JPS6127322B2 - - Google Patents

Info

Publication number
JPS6127322B2
JPS6127322B2 JP13511480A JP13511480A JPS6127322B2 JP S6127322 B2 JPS6127322 B2 JP S6127322B2 JP 13511480 A JP13511480 A JP 13511480A JP 13511480 A JP13511480 A JP 13511480A JP S6127322 B2 JPS6127322 B2 JP S6127322B2
Authority
JP
Japan
Prior art keywords
sulfur
hydrofluoric acid
reaction
hydrochloric acid
pyridine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13511480A
Other languages
Japanese (ja)
Other versions
JPS5761604A (en
Inventor
Kimihiko Sato
Isao Goto
Keiichi Uchida
Shinsuke Morikawa
Masaaki Ikemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP13511480A priority Critical patent/JPS5761604A/en
Publication of JPS5761604A publication Critical patent/JPS5761604A/en
Publication of JPS6127322B2 publication Critical patent/JPS6127322B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)

Description

【発明の詳細な説明】 本発明は四弗化硫黄の製造方法、特に高価な電
力を用いて弗酸を電解して得た弗素ガスを用いる
事なく、比較的安価な弗素源を用い、かかる弗素
源を再生循環しつつ高純度、高収率で四弗化硫黄
を製造する方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing sulfur tetrafluoride, in particular, using a relatively inexpensive fluorine source without using fluorine gas obtained by electrolyzing hydrofluoric acid using expensive electricity. The present invention relates to a method for producing sulfur tetrafluoride with high purity and high yield while regenerating and circulating a fluorine source.

従来、四弗化硫黄を製造する手段としては、例
えば二塩化硫黄と弗化ソーダをアセトニトリル等
の有機溶媒中で反応せしめる方法(USP2992073
号明細書参照)、二塩化硫黄と塩素と弗化水素と
を−50℃において反応せしめ、反応生成物をアミ
ン類で処理して四弗化硫黄を分離せしめる方法
(OLS2363679号公報参照)、二塩化硫黄をNOF・
3HFと反応せしめる方法(USP4082839号明細書
参照)などが知られている。
Conventionally, methods for producing sulfur tetrafluoride include a method in which sulfur dichloride and sodium fluoride are reacted in an organic solvent such as acetonitrile (USP 2992073).
(see specification), a method in which sulfur dichloride, chlorine, and hydrogen fluoride are reacted at -50°C, and the reaction product is treated with amines to separate sulfur tetrafluoride (see OLS2363679), NOF sulfur chloride
A method of reacting with 3HF (see US Pat. No. 4,082,839) is known.

これら方法のうち、前記USP2992073号明細書
で代表される方法は、二塩化硫黄と反応させる弗
化ソーダ及び副生物である食塩が固体である為、
スラリー状で反応を行なわねばならず、反応操作
が行ないにくく、又弗化ソーダの粒度により四弗
化硫黄の収率が大きく変動する等反応操作面であ
まり好ましくない欠点を有する。
Among these methods, the method typified by the above-mentioned USP 2,992,073 is because the sodium fluoride reacted with sulfur dichloride and the by-product common salt are solid.
The reaction has to be carried out in the form of a slurry, making it difficult to carry out the reaction, and the yield of sulfur tetrafluoride varies greatly depending on the particle size of the sodium fluoride, which is not very desirable in terms of reaction operation.

又、OLS2363679号公報に代表される方法は、
−50℃というかなりの低温が要求され、又アミン
類での処理を要し、操作が煩雑であると共にコス
トも高い欠点を有する。
In addition, the method typified by OLS2363679 is
It requires a fairly low temperature of -50°C, requires treatment with amines, is complicated in operation, and has the drawbacks of high cost.

又、USP4082839号明細書で代表される方法
は、NOFが腐食性であり、装置に特殊材質を用
いる必要があり、しかも四弗化硫黄の収率は低
く、副生物として硫黄が析出し、操作が煩雑とな
る欠点を有する。
Furthermore, in the method typified by USP 4082839, NOF is corrosive, requires the use of special materials for the equipment, and furthermore, the yield of sulfur tetrafluoride is low, and sulfur is precipitated as a by-product, making operation difficult. It has the disadvantage that it is complicated.

更に、Py(HF)9.2(Py:ピリジン)と二塩化
硫黄を反応せしめ、四弗化硫黄を68%という低い
収率で得た旨の報告がある。(G.A.Olah et.al.
Inorg.Chem.16、2637(′77)short
communication参照) しかしながら、本発明者等の追試によると、こ
の方法では収率が68%どころか四弗化硫黄の生成
は認められなかつた。即ち、本発明者等がその後
検討を進めた結果によると、HF/Pyのモル比を
種々採つて二塩化硫黄と反応せしめた処、HF/
Py=5〜6を超えると、弗素化能が著しく低下
するか全くなくなる事を見出した。そして、本発
明者は、HF/Py=4以下に限つて二塩化硫黄と
の反応により、四弗化硫黄を高純度且つ収率90%
以上で容易に得られることを見出し、既に特願昭
54−130833号(特開昭56−54209号)として提案
した。
Furthermore, there is a report that sulfur tetrafluoride was obtained in a low yield of 68% by reacting Py(HF) 9.2 ( Py: pyridine) with sulfur dichloride. (GAOlah et.al.
Inorg.Chem.16, 2637 (′77) short
(See communication) However, according to additional tests by the present inventors, this method not only achieved a yield of 68%, but no production of sulfur tetrafluoride was observed. That is, according to the results of subsequent studies conducted by the present inventors, when various molar ratios of HF/Py were used to react with sulfur dichloride, HF/Py
It has been found that when Py exceeds 5 to 6, the fluorination ability is significantly reduced or completely eliminated. Then, the present inventor produced sulfur tetrafluoride with high purity and a yield of 90% by reacting with sulfur dichloride only when HF/Py = 4 or less.
It was discovered that it could be obtained easily with the above method, and a patent application was already made.
It was proposed as No. 54-130833 (Japanese Unexamined Patent Publication No. 56-54209).

この方法の基本反応は次の通りである。 The basic reaction of this method is as follows.

3SCl2+4Py・HF→ SF4+S2Cl2+4Py・HCl 得られた生成物のうち、SF4のみがガス状であ
り、他は液状であるので、SF4の分離が極めて容
易である利点を有している。
3SCl 2 +4Py・HF → SF 4 +S 2 Cl 2 +4Py・HCl Among the obtained products, only SF 4 is gaseous and the others are liquid, so the advantage is that separation of SF 4 is extremely easy. have.

処で、ピリジンはそれ自身反応にはあずから
ず、この方法を採用して四弗化硫黄を得る限りピ
リジンはPy−HClの形で大量に生成してくること
になり、特に大規模な四弗化硫黄の製造に際して
は、ワンパス方式ではピリジンの消費量が膨大な
ものになつてしまう。
However, pyridine itself does not take part in the reaction, and as long as this method is used to obtain sulfur tetrafluoride, a large amount of pyridine will be produced in the form of Py-HCl. When producing sulfur fluoride, a one-pass method consumes a huge amount of pyridine.

本発明者等は、この様なピリジンを必要最小限
に用いならがも、四弗化硫黄の大量生産を可能に
し、ピリジンを有効に循環使用すべく、種々研
究、検討した結果、副生した塩酸のピリジン化合
物に、該塩酸が脱離するのに十分量の弗酸を反応
せしめ、次いで得られた反応生成物から必要とす
る弗酸のピリジン化合物となるまで弗酸を脱離す
ることにより、所望する弗酸のピリジン化合物が
再生でき、これを再び二塩化硫黄との反応に供せ
られることを見出し、先に特願昭55−300号(特
開昭56−100109号)として提案した。
The present inventors have conducted various research and examinations in order to enable the mass production of sulfur tetrafluoride and to effectively recycle pyridine, while using the necessary minimum amount of pyridine. By reacting a pyridine compound of hydrochloric acid with a sufficient amount of hydrofluoric acid to eliminate the hydrochloric acid, and then eliminating hydrofluoric acid from the resulting reaction product until the required pyridine compound of hydrofluoric acid is obtained. , discovered that the desired pyridine compound of hydrofluoric acid could be regenerated and subjected to the reaction with sulfur dichloride, and proposed it earlier in Japanese Patent Application No. 55-300 (Japanese Unexamined Patent Publication No. 56-100109). .

そして、本発明者等はその後更に検討を進めた
処、原料として二塩化硫黄を用いるよりも、分解
等の虞れのない一塩化硫黄及び塩素を用いる方が
操作上安定して、四弗化硫黄が得られることを見
出した。
After further investigation, the inventors found that using sulfur monochloride and chlorine, which do not have the risk of decomposition, is more stable in operation than using sulfur dichloride as a raw material. It was discovered that sulfur can be obtained.

かくして本発明は、Py(HF)1〜4と一塩化硫黄
及び塩素とを反応せしめて四弗化硫黄を生成せし
め、同時に副生した塩酸のピリジン化合物に、該
塩酸が脱離するのに十分量の弗酸を反応せしめ、
次いで得られた反応生成物からPy(HF)1〜4にな
るまで弗酸を脱離し、得られた弗酸のピリジン化
合物を前記一塩化硫黄との反応に循環使用するこ
とを特徴とする四弗化硫黄の製造方法を提供する
にある。
Thus, in the present invention, Py(HF) 1 to 4 are reacted with sulfur monochloride and chlorine to produce sulfur tetrafluoride, and at the same time, the pyridine compound of hydrochloric acid produced as a by-product has a sufficient amount of water for the hydrochloric acid to be eliminated. amount of hydrofluoric acid is reacted,
Then, hydrofluoric acid is eliminated from the obtained reaction product until it becomes Py(HF) 1 to 4 , and the obtained pyridine compound of hydrofluoric acid is recycled to the reaction with the sulfur monochloride. The present invention provides a method for producing sulfur fluoride.

本発明において、Py(HF)1〜4と一塩化硫黄及
び塩素とを反応せしめて四弗化硫黄を生成せしめ
る手段としては、これらを直ちに反応させること
もできるが、反応をより円滑に実施する為、溶媒
を用いるのが望ましい。
In the present invention, as a means for reacting Py(HF) 1 to 4 with sulfur monochloride and chlorine to produce sulfur tetrafluoride, it is possible to react them immediately, but it is possible to react them immediately, but it is also possible to react them more smoothly. Therefore, it is desirable to use a solvent.

溶媒としては、これ自身が反応原料や、反応生
成物に対し、不活性であることが必要であり、一
般にハロゲン化炭化水素類が適当である。ハロゲ
ン化炭化水素類の中でも、塩化メチレン、クロロ
ホルム、四塩化炭素、フロロトリクロロメタン、
トリクロロトリフルオロエタンが好ましく、これ
らは夫々単独若しくは適宜混合して用い得る。
The solvent itself must be inert to the reaction raw materials and reaction products, and halogenated hydrocarbons are generally suitable. Among halogenated hydrocarbons, methylene chloride, chloroform, carbon tetrachloride, fluorotrichloromethane,
Trichlorotrifluoroethane is preferred, and these may be used alone or in appropriate mixtures.

そして、特にトリクロロトリフルオロエタン溶
媒を用いる場合には、反応につて生成した四弗化
硫黄のみがガス状で分離でき、更に未反応の
S2Cl2と溶媒は、副生した塩酸のピリジン化合物
と液層において実質的完全に2層に分離でき、後
述するピリジン化合物の再生に極めて好都合とな
る利点があるので好ましい。
Particularly when trichlorotrifluoroethane solvent is used, only the sulfur tetrafluoride produced during the reaction can be separated in gaseous form, and the unreacted
S 2 Cl 2 and the solvent are preferred because they can be substantially completely separated into two layers in the liquid phase from the pyridine compound of hydrochloric acid produced as a by-product, which is extremely convenient for regenerating the pyridine compound as described below.

トリクロロトリフルオロエタン溶媒を用いて反
応を行なう場合、その温度は0〜60℃、好ましく
は20〜40℃を採用するのが適当である。
When the reaction is carried out using a trichlorotrifluoroethane solvent, it is appropriate to use a temperature of 0 to 60°C, preferably 20 to 40°C.

温度が0℃より低すぎると、反応速度が著しく
低下し、逆に60℃を超える場合には四弗化硫黄へ
の転化率が低下する恐れがあるので何れも好まし
くない。
If the temperature is too low than 0°C, the reaction rate will drop significantly, while if it exceeds 60°C, the conversion rate to sulfur tetrafluoride may decrease, which is not preferred.

反応は通常大気圧で行なわれるが、所望により
加圧下で実施しても差し支えない。反応原料とな
る弗酸のピリジン化合物と一塩化硫黄及び塩素の
使用割合は、用いられる弗酸のピリジン化合物
(Py(HF)o、n=1〜4)のnの値によつて厳
密には決定されるが、例えばn=3の場合一般に
一塩化硫黄1モルに対し、弗酸のピリジン化合物
3〜16モル、塩素1〜4.0モルの割合で用いるの
が好ましい。モル比が前記範囲を逸脱する場合に
は、四弗化硫黄への転化率が急激に低下するか、
原料の利用率が悪くなるので好ましくない。又、
溶媒の使用量は、一塩化硫黄(S2Cl2)に対し、
S2Cl2/溶媒=0.2〜25モル/、好ましくは1〜
5モル/を採用するのが適当である。溶媒の使
用量が前記範囲より低いと反応速度が遅く、又塩
素が気相に飛散し反応率が低下し、逆に前記範囲
を超えると、最早やそれ以上の効果はなく、単に
容量が増えるのみなので好ましくない。
The reaction is usually carried out at atmospheric pressure, but may be carried out under increased pressure if desired. The ratio of the pyridine compound of hydrofluoric acid, sulfur monochloride, and chlorine used as reaction raw materials strictly depends on the value of n of the pyridine compound of hydrofluoric acid (Py(HF) o , n=1 to 4) used. For example, when n=3, it is generally preferable to use 3 to 16 moles of the pyridine compound of hydrofluoric acid and 1 to 4.0 moles of chlorine per 1 mole of sulfur monochloride. If the molar ratio deviates from the above range, the conversion rate to sulfur tetrafluoride will decrease sharply, or
This is not preferable because the utilization rate of raw materials becomes poor. or,
The amount of solvent used is based on sulfur monochloride (S 2 Cl 2 ).
S 2 Cl 2 /solvent=0.2-25 mol/, preferably 1-25 mol/
It is appropriate to adopt 5 mol/. If the amount of solvent used is lower than the above range, the reaction rate will be slow, and chlorine will scatter into the gas phase, reducing the reaction rate; on the other hand, if it exceeds the above range, there will be no further effect and the capacity will simply increase. I don't like it because it's only.

かくして反応が実施され、得られた生成物であ
る四弗化硫黄、塩酸のピリジン化合物及び未反応
塩化硫黄のうち、四弗化硫黄のみガス状であり、
他は液状であるので、四弗化硫黄のみガスとして
取り出せる為、高純度な製品が得られる。
The reaction is thus carried out, and among the products obtained, sulfur tetrafluoride, a pyridine compound of hydrochloric acid, and unreacted sulfur chloride, only sulfur tetrafluoride is gaseous;
Since the others are liquid, only sulfur tetrafluoride can be extracted as a gas, resulting in a highly pure product.

液状であるS2Cl2、塩酸のピリジン化合物は前
者が溶媒と共に下層を形成し、後者がその上層を
形成するように自然分離される。
The liquid S 2 Cl 2 and the pyridine compound of hydrochloric acid are naturally separated so that the former forms a lower layer together with the solvent, and the latter forms an upper layer.

かくして上層に存在する塩酸のピリジン化合物
は、塩酸が完全に脱離し、弗酸のピリジン化合物
に転化するよう弗酸が添加される。
Thus, hydrofluoric acid is added to the hydrochloric acid pyridine compound present in the upper layer so that the hydrochloric acid is completely eliminated and converted to the hydrofluoric acid pyridine compound.

このときの弗酸の添加量は、塩酸のピリジン化
合物に対してモル比で6以上必要であり、弗酸の
ピリジン塩に転化した上層へのS2Cl2の溶解を防
止するために、好ましくは塩酸のピリジン化合物
に対し、モル比で7〜8程度が適当である。
The amount of hydrofluoric acid added at this time needs to be 6 or more in molar ratio to the pyridine compound of hydrofluoric acid, and is preferably added in order to prevent dissolution of S 2 Cl 2 into the upper layer converted to the pyridine salt of hydrofluoric acid. A suitable molar ratio of 7 to 8 is relative to the pyridine compound of hydrochloric acid.

かくして得られた弗酸のピリジン化合物はPy
(HF)6〜8程度となり、この状態になると塩酸は
完全に脱離される。この反応は通常、常圧で温度
0〜50℃の範囲で実施される。
The pyridine compound of hydrofluoric acid thus obtained is Py
(HF) becomes about 6 to 8 , and in this state, hydrochloric acid is completely eliminated. This reaction is usually carried out at normal pressure and at a temperature in the range of 0 to 50°C.

弗酸の添加量が前記範囲に満たないと、塩酸の
脱離が不完全となり、それだけ不活性なピリジン
化合物が残り、ピリジンの利用効率が低下する。
逆に前記範囲を超える場合には、最早やそれ以上
の効果を期待し得ないばかりでなく、後述する弗
酸の脱離の為の負担がそれだけ増えることにな
り、何れも好ましくない。
If the amount of hydrofluoric acid added is less than the above range, the elimination of hydrochloric acid will be incomplete, and an inactive pyridine compound will remain, resulting in a decrease in the utilization efficiency of pyridine.
On the other hand, if it exceeds the above range, not only no further effect can be expected, but also the burden of removing hydrofluoric acid, which will be described later, increases accordingly, which is not preferable.

塩酸のピリジン化合物を弗酸のピリジン化合物
に転化せしめる手段としては、前述した以外に温
度と圧力を変化させる方法もあり、例えば低温で
弗酸を添加し、高温、加圧下で塩酸を脱離せしめ
ることにより、弗酸の使用量を減少させることが
できる場合もある。
As a means of converting a pyridine compound of hydrochloric acid to a pyridine compound of hydrofluoric acid, there is also a method of changing temperature and pressure in addition to the method described above.For example, hydrofluoric acid is added at a low temperature and the hydrochloric acid is eliminated at a high temperature and under pressure. In some cases, the amount of hydrofluoric acid used can be reduced.

かくして得られた弗酸のピリジン化合物は、前
述の如くPy(HF)6〜8であり、このままでは不活
性な為、これをPy(HF)1〜4になるまで弗酸を脱
離せしめる。
The pyridine compound of hydrofluoric acid thus obtained is Py(HF) 6 to 8 as described above, and since it is inactive as it is, hydrofluoric acid is removed from it until it becomes Py(HF) 1 to 4 .

かかる手段としては、例えばPy(HF)6〜8を温
度100〜300℃、圧力760〜100mmHgの減圧下で蒸
留するが、ジメチルホルムアミド、アセトニトリ
ル、塩化メチレン、ジオキサン、トリクロロトリ
フルオロエタン等の有機溶媒の存在下に100〜200
℃で蒸留する方法、或はNaF、KFと接触させ、
NaF・HF又はKF・HF複合体として弗酸を脱離
せしめる手段等を適宜使用し得る。
Such means include, for example, distilling Py(HF) 6 to 8 under reduced pressure at a temperature of 100 to 300°C and a pressure of 760 to 100 mmHg, and organic solvents such as dimethylformamide, acetonitrile, methylene chloride, dioxane, trichlorotrifluoroethane, etc. 100-200 in the presence of
℃ distillation method, or contact with NaF, KF,
A means for removing hydrofluoric acid as a NaF/HF or KF/HF complex may be used as appropriate.

これら手段のうち、NaFやKFと接触せしめる
手段は、Py(HF)1〜2を得る場合に好結果を期待
し得る。
Among these methods, the method of contacting with NaF or KF can be expected to produce good results when obtaining Py(HF) 1-2 .

かくしてPy(HF)1〜4が再生され、これは再び
一塩化硫黄及び塩素との反応に循環使用される。
他方未反応のS2Cl2を含む溶媒層は、これに塩素
とS2Cl2を添加し、再びPy(HF)oとの反応に循環
使用される。
Py(HF) 1-4 is thus regenerated and recycled again for reaction with sulfur monochloride and chlorine.
On the other hand, the solvent layer containing unreacted S 2 Cl 2 has chlorine and S 2 Cl 2 added thereto, and is recycled for the reaction with Py(HF) o .

次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.

SUS製の完全混合型の反応槽を用い、二塩化硫
黄26.9Kg、Cl242.0Kg、Py(HF)3333.6Kgとをトリ
クロロトリフルオロエタンから成る溶媒120中
に溶解し、反応温度40℃にて反応を行ない、四弗
化硫黄をガスとして99%(43Kg)の収率で得た。
反応が完結した処で、槽の撹拌を止めた処、液状
体が二層に分離した。そして、上層にはPy
((HCl+HF)oが、その下層には未反応S2Cl2を含
む溶媒相が存在していた。次いでこれらに対し、
無水弗酸を272Kg導入し、40℃下に撹拌しながら
反応を行なつた処、HClが57.5Kg(これはPyに含
まれるHClの99%以上に相当する)発生し、Py
(HF)8が生成した。撹拌を止めた処、上層には
Py(HF)8を含む層が、下層にはS2Cl2を含む溶媒
相に分離し、該上層にはS2Cl2は実質的に皆無で
あつた。
Using a completely mixed reaction tank made of SUS, 26.9 kg of sulfur dichloride, 42.0 kg of Cl 2 and 333.6 kg of Py(HF) 3 were dissolved in a solvent 120 consisting of trichlorotrifluoroethane, and the reaction temperature was raised to 40°C. The reaction was carried out to obtain sulfur tetrafluoride as a gas with a yield of 99% (43 kg).
When the reaction was completed and the stirring of the tank was stopped, the liquid separated into two layers. And in the upper layer Py
((HCl + HF) o , but a solvent phase containing unreacted S 2 Cl 2 existed below it. Then, for these,
When 272 kg of hydrofluoric anhydride was introduced and the reaction was carried out at 40°C with stirring, 57.5 kg of HCl was generated (this corresponds to more than 99% of the HCl contained in Py), and Py
(HF) 8 was generated. When the stirring was stopped, the upper layer
The layer containing Py(HF) 8 separated into a solvent phase containing S 2 Cl 2 in the lower layer, and the upper layer was substantially free of S 2 Cl 2 .

上層のPy(HF)8をSUS製蒸留塔に導き、150
℃、300mmHgの圧力下に2時間蒸留を行つた処、
Py(HF)8はPy(HF)3に転化せしめることがで
きた。下層の未反応S2Cl2を含む溶媒とPy
(HF)3は前述の四弗化硫黄製造用原料として再び
使用される。
The upper layer of Py(HF) 8 is guided to a SUS distillation column and 150
℃, distillation was carried out for 2 hours under a pressure of 300 mmHg,
Py(HF) 8 could be converted to Py(HF) 3 . Solvent and Py containing unreacted S2Cl2 in the lower layer
(HF) 3 is again used as a raw material for the production of sulfur tetrafluoride mentioned above.

Claims (1)

【特許請求の範囲】 1 Py(HF)1〜4(Py:ピリジン)と一塩化硫
黄及び塩素とを溶媒の存在若しくは不存在下に反
応せしめて四弗化硫黄を生成せしめ、同時に副生
した塩酸のピリジン化合物に、該塩酸が脱離する
のに十分量の弗酸を反応せしめ、次いで得られた
反応生成物からPy(HF)1〜4になるまで弗酸を脱
離し、得られたPy(HF)1〜4を前記一塩化硫黄と
の反応に循環使用することを特徴とする四弗化硫
黄の製造方法。 2 溶媒はトリクロロトリフクオロエタンである
特許請求の範囲1の方法。 3 副生した塩酸のピリジン化合物から塩酸を脱
離するのに用いられる弗酸量は、塩酸のピリジン
化合物に対し、モル比で6以上で7〜8である特
許請求の範囲1の方法。
[Claims] 1 Py(HF) 1 to 4 (Py: pyridine) is reacted with sulfur monochloride and chlorine in the presence or absence of a solvent to produce sulfur tetrafluoride, and at the same time as a by-product. The pyridine compound of hydrochloric acid is reacted with sufficient amount of hydrofluoric acid to eliminate the hydrochloric acid, and then hydrofluoric acid is eliminated from the resulting reaction product until Py(HF) 1 to 4 is obtained. A method for producing sulfur tetrafluoride, comprising recycling Py(HF) 1 to 4 in the reaction with the sulfur monochloride. 2. The method of claim 1, wherein the solvent is trichlorotrifuquoroethane. 3. The method according to claim 1, wherein the amount of hydrofluoric acid used to remove hydrochloric acid from the by-produced pyridine compound of hydrochloric acid is in a molar ratio of 6 or more and 7 to 8 with respect to the pyridine compound of hydrochloric acid.
JP13511480A 1980-09-30 1980-09-30 Preparation of sulfur tetrafluoride Granted JPS5761604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13511480A JPS5761604A (en) 1980-09-30 1980-09-30 Preparation of sulfur tetrafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13511480A JPS5761604A (en) 1980-09-30 1980-09-30 Preparation of sulfur tetrafluoride

Publications (2)

Publication Number Publication Date
JPS5761604A JPS5761604A (en) 1982-04-14
JPS6127322B2 true JPS6127322B2 (en) 1986-06-25

Family

ID=15144153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13511480A Granted JPS5761604A (en) 1980-09-30 1980-09-30 Preparation of sulfur tetrafluoride

Country Status (1)

Country Link
JP (1) JPS5761604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184011A (en) * 1984-09-29 1986-04-28 Osaka Denki Kk Coil spool for transformer and the like
JPS6242225U (en) * 1985-09-03 1987-03-13

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301211C (en) * 2004-12-22 2007-02-21 马本辉 Continuous production of sulfur tetrafluoride
RU2765715C2 (en) * 2016-12-26 2022-02-02 Дайкин Индастриз, Лтд. Composition for deoxyfluorination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184011A (en) * 1984-09-29 1986-04-28 Osaka Denki Kk Coil spool for transformer and the like
JPS6242225U (en) * 1985-09-03 1987-03-13

Also Published As

Publication number Publication date
JPS5761604A (en) 1982-04-14

Similar Documents

Publication Publication Date Title
JP7128427B2 (en) Method for producing sulfur tetrafluoride
US4912269A (en) Synthesis of perfluoroalkyl bromides
US3848064A (en) Production of sulfur tetrafluoride from sulfur chlorides and fluorine
KR20070091616A (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
JPS6127322B2 (en)
US4102987A (en) Process for preparing sulfuryl-fluoride and -chlorofluoride products
JPS6125647B2 (en)
JP2845745B2 (en) Production method of high purity methanesulfonyl fluoride
JP2797626B2 (en) Method for producing perfluoroalkyl bromide
JP2523936B2 (en) Method for producing dicarbonyl fluoride
JP3029278B2 (en) Post-treatment method of solution containing inert antimony halogenide catalyst and organic compound
JPS6038324B2 (en) Production method of SF↓5Cl
JP2007509056A (en) Method for producing hydrofluorocarbon
JPH0527564B2 (en)
CA2373437A1 (en) Production of 1,1,1,2,3,3,3-heptafluoropropane
JPS5946885B2 (en) Production method of sulfur tetrafluoride
JP2000281602A (en) Separation of mixture containing hydrogen fluoride and 1,1,1,3,3-pentafluorobutane and synthesis of 1,1,1,3,3- pentafluorobutane
JPS5946886B2 (en) Synthesis method of sulfur tetrafluoride
JPS6016361B2 (en) Manufacturing method of sulfur tetrafluoride
JP2003146620A (en) Method for manufacturing carbonyl difluoride
WO2004092067A1 (en) Method for producing carbonyl difluoride
JP2002018286A (en) Method for treating metal fluoride and synthesizing catalyst comprising the same
JPS6016363B2 (en) Production method of SF↓5Cl
JP2023540194A (en) Method for producing N,N-branched sulfamoyl fluoride compound using bismuth trifluoride
US20100121116A1 (en) Process for preparing octafluorocyclohexadiene