JPS5946886B2 - Synthesis method of sulfur tetrafluoride - Google Patents

Synthesis method of sulfur tetrafluoride

Info

Publication number
JPS5946886B2
JPS5946886B2 JP16552379A JP16552379A JPS5946886B2 JP S5946886 B2 JPS5946886 B2 JP S5946886B2 JP 16552379 A JP16552379 A JP 16552379A JP 16552379 A JP16552379 A JP 16552379A JP S5946886 B2 JPS5946886 B2 JP S5946886B2
Authority
JP
Japan
Prior art keywords
sulfur
sulfur tetrafluoride
reaction
amount
tetrafluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16552379A
Other languages
Japanese (ja)
Other versions
JPS5688808A (en
Inventor
吉男 小田
敞 音馬
啓一 内田
真介 森川
政昭 池村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16552379A priority Critical patent/JPS5946886B2/en
Publication of JPS5688808A publication Critical patent/JPS5688808A/en
Publication of JPS5946886B2 publication Critical patent/JPS5946886B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は四弗化硫黄の合成法、特に高価な電力を用いて
弗酸を電解して得た弗素ガスを用いる事なく、比較的安
価な弗素源を用い、かかる弗素源を再生し、循環使用し
得るようにして高純度、高収率で四弗化硫黄を合成する
方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for synthesizing sulfur tetrafluoride, in particular, using a relatively inexpensive fluorine source without using fluorine gas obtained by electrolyzing hydrofluoric acid using expensive electricity. This invention relates to a method for synthesizing sulfur tetrafluoride with high purity and high yield by regenerating a fluorine source and making it reusable.

従来、四弗化硫黄の合成手段としては、例えば二塩化硫
黄と弗化ソーダをアセトニl−IJル等の有機溶媒中で
反応せしめる方法(U、S、P 2992073号明
細書参照)、二塩化硫黄と塩素と弗化水素とを一50℃
において反応せしめ、反応生成物をアミン類で処理して
四弗化硫黄を分離せしめる方法(OL8 236367
9号公報参照)、二塩化硫黄をNOF・3HFと反応せ
しめる方法(U、S、P4082839号公報参照)な
どが知られている。
Conventionally, methods for synthesizing sulfur tetrafluoride include, for example, a method in which sulfur dichloride and sodium fluoride are reacted in an organic solvent such as acetonyl-IJ (see specification of U, S, P 2992073), dichloride Sulfur, chlorine, and hydrogen fluoride at -50℃
A method in which sulfur tetrafluoride is separated by treating the reaction product with amines (OL8 236367
9), a method of reacting sulfur dichloride with NOF/3HF (see U, S, P4082839), and the like are known.

これらの方法のうち、前記U、S、P2992073号
明細書で代表される方法は、二塩化硫黄と反応させる弗
化ソーダ及び副生物である食塩が固体である為、スラリ
ー状で反応を行なわねばならず、反応操作が行ないにく
く、又弗化ソーダの粒度により四弗化硫黄の収率が大き
く変動する等反応操作面であまり好ましくない欠点を有
する。
Among these methods, in the method typified by the above-mentioned specification U, S, P2992073, the sodium fluoride reacted with sulfur dichloride and the by-product common salt are solid, so the reaction must be carried out in the form of a slurry. However, it has disadvantages in terms of reaction operation, such as difficulty in performing the reaction operation and the yield of sulfur tetrafluoride varying greatly depending on the particle size of the sodium fluoride.

又、0L82363679号公報に代表される方法は、
−50°Cというかなりの低温が要求され、又アミン類
での処理を要し、操作が煩雑であると共にコストも高い
欠点を有する。
In addition, the method typified by 0L82363679 is
It requires a considerably low temperature of -50°C, requires treatment with amines, is complicated in operation, and has the drawbacks of high cost.

又、U、S、P 4082839号明細書で代表される
方法は、NOFが腐食性であり、装置に特殊材質を用い
る必要があり、しかも四弗化硫黄の収率は低く、副生物
として硫黄が析出し、操作が煩雑となる欠点を有する。
In addition, in the method typified by U, S, P 4082839, NOF is corrosive, requires the use of special materials for the equipment, has a low yield of sulfur tetrafluoride, and produces sulfur as a by-product. It has the disadvantage that it precipitates and the operation becomes complicated.

更に、Py(HF)9.2(Py:ピリジン)と二塩化
硫黄を反応せしめ、四弗化硫黄を68%という低い収率
で得た旨の報告がある。
Furthermore, there is a report that sulfur tetrafluoride was obtained in a low yield of 68% by reacting Py(HF)9.2 (Py: pyridine) with sulfur dichloride.

(G、A、 01ahet 、al 、 Inorg、
Chem、 16 、2637(’ 77) 5ho
r tcommunicat ion参照) しかしながら、本発明者等の追試によると、この方法で
は収率が68%どころか四弗化硫黄の生成は認められな
かった。
(G, A, 01ahet, al, Inorg,
Chem, 16, 2637 ('77) 5ho
However, according to additional tests conducted by the present inventors, in this method, the yield was not only 68%, but no production of sulfur tetrafluoride was observed.

即ち、°本発明者等がその後検討を進めた結果によると
、HE/P 3.のモル比を種々採って二塩化硫黄と反
応せしめた処、HF/PV=5〜6を超えると、弗素化
能が著しく低下するか全くなくなる事を見出した。
That is, according to the results of subsequent studies by the present inventors, HE/P 3. When HF/PV was reacted with sulfur dichloride at various molar ratios, it was found that when HF/PV exceeded 5 to 6, the fluorination ability decreased significantly or disappeared completely.

そして、本発明者等は、HF/PM=4以下に限って二
塩化硫黄との反応により、四弗化硫黄を高純度且つ収率
90%以上で容易に得られることを見出し、既に特願昭
54−130833号(特開昭56−54209号)と
して提案した。
The present inventors have discovered that sulfur tetrafluoride can be easily obtained with high purity and a yield of 90% or more by reacting with sulfur dichloride only when HF/PM = 4 or less, and have already filed a patent application. It was proposed as No. 54-130833 (Japanese Unexamined Patent Publication No. 56-54209).

この方法の基本反応は次の通りである。The basic reaction of this method is as follows.

3SC1□+4Py−HF→SF4+52C12,+4
Py−HCl得られた生成物のうち、SF4のみがガス
状であり、他は液状であるので、本質的にSF4の分離
が極めて容易である利点を有している。
3SC1□+4Py-HF→SF4+52C12,+4
Among the products obtained using Py-HCl, only SF4 is in a gaseous state, and the others are in a liquid state, so it essentially has the advantage that separation of SF4 is extremely easy.

処で、ピリジンはそれ自身反応にはあずからず、この方
法を採用して四弗化硫黄を得る限り、ピリジンはPy−
HCIの形で大量に生成してくることになり、特に大規
模な四弗化硫黄の製造にに際しては、ワンパス方式では
ピリジンの消費量が膨大なものになってしまう。
However, pyridine itself does not participate in the reaction, and as long as this method is used to obtain sulfur tetrafluoride, pyridine can be used as Py-
A large amount of pyridine is produced in the form of HCI, and especially when producing sulfur tetrafluoride on a large scale, a one-pass method consumes a huge amount of pyridine.

本発明者等は、この様なピリジンを必要最小限に用いな
がらも、四弗化硫黄の大量生産を可能にし、ピリジンを
有効に循環使用することを目的として種々研究、検討し
た結果、四弗化硫黄の生成に伴って副生ずる52C1□
とPy(HCI)は共に液状であるが、この両者を実質
的完全に分離する手段があるならば、Py(HCI)は
容易に弗酸との反応により、四弗化硫黄の製造原料であ
るPy(HF)に容易に転化出来、この手段として、二
塩化硫黄とPy(HF)との反応を、成る特定の溶媒の
存在下で実施する場合に限り、前記目的を達成し得るこ
とを見出した。
The present inventors have conducted various research and examinations with the aim of enabling mass production of sulfur tetrafluoride and effectively recycling pyridine while using the necessary minimum amount of pyridine. 52C1□ produced as a by-product with the production of sulfur
Both Py(HCI) and Py(HCI) are liquid, but if there is a means to substantially completely separate the two, Py(HCI) can easily be used as a raw material for producing sulfur tetrafluoride by reacting with hydrofluoric acid. It has been found that the above object can be achieved only when the reaction between sulfur dichloride and Py(HF) is carried out in the presence of a specific solvent that can be easily converted to Py(HF). Ta.

かくして本発明は、塩化メチレンとトリクロロトリフル
オロエタンとの混合溶媒の存在下に、二塩化硫黄とPy
(HF)1〜4(PV:ピリジン)とを反応せしめるこ
とを特徴とする四弗化硫黄の製造方法を提供するにある
Thus, the present invention provides sulfur dichloride and Py in the presence of a mixed solvent of methylene chloride and trichlorotrifluoroethane.
(HF) 1 to 4 (PV: pyridine) is reacted with sulfur tetrafluoride.

本発明方法における四弗化硫黄の生成反応は、前記式で
示した通りであり、副生物として52C12とPy(H
CI)が共に液状で生成するが、本発明方法に従う混合
溶媒を用いると、実質的にこれら副生物は下層に溶媒を
含む52C12が、その上層にPy(HCI)が夫々に
分離される。
The reaction for producing sulfur tetrafluoride in the method of the present invention is as shown in the above formula, with 52C12 and Py(H
CI) are both produced in liquid form, but when a mixed solvent according to the method of the present invention is used, these by-products are substantially separated into 52C12 containing the solvent in the lower layer and Py(HCI) in the upper layer.

本発明において、用いられる混合溶媒の混合割合は、塩
化メチレンが20〜80%、トリクロロトリフルオロエ
タンが80〜20モル%を採用するのが適当である。
In the present invention, it is appropriate that the mixing ratio of the mixed solvent used is 20 to 80% by mole of methylene chloride and 80 to 20% by mole of trichlorotrifluoroethane.

上記範囲より塩化メチレンの使用量が少ない場合には、
反応速度が遅く、工業的生産に支障を来たすと共に、一
部固体の生成が見られ、一部装置が詰まる恐れがあり、
逆に上記範囲より塩化メチレンの使用量が多い場合には
副生した52CI2とPy(HCt)とが実質的に分離
しにくくなる恐れがあるので何れも好ましくない。
If the amount of methylene chloride used is less than the above range,
The reaction rate is slow, which hinders industrial production, and some solids are produced, which may clog some equipment.
On the other hand, if the amount of methylene chloride used is greater than the above range, it may become substantially difficult to separate the by-produced 52CI2 and Py(HCt), which is not preferable.

そして、これら範囲のうち、塩化メチレンが30〜70
モル%、トリクロロトリフルオロエタンが70〜30モ
ル%を採用する場合には、操作が円滑に行なえると共に
、Py(HCI)層中に82C12が実質的に混入せず
、後の再生操作が行ない易いので特に好ましい。
Among these ranges, methylene chloride is 30 to 70
When 70 to 30 mol% of trichlorotrifluoroethane is used, the operation can be carried out smoothly, 82C12 is not substantially mixed into the Py(HCI) layer, and the subsequent regeneration operation can be performed easily. This is particularly preferred because it is easy.

又、本発明において、原料となるPy(HF)nはnの
数が1〜4であることが必要である。
Further, in the present invention, it is necessary that the number of n in Py(HF)n serving as a raw material is 1 to 4.

nの数が1より低い場合には弗素源が不十分となり、p
yを多量に用いなくてはならず、逆にnの数が4より大
きい場合には、最早や弗素化剤としての活性を実質的に
示さず、工業的製法には用い得ないので何れも不適当で
ある。
If the number n is lower than 1, the fluorine source is insufficient and p
If a large amount of y must be used, and conversely, the number of n is greater than 4, it will no longer exhibit substantial activity as a fluorinating agent and cannot be used in industrial production methods, so any It's inappropriate.

反応に際し用いられるもう一方の原料である二塩化硫黄
とPy(HF)1〜4の使用割合は、厳密には用いられ
るPV(HF)nのnの数により決定されるが、Py(
HF)i〜4が四弗化硫黄に転化される理論収率に対し
、90%以上とする為には、二塩化硫黄1に対し、Py
(HF) 1〜4の使用割合はPy換算して1〜10を
採用するのが適当である。
The usage ratio of sulfur dichloride, which is the other raw material used in the reaction, and Py(HF) 1 to 4 is strictly determined by the number of n in PV(HF) n used, but Py(
HF) In order to achieve a theoretical yield of 90% or more of converting i~4 to sulfur tetrafluoride, Py to 1 sulfur dichloride must be
(HF) It is appropriate that the usage ratio of 1 to 4 is 1 to 10 in terms of Py.

この場合、nの数が多くなる程上記範囲においてPM(
HF)の使用割合は犬の方向ヘシフトする。
In this case, as the number of n increases, PM(
The proportion of HF) used will shift towards dogs.

又、これら反応原料と混合溶媒の使用割合は、これらの
全量に対し、混合溶媒を10〜200容量%程度用いる
のが適当である。
Further, as for the ratio of the reaction raw materials and the mixed solvent used, it is appropriate to use the mixed solvent in an amount of about 10 to 200% by volume based on the total amount thereof.

使用量が前記範囲を逸脱する場合には、52C12とP
y(E(CI)の分離が困難となったり、溶媒の蒸気が
四弗化硫黄中に混入し易くなり、又不必要に容量が犬と
なるのみなので好ましくない。
If the usage amount deviates from the above range, 52C12 and P
This is not preferable because separation of y(E(CI)) becomes difficult, solvent vapor easily mixes into the sulfur tetrafluoride, and the volume increases unnecessarily.

又、反応時における温度は10〜60°Cを保持せしめ
るのが適当である。
Further, it is appropriate that the temperature during the reaction is maintained at 10 to 60°C.

反応温度が前記範囲に満たない場合には反応速度が不十
分となり、工業的生産に支障をきたし、逆に前記範囲を
超える場合には、原料の分解が起り、その一部がガス化
して生成した四弗化硫黄中に混入する恐れがあるので何
れも好ましくない。
If the reaction temperature is less than the above range, the reaction rate will be insufficient, which will hinder industrial production; on the other hand, if it exceeds the above range, the raw materials will decompose, and some of them will gasify and produce Both are unfavorable because they may be mixed into the sulfur tetrafluoride.

又、反応は通常常圧で実施されるが所望によりゲージ圧
で5気圧程度の加圧下に実施することも可能である。
Further, the reaction is usually carried out at normal pressure, but if desired, it can also be carried out under an increased pressure of about 5 atmospheres (gauge pressure).

実際、本発明方法を実施する具体的な反応装置としては
、例えば適宜な撹拌装置を有する完全混合型の反応装置
が好ましく、その材質はSUSや、内面に弗素樹脂等の
特に耐塩素性の耐食材料を用いるのが好ましい。
In fact, as a specific reactor for carrying out the method of the present invention, a complete mixing type reactor having an appropriate stirring device is preferable, and the material thereof is SUS or a particularly chlorine-resistant and corrosion-resistant material such as fluororesin on the inner surface. Preferably, the material is used.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

SUS製の完全混合型の反応装置を用い、次表に示す如
き溶媒、反応原料を夫々用い、表の様な結果を得た。
A complete mixing type reactor made of SUS was used, and the solvents and reaction materials shown in the following table were used, and the results shown in the table were obtained.

Claims (1)

【特許請求の範囲】 1 塩化メチレンとトリクロロトリフルオロエタンとの
混合溶媒の存在下に、二塩化硫黄とPy(HF)1〜4
(Py:ピリジン)とを反応せしめることを特徴とする
四弗化硫黄の合成法。 2 塩化メチレンとトリクロロトリフルオロエタンとの
混合割合は、前者20〜80モル%に対し、後者80〜
20モル%である特許請求の範囲第1項記載の四弗化硫
黄の合成法。 3 二塩化硫黄とPy(H,p)1〜4の使用割合は、
モル比で前者1に対し、後者をpy換算で1〜10であ
る特許請求の範囲第1項記載の四弗化硫黄の合成法。 4 混合溶媒の使用量は、該溶媒、二塩化硫黄、Py(
HF)1〜4の全使用量に対し、10〜200容量%で
ある特許請求の範囲第1項記載の四弗化硫黄の合成法。
[Claims] 1. Sulfur dichloride and Py(HF) 1 to 4 in the presence of a mixed solvent of methylene chloride and trichlorotrifluoroethane
A method for synthesizing sulfur tetrafluoride, characterized by reacting it with (Py: pyridine). 2 The mixing ratio of methylene chloride and trichlorotrifluoroethane is 20 to 80 mol% for the former, and 80 to 80 mol% for the latter.
A method for synthesizing sulfur tetrafluoride according to claim 1, wherein the content is 20 mol%. 3 The usage ratio of sulfur dichloride and Py(H,p) 1 to 4 is:
The method for synthesizing sulfur tetrafluoride according to claim 1, wherein the molar ratio of the former is 1 to 1 to 10 of the latter in terms of py. 4 The amount of mixed solvent used is the amount of the solvent, sulfur dichloride, Py(
The method for synthesizing sulfur tetrafluoride according to claim 1, wherein the amount is 10 to 200% by volume based on the total amount of HF) 1 to 4 used.
JP16552379A 1979-12-21 1979-12-21 Synthesis method of sulfur tetrafluoride Expired JPS5946886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16552379A JPS5946886B2 (en) 1979-12-21 1979-12-21 Synthesis method of sulfur tetrafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16552379A JPS5946886B2 (en) 1979-12-21 1979-12-21 Synthesis method of sulfur tetrafluoride

Publications (2)

Publication Number Publication Date
JPS5688808A JPS5688808A (en) 1981-07-18
JPS5946886B2 true JPS5946886B2 (en) 1984-11-15

Family

ID=15813999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16552379A Expired JPS5946886B2 (en) 1979-12-21 1979-12-21 Synthesis method of sulfur tetrafluoride

Country Status (1)

Country Link
JP (1) JPS5946886B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268629A (en) * 1985-05-24 1986-11-28 Daido Kogyosho:Kk Method for dissociating antibody from erythrocyte and dissociating solution used for said method

Also Published As

Publication number Publication date
JPS5688808A (en) 1981-07-18

Similar Documents

Publication Publication Date Title
WO2020170980A1 (en) Method for producing halogenated butene
TW201627316A (en) Process for producing methyldichlorophosphane
JP5803098B2 (en) Method for producing phosphorus pentafluoride
US3848064A (en) Production of sulfur tetrafluoride from sulfur chlorides and fluorine
WO2018123301A1 (en) Method for manufacturing sulfur tetrafluoride
KR20070091616A (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
JP3572619B2 (en) Method for producing difluoromethane
JPS5946886B2 (en) Synthesis method of sulfur tetrafluoride
US4372938A (en) Producing sulfur tetrafluoride using amine/hydrogen fluoride complex
JPS5842849B2 (en) Method for producing lower perfluoroalkane
JPS60116637A (en) Preparation of fluoromethane
JPS6127322B2 (en)
EP0450584B1 (en) Bromination method
JPS6222925B2 (en)
JPS6016361B2 (en) Manufacturing method of sulfur tetrafluoride
JPS6016362B2 (en) Method for producing sulfur tetrafluoride
JPS6125647B2 (en)
JPH06145100A (en) Production of 2,6-dichlorobenzoyl chloride
JPS6038324B2 (en) Production method of SF↓5Cl
JPH0625111B2 (en) Method for producing (trifluoromethyl) pyridine
JP2002018286A (en) Method for treating metal fluoride and synthesizing catalyst comprising the same
JPS6357592A (en) Production of tert-butyldimethylchlorosilane
JP3188519B2 (en) Method for producing tert-butyl chloride
JPH03181428A (en) Purifying dichloropentafluoropropane
CN117209535A (en) Synthesis method and application of bis (fluorosulfonyl) imide trialkyl phosphine salt