JPS6016364B2 - Method for producing sulfur hexafluoride - Google Patents

Method for producing sulfur hexafluoride

Info

Publication number
JPS6016364B2
JPS6016364B2 JP13282980A JP13282980A JPS6016364B2 JP S6016364 B2 JPS6016364 B2 JP S6016364B2 JP 13282980 A JP13282980 A JP 13282980A JP 13282980 A JP13282980 A JP 13282980A JP S6016364 B2 JPS6016364 B2 JP S6016364B2
Authority
JP
Japan
Prior art keywords
pyridine compound
sulfur
hydrofluoric acid
reaction
sulfur hexafluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13282980A
Other languages
Japanese (ja)
Other versions
JPS5761603A (en
Inventor
公彦 佐藤
勲 後藤
啓一 内田
政昭 池村
真介 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP13282980A priority Critical patent/JPS6016364B2/en
Priority to GB8122792A priority patent/GB2081694B/en
Priority to US06/286,887 priority patent/US4390511A/en
Priority to IT23389/81A priority patent/IT1138140B/en
Priority to FR8115464A priority patent/FR2488586A1/en
Priority to DE19813131744 priority patent/DE3131744A1/en
Publication of JPS5761603A publication Critical patent/JPS5761603A/en
Publication of JPS6016364B2 publication Critical patent/JPS6016364B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は六弗化硫黄(SF6)の製造方法、特に大量の
SF6を高純度、低コストで容易に製造する方法に係る
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing sulfur hexafluoride (SF6), and particularly to a method for easily producing a large amount of SF6 with high purity and at low cost.

SF6は毒性がなく、その高い絶縁性の為に、高電圧、
大容量の電源や電気機器、遮断器、避雷針やコンピュー
ター回路配線のケーブル内絶縁材として広く普及してい
る。
SF6 is non-toxic and has high insulation properties, so it can be used at high voltages,
It is widely used as insulating material in cables for large-capacity power supplies, electrical equipment, circuit breakers, lightning rods, and computer circuit wiring.

従釆SF6の製法については、直接燃焼合成法や、電解
法等いくつか提案がなされているが、コスト等の制限か
ら工業的には直接燃焼法が採用されている。
Several methods have been proposed for producing SF6, including a direct combustion synthesis method and an electrolytic method, but the direct combustion method is industrially adopted due to cost constraints.

この方法によると、元素状の硫黄と、※素ガスとも直接
燃焼下に反応せしめねばならず、用いられる弗素ガスは
、通常例えばKF・旧Fの如き原料溶融塩を電解して得
ている。
According to this method, elemental sulfur and elementary gas must be reacted with each other through direct combustion, and the fluorine gas used is usually obtained by electrolyzing a raw material molten salt such as KF or old F.

この為、電力コストが著しく大となり、しかも大量生産
の為には同じ電解槽を生産量に比例して単に多数槽稼動
させるか、大容量の電解槽を用いるより外に手だてが夕
なく、結局この方法によってスケールアツプすることは
設備面積的にも費用的にも甚だ不利となる。他方、コス
トの高い電解法による発素ガスを用いない方法も提案さ
れている。
For this reason, the electricity cost becomes extremely high, and in order to achieve mass production, there is no other option than simply operating a large number of the same electrolytic cells in proportion to the production volume, or using a large-capacity electrolytic cell. Scaling up using this method is extremely disadvantageous in terms of equipment area and cost. On the other hand, a method using an expensive electrolytic method that does not use emitting gas has also been proposed.

例えばNOF・乳押に塩素ガスを反応せしめ、一旦SF
4を製造せしめ、同時に生成する副生物を除去し、精製
せしめたSF4とNOFと塩素を反応せしめることによ
りSF5CIを得る方法が提案されている。しかしなが
ら、この方法において用いられるNOFは甚だ腐食性が
強く、特に微から水分の存在によって極めて高い腐食性
を示し、反応袋鷹等もかなり高価な耐食材料が要求され
る等工業的に満足し得る方法とは言い難い欠点があった
For example, by reacting chlorine gas with NOF and breast presses, once SF
A method has been proposed in which SF5CI is obtained by producing 4, removing by-products produced at the same time, and reacting the purified SF4 with NOF and chlorine. However, the NOF used in this method is extremely corrosive, especially in the presence of even a small amount of moisture, and reaction bags and the like require fairly expensive corrosion-resistant materials, so they are not industrially satisfactory. There were drawbacks that could hardly be described as methods.

本発明者はかかる点に鑑み、電解によって得なければな
らない発素ガスを用いることなく、工業的有利に高純度
のSF6を低コストで大量に製造し得る手段を見出すこ
とを目的として種々研究、検討した結果、硫黄と塩素と
特定の弗酸化合物を原料として新規な手段でSF5CI
を得、これを熱分解してSF6を得ることにより、前記
目的を達成し得ることを見出した。かくして本発明は硫
黄若しくは一塩化硫黄及び/又は二塩化硫黄からなる塩
化硫黄と塩素と弗酸のピリジン化合物(Py・(HF)
n、n=1〜6)とを溶媒の存在若しくは不存在下に反
応せしめて得られるSF5CIを熱分解してSF6、S
F4及びCI2を生成せしめ、譲るF4及びCI2を、
塩素と硫黄若しくは塩化硫黄と弗酸のピリジン化合物で
トラツプすることによりSF6と分離せしめることを特
徴とする六弗化硫黄の製造方法を要旨とするものである
In view of this, the present inventor conducted various studies with the aim of finding a means to industrially advantageously produce high-purity SF6 in large quantities at low cost without using generating gas that must be obtained by electrolysis. As a result of our investigation, we found that SF5CI was produced using a new method using sulfur, chlorine, and a specific hydrofluoric acid compound as raw materials.
It has been found that the above object can be achieved by pyrolyzing this to obtain SF6. Thus, the present invention provides a pyridine compound of sulfur or sulfur chloride consisting of sulfur monochloride and/or sulfur dichloride, chlorine and hydrofluoric acid (Py.
SF5CI, which is obtained by reacting with n, n = 1 to 6) in the presence or absence of a solvent, is thermally decomposed to produce SF6, S
Generate F4 and CI2 and yield F4 and CI2,
The gist of this invention is a method for producing sulfur hexafluoride, which is characterized in that it is separated from SF6 by trapping it with a pyridine compound of chlorine and sulfur or sulfur chloride and hydrofluoric acid.

本発明において用いられる弗酸のピリジン化合物として
は、Py(HF)n(Py:ピリジン)で示される化合
物である。
The pyridine compound of hydrofluoric acid used in the present invention is a compound represented by Py(HF)n (Py:pyridine).

ここでnの値は通常1〜6であり、このうち2〜4を採
用する場合には、工業的に十分な反応速度が得られるの
で特に好ましい。又、反応に際し、用いられる硫黄、塩
素及び発酸のピリジン化合物の夫々使用割合は、硫黄1
モル当りPy(HF)nl〜15モル、塩素1〜10モ
ルを4採用するのが適当である。
Here, the value of n is usually 1 to 6, and when employing 2 to 4 of these, it is particularly preferable because an industrially sufficient reaction rate can be obtained. In addition, during the reaction, the proportions of sulfur, chlorine, and acid-generating pyridine compounds used are 1 sulfur and 1
It is appropriate to employ 4 nl to 15 moles of Py(HF) and 1 to 10 moles of chlorine per mole.

これら使用量が前記範囲を逸脱する場合には、弗酸のピ
リジン化合物や塩素の利用率及びSF5CIの収率が低
下するので好ましくない。
If the amounts used deviate from the above ranges, the utilization of the pyridine compound of hydrofluoric acid and chlorine and the yield of SF5CI will decrease, which is not preferable.

そして、これら範囲のうち、硫黄1モル当り塩素が3〜
4モル、弗酸ピリジン化合物の使用量はPy(HF)n
のn値によって異なるが、例えばn=3の場合は弗酸ピ
リジン化合物として7〜12モルを採用する場合には、
高収率でSF5CIが得られ、原料の利用率も高くなる
ので特に好ましい。
Within these ranges, chlorine per mole of sulfur is 3 to 3.
4 mol, the amount of pyridine hydrofluoric acid compound used is Py(HF)n
Although it varies depending on the n value of
It is particularly preferred because SF5CI can be obtained in high yield and the utilization rate of raw materials is also high.

本発明において、これら原料を用いてSF5CIを製造
するには、溶媒の存在若しくは不存在下に通常温度0〜
60℃、好ましくは20〜40qoにおいてこ0れらを
反応せしめる。温度が前記範囲を逸脱する場合には、反
応速度が著しく低下したり、塩化硫黄や塩素の利用率が
低くなるので好ましくない。反応に際し用いられる溶媒
としては、例えば塩化メチレン、クロロホルム、四塩化
炭素、フロロタトリクロロメタン、トリクロロトリフル
オ。エタン等のハロゲン化炭化水素類が好ましく、これ
らは適宜一種若しくは二種以上を選択混合して用い得る
。なかでもトリクロロトリフルオロェタンを採用する場
合には、SF5CIの生成に伴なつて創生0する塩化硫
黄及び塩酸のピリジン化合物の両液体を、溶媒中におい
て夫々の層に分離せしめられ、これを回収して原料に再
使用し得る利点があるので特に好ましい。反応は溶媒を
用いなくても実施し得るが、溶媒を用いた方が弗素化反
応を均一か夕つ円滑に行なうことができ、更には塩化硫
黄と塩酸ピリジン化合物の分離及び再利用処理が容易と
なるので好ましい。又、前記反応原料と溶媒の使用割合
は、これらの全量に対し、溶媒を10〜200容量%程
度用いるのが適当である。0 反応は通常常圧で実施さ
れるが、所望によりゲージ圧で5気圧程度迄加圧下に実
施することも可能である。
In the present invention, in order to produce SF5CI using these raw materials, the temperature is usually 0 to 0 in the presence or absence of a solvent.
These are reacted at 60°C, preferably 20 to 40 qo. If the temperature deviates from the above range, the reaction rate will drop significantly and the utilization rate of sulfur chloride and chlorine will decrease, which is not preferable. Examples of the solvent used in the reaction include methylene chloride, chloroform, carbon tetrachloride, fluorotrichloromethane, and trichlorotrifluoro. Halogenated hydrocarbons such as ethane are preferred, and one or more of these may be used in combination as appropriate. In particular, when trichlorotrifluoroethane is used, both liquids, sulfur chloride and a pyridine compound of hydrochloric acid, which are created with the production of SF5CI, are separated into their respective layers in a solvent, and these liquids are recovered. This is particularly preferred since it has the advantage of being reusable as a raw material. Although the reaction can be carried out without using a solvent, using a solvent allows the fluorination reaction to be carried out more uniformly and smoothly, and furthermore, it is easier to separate and reuse the sulfur chloride and pyridine hydrochloride compounds. This is preferable. Further, as for the ratio of the reaction raw materials and the solvent used, it is appropriate to use the solvent in an amount of about 10 to 200% by volume based on the total amount thereof. 0 The reaction is usually carried out at normal pressure, but if desired, it can also be carried out under increased pressure up to about 5 atmospheres of gauge pressure.

反応を実施する装置としては、例えば適宜な境洋装層を
有する完全混合型の反応装置が好ましく、その材質はS
USや、内面に※素樹脂等の特に耐塩素性の耐食材料を
用いるのが好ましい。かくして得られたSF5CIは、
これを熱分解してSF6に転化せしめられる。熱分解に
際しては、これをそのまま400こ0以上の温度におい
てSF6に転化せしめることも出来るが、例えば銅や水
銀等の触媒の存在下に熱分解する場合には、その温度を
200〜300午○と比較的低温で実施出釆、又SF6
への転化速度も速くなし得るので好ましい。本発明を実
際工業的に実施するには、ピリジンは直接反応には関与
せず、高価でもあり、又副生物を除去したり、回収、再
生して再使用することが好ましく、この為種々のフロー
を適宜組み合せることが出来るが、本発明においては、
以下に説明する添付図面に示す様なフローを組むのが合
理的で好ましい。
As an apparatus for carrying out the reaction, a complete mixing type reaction apparatus having an appropriate outer layer is preferable, for example, and the material thereof is S.
It is preferable to use a corrosion-resistant material that is particularly chlorine-resistant, such as US or base resin for the inner surface. The SF5CI thus obtained is
This is thermally decomposed and converted into SF6. During thermal decomposition, this can be directly converted to SF6 at a temperature of 400°C or higher, but when thermally decomposed in the presence of a catalyst such as copper or mercury, the temperature can be increased to 200-300°C. and relatively low temperature, and SF6
This is preferable because the conversion rate to can be achieved quickly. In order to actually carry out the present invention industrially, pyridine does not directly participate in the reaction and is expensive, and it is preferable to remove by-products, recover, regenerate, and reuse. Although flows can be combined as appropriate, in the present invention,
It is reasonable and preferable to set up a flow as shown in the attached drawings described below.

1は反応器であり、ここに硫黄若しくは塩化硫黄と塩素
及び弗酸のピIJジン化合物及び前記したトリクロロト
リフルオロヱタンの溶媒が導入され反応が実施される。
1 is a reactor, into which a pyridine compound of sulfur or sulfur chloride, chlorine and hydrofluoric acid, and the above-described solvent of trichlorotrifluoroethane are introduced and a reaction is carried out.

この反応によってSF5CIと若干のSF4が創生され
、これらはガス状で2に取り出される。これらガスは分
離器3に導入され、弗酸のピリジン化合物が4から導入
され、SF4は弗酸のピリジン化合物にトラツプされ分
離器3から5のラインを通して前記反応器1に戻される
。分離器3の上部からはSF5CIがライン6により取
り出され、熱分解器7に導入され、SF6に転化される
。熱分解によりSF6と共にSF4及び塩素が創生され
るので、これら混合ガスはライン8を経て分離器9に送
られる。分離器9には、ライン10から塩素と硫黄若し
くは塩化硫黄と、弗酸のピリジン化合物が導入され、こ
れらに、SF5CIの熱分解で副生したSF4と塩素が
トラツプされ、これらはライン11から前記反応器1へ
戻される。かくして分離器9から製品としてのSF6が
とり出される。他方、反応器1においては、液相として
溶媒と共に反応により創生した塩酸のピリジン化合物及
び塩化硫黄がライン12より取り出され、再生器13に
導入され、ここには更にライン14から塩酸のピリジン
化合物中の塩酸が脱離するのに十分量のHFが導入され
る。
SF5CI and some SF4 are created by this reaction, and these are taken out as 2 in gaseous form. These gases are introduced into separator 3, a hydrofluoric acid pyridine compound is introduced through 4, and SF4 is trapped in the hydrofluoric acid pyridine compound and returned to the reactor 1 through the lines from separators 3 to 5. SF5CI is taken out from the upper part of separator 3 through line 6, introduced into pyrolyzer 7, and converted into SF6. Since SF4 and chlorine are created along with SF6 by thermal decomposition, these mixed gases are sent to separator 9 via line 8. Chlorine, sulfur or sulfur chloride, and a pyridine compound of hydrofluoric acid are introduced into the separator 9 from a line 10, and SF4 and chlorine, which are by-products from the thermal decomposition of SF5CI, are trapped in these. Returned to reactor 1. In this way, SF6 as a product is taken out from the separator 9. On the other hand, in the reactor 1, the pyridine compound of hydrochloric acid and sulfur chloride created by the reaction together with the solvent are taken out from the line 12 as a liquid phase and introduced into the regenerator 13, where the pyridine compound of hydrochloric acid is further taken out from the line 14. Sufficient amount of HF is introduced to eliminate the hydrochloric acid therein.

ここで導入されるHFの量は、塩酸のピリジン化合物に
対し、モル比で6以上、後述する塩化硫黄と再生された
葵酸のピリジン化合物との分離に際し、両者が実質的に
混合しないように別層を形成せしめる為に、塩酸のピリ
ジン化合物に対し、モル比で7〜8程度用いるのが好ま
しい。
The amount of HF introduced here is set at a molar ratio of 6 or more to the pyridine compound of hydrochloric acid, so that when separating the sulfur chloride and the pyridine compound of the regenerated Aoi acid, which will be described later, the two do not substantially mix. In order to form a separate layer, the molar ratio of hydrochloric acid to the pyridine compound is preferably about 7 to 8.

かくして反応により生成した弗酸のピリジン化合物、溶
媒、塩化硫黄はライン15から液相分離器16へ送られ
る。該分離器16内では、前記液が静直されることによ
り上層17には弗酸のピリジン化合物が、その下層には
溶媒と塩化硫黄が夫々分離される。そして下層の前記溶
媒と塩化硫黄は、ラィン19を経て反応器1へ戻される
。他方、上層に存在する弗酸のピリジン化合物はPy(
HF)6〜8適度となり、この状態になると塩酸は完全
に脱離される。この反応は通常、常圧で0〜5ぴ0にて
実施される。かくして得られた弗酸のピリジン化合物は
、前述の如くPy(HF)8〜8であり、このままでは
不活性な為、ライン20を経て蒸溜器21へ送られ、温
度100〜30び0、圧力760〜100肌Hg下で蒸
溜され、Py(HF)2.5〜3.5に再生される。再
生された弗酸のビリジン化合物はライン4及びライン1
0へ分配される。又、蒸溜により脱離された余分なHF
は、ライン14へ送られ、外部から導入されらHFと合
流される。
The pyridine compound of hydrofluoric acid, solvent, and sulfur chloride thus produced by the reaction are sent from line 15 to liquid phase separator 16. In the separator 16, the liquid is allowed to settle, so that the pyridine compound of hydrofluoric acid is separated in the upper layer 17, and the solvent and sulfur chloride are separated in the lower layer. The solvent and sulfur chloride in the lower layer are then returned to the reactor 1 via line 19. On the other hand, the pyridine compound of hydrofluoric acid present in the upper layer is Py(
HF) 6 to 8, and in this state, hydrochloric acid is completely eliminated. This reaction is usually carried out at normal pressure of 0 to 50 psi. The pyridine compound of hydrofluoric acid thus obtained is Py(HF) 8-8 as mentioned above, and since it is inert as it is, it is sent to the distiller 21 via the line 20, and the temperature is 100-30 and the pressure is 0. Distilled under 760-100 skin Hg and regenerated to Py(HF) 2.5-3.5. The regenerated hydrofluoric acid viridine compound is line 4 and line 1.
distributed to 0. In addition, excess HF desorbed by distillation
is sent to line 14 and combined with HF introduced from the outside.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

SUS31$製の渡洋器付反応器1に、塩素を2.5モ
ル/時で導入し、調合槽23からライン11を経て導入
するPy(HF)3と塩化硫黄(S2CI2)及びライ
ン4,5を経て導入するPy(HF)3とを、ライン1
9から2モル/時の速度で導入するトリクロロトリフル
オロェタン(R−113)溶媒の存在下で反応させた。
Chlorine is introduced at a rate of 2.5 mol/hour into a reactor 1 with a crossing vessel made of SUS31$, and Py(HF)3 and sulfur chloride (S2CI2) are introduced from a mixing tank 23 through line 11 and lines 4 and 5. Py(HF)3 introduced through line 1
The reaction was carried out in the presence of trichlorotrifluoroethane (R-113) solvent introduced at a rate of 9 to 2 mol/hour.

原料供給モル比がS:CI2:Py(HF)3=1:3
:9、温度350C、滞留時間1.0時間の条件下で反
応させ生成ガスはライン2に取出夕した。このガスは6
0×6帆の弗素樹脂チューフを充填した分離器3に導入
し、ここでライン4からPy(HF)3を2.5モル/
時で供給し温度30q○で向流接触させた。分離器3の
上部からガスを採取しNMRにより0反応生成物を分析
した結果、SF5CIとSF4及び微量のSOF2が確
認され、この組成は90:9.5:0.5(モル比)で
あった。
Raw material supply molar ratio S:CI2:Py(HF)3=1:3
9, the reaction was carried out under the conditions of a temperature of 350 C and a residence time of 1.0 hour, and the resulting gas was taken out to line 2. This gas is 6
Py(HF)3 is introduced into the separator 3 filled with 0x6 fluororesin tubes, where 2.5 mol/Py(HF)3 is introduced from the line 4.
The mixture was supplied at a temperature of 30 q○ and brought into countercurrent contact. As a result of collecting gas from the upper part of separator 3 and analyzing the 0 reaction product by NMR, SF5CI, SF4, and a trace amount of SOF2 were confirmed, and the composition was 90:9.5:0.5 (molar ratio). Ta.

このガスをラィン6より取出し、Cu触媒を充填した空
塔反応器からなる熱分解器7に導入し、温度300〜3
50ooで熱分解しタSF6を生成させた。分解器7の
生成ガスはライン8を経て分離器9に送り、ここで−3
000の低温下でライン10を経て導入する一塩化硫黄
0.5モル/時及びPy(HF)36.5モル/時と向
流接触させた。分離器9からの生成ガスを取出し液体窒
素で0液化しNMRにより組成を測定した結果、徴量の
SOF2とSF5CI,SF4及びR−11劣等を含む
ものの99%以上の高純度でSF6が得られた。SF5
CIの熱分解で生成したSF4,CI2は分離器9の底
部より抜き出したライン11を経て再び反応器1に導入
しSF5CIの原料に用いた。
This gas is taken out from line 6 and introduced into a thermal decomposer 7 consisting of an open column reactor packed with a Cu catalyst.
It was thermally decomposed at 50 oo to produce SF6. The produced gas from the decomposer 7 is sent to the separator 9 via line 8, where -3
Countercurrent contact was made with 0.5 mol/h of sulfur monochloride and 36.5 mol/h of Py(HF) introduced via line 10 at a low temperature of 0.000 m/h. The produced gas from the separator 9 was taken out and liquefied to zero with liquid nitrogen, and its composition was measured by NMR. As a result, SF6 was obtained with a high purity of 99% or more, although it contained SOF2, SF5CI, SF4, and R-11 inferiority. Ta. SF5
SF4 and CI2 produced by thermal decomposition of CI were drawn out from the bottom of the separator 9 and introduced into the reactor 1 again through a line 11, where they were used as raw materials for SF5CI.

他方、反応器1においては、液相として溶媒と共に反応
で副生した塩酸のピリジン化合物及び塩化硫黄をライン
12より取り出し、SUS31億製の檀梓器付再生器1
3に導入し、ここでライン11を経て弗酸51モル/時
を連続的に導入し温度35℃、滞留時間2時間の条件で
反応させる。
On the other hand, in the reactor 1, the pyridine compound of hydrochloric acid and sulfur chloride produced as by-products in the reaction together with the solvent are taken out from the line 12 as a liquid phase, and the regenerator 1 with a sandal scale made of SUS 3.1 billion is taken out.
3, and here, 51 mol/hour of hydrofluoric acid was continuously introduced via line 11, and the reaction was carried out at a temperature of 35° C. and a residence time of 2 hours.

この反応でピリジン(Py)から分離された塩酸はライ
ン24を経て気相に取り出した。かくして反応により生
成した発酸のピリジン化合物、溶媒及び塩化硫黄等はラ
イン15から液相分離器17に送り、ここで比重差によ
り塩化硫黄を含むR−113容煤相と弗酸のピリジン化
合物相の2相に分離した。
Hydrochloric acid separated from pyridine (Py) in this reaction was taken out to the gas phase via line 24. The acid pyridine compound, solvent, sulfur chloride, etc. generated by the reaction are sent from line 15 to liquid phase separator 17, where they are separated into an R-113 volume soot phase containing sulfur chloride and a hydrofluoric acid pyridine compound phase due to the difference in specific gravity. It was separated into two phases.

下層のR−113と塩化硫黄相はライン19を経て反応
器1に送り、上層の※酸のピリジン化合物相はライン2
0を経て耐食合金製の蒸留塔21に送り、回分操作によ
り過剰のHFを造出しPy(HF)3に再生した。ライ
ン20から弗酸ピリジンを抜出し蟹光X線法により溶解
している塩化硫黄を分析し結果、S換等で400脚であ
った。蒸留塔21に平均組成Py(HF)8からなる弗
酸のピリジン化合物2400夕を仕込み、150℃×3
0仇舷Hgの条件下で3時間回分蒸留した結果、蒸留塔
上部から※酸約1000夕が留出し、塔底から弗酸のピ
リジン化合物を1400タ回収出釆た。この化合物の平
均組成はPy(HF)3であり、姿光X線によ分析から
重金属の混入量はFe30の磯、Ni30肌、Cr15
脚であった。かくして、このPy(HF)3をライン4
から2.5モル/時、ライン22から6.5モル/時の
速度で供給し、再び次の反応原料として用いた。
The R-113 and sulfur chloride phase in the lower layer is sent to reactor 1 via line 19, and the upper layer *acid pyridine compound phase is sent to reactor 1 through line 2.
0 and sent to a distillation column 21 made of a corrosion-resistant alloy, and in a batch operation, excess HF was produced and regenerated into Py(HF)3. Pyridine hydrofluoride was extracted from line 20 and dissolved sulfur chloride was analyzed by crab light X-ray method, and the result was 400 sulfur chlorides due to S exchange. A pyridine compound of hydrofluoric acid having an average composition of 8 Py(HF) was charged into the distillation column 21, and heated at 150°C x 3
As a result of batch distillation for 3 hours under the condition of 0 shipboard Hg, approximately 1,000 tons of *acid was distilled out from the top of the distillation column, and 1,400 tons of pyridine compound of hydrofluoric acid was recovered from the bottom of the column. The average composition of this compound is Py(HF)3, and the amount of heavy metals mixed in from the analysis using full-spectrum X-rays is Fe30, Ni30, and Cr15.
It was a leg. Thus, this Py(HF)3 is transferred to line 4
It was supplied at a rate of 2.5 mol/hour from line 22 and 6.5 mol/hour from line 22, and used again as a raw material for the next reaction.

未反応塩化硫黄や溶媒R−−113及び再生Py(HF
)3を反応器1に循環し、反応を行なわせた結果、最終
製品のSF6の収率や純度に大きな変化は認められなか
った。
Unreacted sulfur chloride, solvent R--113 and regenerated Py(HF
) 3 was circulated to reactor 1 for reaction, and as a result, no significant change was observed in the yield or purity of the final product SF6.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明方法を実施するための好ましい反応系
の1つを示すフロー図である。
The accompanying drawing is a flow diagram illustrating one of the preferred reaction systems for carrying out the method of the invention.

Claims (1)

【特許請求の範囲】 1 硫黄若しくは一塩化硫黄及び/又は二塩化硫黄から
なる塩化硫黄と塩素と弗酸のピリジン化合物(Py・(
HF)n、n=1〜6)とを溶媒の存在若しくは不存在
下に反応せしめて得られるSF_5Clを熱分解してS
F_6,SF_4及びCl_2を生成せしめ、該SF_
4及びCl_2を、塩素と硫黄若しくは塩化硫黄と弗酸
のピリジン化合物でトラツプすることによりSF_6と
分離せしめることを特徴とする六弗化硫黄の製造方法。 2 トラツプに用いられる弗酸のピリジン化合物は、S
F_5Cl生成の際に副生される塩酸のピリジン化合物
の塩酸を弗酸で置換して得られるものである特許請求の
範囲第1項の六弗化硫黄の製造方法。3 SF_5Cl
を生成せしめる反応で用いられる硫黄、塩素及び弗酸の
ピリジン化合物の使用割合は、硫黄1モル当り弗酸のピ
リジン化合物1〜15モル、塩素1〜10モルである特
許請求の範囲第1項の六弗化硫黄の製造方法。 4 SF_5Clを得る反応は温度0〜60℃で実施す
る特許請求の範囲第1項の六弗化硫黄の製造方法。 5 溶媒は塩化メチレン、クロロホルム、四塩化炭素、
フロロトリクロロメタン、トリクロロトリフルオロエタ
ン等のハロゲン化炭化水素類である特許請求の範囲第1
項の六弗化硫黄の製造方法。 6 SF_5Clを六弗化硫黄に転化せしめる為の熱分
解は、銅若しくは水銀を触媒として200〜300℃で
実施する特許請求の範囲第1項の六弗化硫黄の製造方法
[Scope of Claims] 1. A pyridine compound (Py.(
HF) n, n = 1 to 6) in the presence or absence of a solvent, and thermally decomposes SF_5Cl to obtain S
F_6, SF_4 and Cl_2 are generated, and the SF_
A method for producing sulfur hexafluoride, which comprises trapping 4 and Cl_2 with a pyridine compound of chlorine and sulfur or sulfur chloride and hydrofluoric acid to separate them from SF_6. 2 The pyridine compound of hydrofluoric acid used in the trap is S
The method for producing sulfur hexafluoride according to claim 1, which is obtained by replacing the hydrochloric acid of a pyridine compound of hydrochloric acid by-produced during F_5Cl production with hydrofluoric acid. 3 SF_5Cl
The ratio of sulfur, chlorine, and pyridine compound of hydrofluoric acid used in the reaction to produce is 1 to 15 moles of pyridine compound of hydrofluoric acid and 1 to 10 mole of chlorine per 1 mole of sulfur. Method for producing sulfur hexafluoride. 4. The method for producing sulfur hexafluoride according to claim 1, wherein the reaction to obtain SF_5Cl is carried out at a temperature of 0 to 60°C. 5 The solvent is methylene chloride, chloroform, carbon tetrachloride,
Claim 1: Halogenated hydrocarbons such as fluorotrichloromethane and trichlorotrifluoroethane
2. Method for producing sulfur hexafluoride. 6. The method for producing sulfur hexafluoride according to claim 1, wherein the thermal decomposition for converting SF_5Cl to sulfur hexafluoride is carried out at 200 to 300°C using copper or mercury as a catalyst.
JP13282980A 1980-08-12 1980-09-26 Method for producing sulfur hexafluoride Expired JPS6016364B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13282980A JPS6016364B2 (en) 1980-09-26 1980-09-26 Method for producing sulfur hexafluoride
GB8122792A GB2081694B (en) 1980-08-12 1981-07-23 Sulphur hexafluoride
US06/286,887 US4390511A (en) 1980-08-12 1981-07-27 Process for producing SF6 through SF5 Cl
IT23389/81A IT1138140B (en) 1980-08-12 1981-08-06 PROCEDURE TO PRODUCE SF6 THROUGH SF5CL
FR8115464A FR2488586A1 (en) 1980-08-12 1981-08-10 PROCESS FOR PREPARING SF6 VIA SF5CL
DE19813131744 DE3131744A1 (en) 1980-08-12 1981-08-11 METHOD FOR PRODUCING SULFUR HEXAFLUORIDE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13282980A JPS6016364B2 (en) 1980-09-26 1980-09-26 Method for producing sulfur hexafluoride

Publications (2)

Publication Number Publication Date
JPS5761603A JPS5761603A (en) 1982-04-14
JPS6016364B2 true JPS6016364B2 (en) 1985-04-25

Family

ID=15090506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13282980A Expired JPS6016364B2 (en) 1980-08-12 1980-09-26 Method for producing sulfur hexafluoride

Country Status (1)

Country Link
JP (1) JPS6016364B2 (en)

Also Published As

Publication number Publication date
JPS5761603A (en) 1982-04-14

Similar Documents

Publication Publication Date Title
JPS643854B2 (en)
TW522140B (en) A method of refining LiPF6
US2836622A (en) Preparation of carbonyl fluoride
EP3383842A1 (en) Process for producing hydrogen bis(fluorosulfonyl)imide
CA2193634C (en) Process for producing difluoromethane
JP6879312B2 (en) Manufacturing method of sulfur tetrafluoride
US3848064A (en) Production of sulfur tetrafluoride from sulfur chlorides and fluorine
WO2005105668A1 (en) Method for producing carbonyl difluoride
JPS6016364B2 (en) Method for producing sulfur hexafluoride
CN102596867B (en) Method for purification of fluorine-containing compound
EP0129863B1 (en) Fluorination process
US2640086A (en) Process for separating hydrogen fluoride from chlorodifluoromethane
US4390511A (en) Process for producing SF6 through SF5 Cl
US2697726A (en) Trifluoromethylsulfur pentafluoride and method of preparing the same
EP0954515A1 (en) Solvents for use in fluorination reactions
US2417059A (en) Production of dichlorodifluoromethane
US3650917A (en) Recovery of products from electrochemical fluorination
US3899531A (en) Process for the preparation of fluorine containing carbonyl dihalides
JP4005807B2 (en) Process for producing hydrofluoroalkanesulfonyl fluoride
US2760997A (en) Process for the production of chlorotrifluorothylene by passing a mixture of trichlorotrifluoroethane and hydrogen through an unobstructed iron tube
US2709184A (en) Process for preparing chlorofluorocarbons by reacting carbon with chlorine and a flouroide of a monovalent element
US2937123A (en) Selected sulfur fluorides and electrolytic process for making the same
JPS6127322B2 (en)
JP3115426B2 (en) Method for producing perfluoro organic compound
Oda et al. Process for producing SF 6 through SF 5 Cl