph sensor
JPS60164256A (en) Salt concentration sensor for sea water
US3530713A (en) A.c. magnetic flowmeter with d.c. bias on electrodes
US2382735A (en) Electrical cell apparatus
JPS6234098B2 (en)
CA1118495A (en) Sea water conductivity cell
US4516077A (en) Apparatus for and a method of measuring the intrinsic time constant of liquids
Pashagin et al. Indication of magnetic fields with the use of galvanic currents in magnetic-powder nondestructive testing
SU1597580A1 (en) Potentiometric level gauge-conductivity apparatus
US4406160A (en) Method of inspecting a resist layer on a gravure printing plate, and device for practicing same
JP3328215B2 (en) Residual chlorine measuring device
RU2717259C1 (en) Method of measuring electrical conductivity of pure and deionised liquid
Park et al. Electrolytic Conductance of Sea Water and the Salinometer Part 1
RU2216726C2 (en) Facility measuring specific resistance of liquid media and ground
SU1406546A1 (en) Magnetic field inductance transducer
SU1673859A1 (en) Three-point level sensor
RU1809319C (en) Electrically conductive liquid level capacitive pickup
RU1770875C (en) Method of electrochemical determination of the content of components in electrolytes
SU915014A1 (en) Device for forming electrolyte gap in mercury coulometer
SU1163241A1 (en) Method of measuring conductivity of electrolytic solution
Kalinin et al. Methods of measuring electric conductivity of surface natural water: Experimental results
SU996925A1 (en) Conductometric device