JPS60163479A - Gas laser oscillation device - Google Patents

Gas laser oscillation device

Info

Publication number
JPS60163479A
JPS60163479A JP1862884A JP1862884A JPS60163479A JP S60163479 A JPS60163479 A JP S60163479A JP 1862884 A JP1862884 A JP 1862884A JP 1862884 A JP1862884 A JP 1862884A JP S60163479 A JPS60163479 A JP S60163479A
Authority
JP
Japan
Prior art keywords
pulse
capacitor
discharge
resistor
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1862884A
Other languages
Japanese (ja)
Inventor
Hitoshi Motomiya
均 本宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1862884A priority Critical patent/JPS60163479A/en
Publication of JPS60163479A publication Critical patent/JPS60163479A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain stable laser beam power even at a pulse width of 0.1ms or less by a method wherein the micro discharge current at the time of pulse OFF is set in a specific range by connecting a capacitor and a resistor series-connected between the discharge electrodes of a discharge tube. CONSTITUTION:When a high withstand voltage vacuum tube 2 turns off, the energy accumulated in the capacitor 7 flows as a micro discharge current IO through a closed circuit made up of the anode side discharge electrode 1a of the discharge tube 1, its cathode side discharge electrode 1b, the resistor 8, and the capacitor 7; the flowing time and the amount of current are dependent on the resistance value R of said resistor 8 and on the capacitance value of said capacitor 7. In this case, alpha=R'+R; (R' represents the discharge electrode resistance value at the time of pulse OFF; R, the resistance value of the resistor; C, the capacitance value of the capacitor; VAC, the discharge electrode potential difference at the time of pulse OFF; and tOFF, the pulse OFF time) then, the resistance value of the resistor 8 and the capacitance value C of the capacitor 7 are determined by formula I .

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ媒質を放電励起し連続パルス発振を行う
ガスレーザ発振装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas laser oscillation device that discharge-excites a laser medium to generate continuous pulse oscillation.

従来例の構成とその問題点 近年、レーザ加工において、連続パルス発振によるレー
ザ出力を用いた加工が主流になってきている。さらに加
工時間を短縮するためにもレーザピークパワーの著しい
レーザパルスパワーが必要とされている。
Conventional configuration and problems thereof In recent years, in laser processing, processing using continuous pulse oscillation laser output has become mainstream. Furthermore, in order to shorten processing time, a laser pulse power with a remarkable laser peak power is required.

以下、図面の第1図、第2図を参照しながら、従来例に
ついて説明を行う。
Hereinafter, a conventional example will be explained with reference to FIGS. 1 and 2 of the drawings.

第1図は従来のガスレーザ発振装置の放電電流制御回路
の一部を示すものである。第1図において、1は放電管
、1aはアノード側放電用電極、1bはカソード側放電
用電極、2は高耐圧真空管、3はトランジスタ、4は電
流制限のための抵抗である。
FIG. 1 shows part of a discharge current control circuit of a conventional gas laser oscillation device. In FIG. 1, 1 is a discharge tube, 1a is an anode discharge electrode, 1b is a cathode discharge electrode, 2 is a high voltage vacuum tube, 3 is a transistor, and 4 is a resistor for current limiting.

また第2図は第1図における回路で連続パルス発振をし
たときの、放電電流工の波形とレーザビームPの波形お
よびトランジスタ3のベース信号Sを示したものである
Further, FIG. 2 shows the waveform of the discharge current, the waveform of the laser beam P, and the base signal S of the transistor 3 when continuous pulse oscillation is performed using the circuit shown in FIG.

以下、動作について説明する。放電管1のアノード側放
電用電極1aとカソード側放電用電極1bの間を流れる
放電電流は、高耐圧真空管2のカソードにかけられたバ
イアス電圧をトランジスタ3のスイッチングで制御する
ことにより制御される。
The operation will be explained below. The discharge current flowing between the anode discharge electrode 1a and the cathode discharge electrode 1b of the discharge tube 1 is controlled by controlling the bias voltage applied to the cathode of the high voltage vacuum tube 2 by switching the transistor 3.

すなわち、前記トランジスタ3のベースにオン。That is, the base of the transistor 3 is turned on.

オフのパルス信号を印加することにより、連続パルス発
振を行うものである。
Continuous pulse oscillation is performed by applying an off pulse signal.

しかしながら、上記のような構成では、パルスのオン、
オフ時間が0.1 m3以下になると、第2図に示すよ
うに放電おくれが影響し、放電電流工の波形およびレー
ザビームパワーPの波形が歪み、良好な連続パルス発振
が不可能となる。
However, in the above configuration, the pulse on,
When the off-time is less than 0.1 m3, discharge lag affects the discharge current as shown in FIG. 2, the waveform of the discharge current and the waveform of the laser beam power P become distorted, and good continuous pulse oscillation becomes impossible.

L7’Cがって、この放電の不安定さが連続パルス発振
時のレーザビームパワーに悪影響を及ぼしていることが
わかった。
It was found that the instability of this discharge adversely affected the laser beam power during continuous pulse oscillation.

そこで、0.1ms以下のパルスでも安定したレーザビ
ームパワーが得られるようなガスレーザ発振装置の開発
が望まれていた。
Therefore, it has been desired to develop a gas laser oscillation device that can obtain stable laser beam power even with pulses of 0.1 ms or less.

発明の目的 本発明は、上記欠点に鑑み、0.1?7ZS以下□のパ
ルス幅ニオイても安定なレーザビームパワーヲ得ること
のできるガスレーザ発振装置を提供することを目的とす
るものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, it is an object of the present invention to provide a gas laser oscillation device that can obtain stable laser beam power even with a pulse width of 0.1 to 7 ZS or less.

媒質を放電励起し連続パルス発振を行うガスレーザ発振
装置において、放電管の放電用電極間に直列接続したコ
ンデンサと抵抗を接続し、パルスOFF 時の微小放電
電流工0が IO”’1vAc ”p(−Crz tOFF)ただし
、 α= R’ + R R′:パルスオフ時の放電用電極間抵抗値R:低抵抗抵
抗値 C:コンデンサの容量値 vAc:パルスオフ時の放電用電極間電位差tOFF:
バルスオフ時閾 を満足するように前記コンデンサの容量値Cと前記抵抗
の抵抗値Rを設定したものである。
In a gas laser oscillator that discharge-excites a medium and generates continuous pulse oscillation, a capacitor and a resistor are connected in series between the discharge electrodes of a discharge tube, and the minute discharge current 0 when the pulse is OFF is IO"'1vAc"p( -Crz tOFF) However, α= R' + R R': Resistance value between electrodes for discharging at pulse-off time R: Low resistance resistance value C: Capacitance value of capacitor vAc: Potential difference between electrodes for discharging at pulse-off time tOFF:
The capacitance value C of the capacitor and the resistance value R of the resistor are set so as to satisfy a pulse-off threshold.

実施例の説明 以下、本発明の一実施例について図面の第3図。Description of examples FIG. 3 is a drawing showing an embodiment of the present invention.

第4図を参照しながら説明する。This will be explained with reference to FIG.

第3図は本発明の一実施例における放電電流制御回路の
一部を示すものである。1,1a、1b。
FIG. 3 shows a part of the discharge current control circuit in one embodiment of the present invention. 1, 1a, 1b.

2.3.4はそれぞれ従来と同様の放電管、アノード側
放電用電極、カソード側放電用電極、高耐圧真空管、ト
ランジスタ、電流制限のだめの抵抗である。
Reference numerals 2, 3 and 4 are a discharge tube, an anode-side discharge electrode, a cathode-side discharge electrode, a high-voltage vacuum tube, a transistor, and a current-limiting resistor, respectively, as in the conventional case.

デンサ、8は抵抗値Hの抵抗であり、コンデンサ7と抵
抗8は直列接続され、放電管1に並列接続されている。
A capacitor 8 is a resistor having a resistance value H, and the capacitor 7 and the resistor 8 are connected in series and connected in parallel to the discharge tube 1.

そして印加電圧をVO,A点における電圧をvP放電用
電極間の抵抗値をR′、放電管1を流れる電流をIとす
る。
The applied voltage is VO, the voltage at point A is vP, the resistance value between the discharge electrodes is R', and the current flowing through the discharge tube 1 is I.

以下、回路動作を説明する。The circuit operation will be explained below.

まずトランジスタ3がオフのとき、コンデンサ7の両端
には高耐圧真空管2によるプレート電圧vPと、印加電
圧Voとの電位差がかかっており、その電位差(vo−
vP)だけ、コンデンサ7に充電されている。
First, when the transistor 3 is off, a potential difference between the plate voltage vP from the high voltage vacuum tube 2 and the applied voltage Vo is applied to both ends of the capacitor 7.
vP), the capacitor 7 is charged.

つぎに、前記トランジスタ3がオンになると、前記高耐
圧真空管2のプレート電圧は、数KV降下し、放電電流
が流れ始める。そのとき、同時に前記コンデンサ7の充
電がさらに進む。そして前記高耐圧真空管2がオフにな
ると、はとんどの放電電流工はカットオフされる。とこ
ろがこのとき放電管1のアノード側放電用電極1aとカ
ソード側放電用電極1bおよび抵抗8およびコンデンサ
7による閉回路中を、前記コンデンサ7に蓄えられたエ
ネルギーが微小放電電流工0として流れる。
Next, when the transistor 3 is turned on, the plate voltage of the high voltage vacuum tube 2 drops by several kilovolts, and a discharge current begins to flow. At that time, charging of the capacitor 7 further progresses at the same time. When the high voltage vacuum tube 2 is turned off, most of the discharge currents are cut off. However, at this time, the energy stored in the capacitor 7 flows as a minute discharge current 0 in a closed circuit formed by the anode discharge electrode 1a, the cathode discharge electrode 1b, the resistor 8, and the capacitor 7 of the discharge tube 1.

このとき、この微小放電電流IOの流れ続けるしたがっ
て、この微小放電電流IQによって、パルスオフ時に、
レーザ媒質をイオン化状態に保つことができるので、つ
ぎのパルス発振が円滑に行われ、かつレーザピークパワ
ーも増大するわけである。
At this time, this minute discharge current IO continues to flow. Therefore, due to this minute discharge current IQ, when the pulse is off,
Since the laser medium can be maintained in an ionized state, the next pulse oscillation is performed smoothly and the laser peak power is also increased.

る。Ru.

第3図より印加電圧■o、パルスオフ時のプレート電圧
vP、微小放電電流工o、パルスオフ時の放電用電極間
抵抗R′とおくと、パルスオン時からオフ時に移行する
とき、次式が成立する。ただし、分圧抵抗5,6の抵抗
値は無視できるほど大きいとする。
From Figure 3, if we set the applied voltage o, the plate voltage vP at pulse-off, the minute discharge current o, and the resistance between the discharge electrodes R' at pulse-off, the following equation holds true when transitioning from pulse-on to pulse-off. . However, it is assumed that the resistance values of the voltage dividing resistors 5 and 6 are negligibly large.

ココテ、α−R′+R8vO−vP=vAc とおくと
(1)式は l0=ivAcexp(−百t)・・・・・・・・・・
・・(2)となる。
By setting α-R'+R8vO-vP=vAc, equation (1) is l0=ivAcexp(-100t)...
...(2) becomes.

したがって、微小放電電流工。はパルスオフ時間をtO
FFとすると、−)式は I () = : VAC@Xp (−c、 t()F
F )・・・・・・・” ”’ (3)となり、この様
子を図に示したものが第4図である。第4図の縦軸は、
微小放電電流IO2横軸はパルスオフ時間”OFFであ
る。
Therefore, micro-discharge current engineering. is the pulse off time tO
FF, the -) formula is I () = : VAC@Xp (-c, t()F
F)...""' (3) This situation is illustrated in Fig. 4. The vertical axis in Figure 4 is
The horizontal axis of the minute discharge current IO2 is the pulse off time "OFF".

(3)式および第4図をみてもわかるように、微小放電
電流工0およびパルスオフ時間tOFFを決めることに
より、コンデンサ7の容量値Cおよび抵抗8の抵抗値R
を決定する。ここで、微小放電電流IOとは、パルスオ
ン時のビークパワーの立上りを充分維持できる大きさで
あり、かつパルスオフ時にレーザパワーを生じさせるほ
ど大きくあってはならないものである。
As can be seen from equation (3) and FIG.
Determine. Here, the minute discharge current IO must be large enough to sufficiently maintain the rise of the peak power when the pulse is on, but not so large as to cause laser power to be generated when the pulse is off.

第6図は、第3図における連続パルス発振時の放電電流
Iの波形およびビームパワーPの波形およびトランジス
タ3のベース信号Sの波形(破線)を示したものである
FIG. 6 shows the waveform of the discharge current I, the waveform of the beam power P, and the waveform of the base signal S of the transistor 3 (broken line) during continuous pulse oscillation in FIG.

第6図と第2図を比較してわかるように、放電電流工の
波形も増大し、かつ歪も少なくなり安定して流れている
。また、ビームパワーPも著しく増大され、ビークパワ
ーの高い強力なパルス出力を得ることが可能になってい
る。
As can be seen by comparing FIG. 6 and FIG. 2, the waveform of the discharge current has increased, the distortion has decreased, and the current is flowing stably. Furthermore, the beam power P has also been significantly increased, making it possible to obtain a powerful pulse output with high beak power.

外お、上記実施例においては、コンデンサ7として蓉量
値Cが固定のものを、また抵抗8として抵抗値が固定の
ものをそれぞれ示したが、これらは各値が可変の可変コ
ンデンサ、可変抵抗であればパルスオフ時間の設定に基
づいて、可変コンデンサ窯の容量値Cおよび可変抵抗棒
、の抵抗値Rを調節すればよい。
In addition, in the above embodiment, the capacitor 7 has a fixed resistance value C, and the resistor 8 has a fixed resistance value, but these are variable capacitors and variable resistors with variable values. If so, the capacitance value C of the variable capacitor kiln and the resistance value R of the variable resistance rod may be adjusted based on the setting of the pulse-off time.

発明の効果 以上のように本発明は、パルス出力の増大と安定性を特
にパルス幅が0.1ffiS以下の領域においても確保
することを可能にし、精度のきわめて高い精密加工や高
速加工に優れた効果を奏するものである。
Effects of the Invention As described above, the present invention makes it possible to increase the pulse output and ensure stability especially in the region where the pulse width is 0.1ffiS or less, and is excellent in precision machining with extremely high precision and high-speed machining. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガスレーザ発振装置の一部回路図、第2
図は同特性図、第3図は本発明の一実施例におけるガス
レーザ発振装置の一部回路図、第4図は微小放電電流の
時間依存特性図、第6図は第2図に対比すべき同特性図
である。 1・・・・・・放電管、1a・・・・・・アノード側放
電用電極、1b・・・・・・カソード側放電用電極、2
・・印・高耐圧真空管、3・・・・・・トランジスタ、
4・・・・・・抵抗、6,6・・・・・・分圧抵抗、7
・・・・・・コンデンサ、8・・・・・・抵抗。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
1%il 第2図 第31g 第4図
Figure 1 is a partial circuit diagram of a conventional gas laser oscillation device;
Figure 3 is a partial circuit diagram of a gas laser oscillation device according to an embodiment of the present invention, Figure 4 is a time-dependent characteristic diagram of minute discharge current, and Figure 6 should be compared with Figure 2. It is the same characteristic diagram. 1...discharge tube, 1a...anode side discharge electrode, 1b...cathode side discharge electrode, 2
・・High-voltage vacuum tube, 3...Transistor,
4... Resistor, 6, 6... Voltage dividing resistor, 7
... Capacitor, 8... Resistor. Name of agent: Patent attorney Toshio Nakao (1st person)
1%il Figure 2 Figure 31g Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1) レーザ媒質を放電励起し連続パルス発振を行う
ガスレーザ発振装置において、放電管の放電用電極間に
直列接続したコンデンサと抵抗を接続し、パルスOFF
時の微小放電電流IOが 1 () = 、 VACeXp (−、、t()FF
)ただし、 α==R’→−R R′:パルスオフ時の放電用電極間抵抗値R:低抵抗抵
抗値 C:コンデンサの容量値 vへ〇:パルスオフ時の放電用電極間電位差tOFF:
バルスオフ時間 を満足するように前記コジデンサの容量値Cと前記抵抗
の抵抗値Rを設定したガスレーザ発振装置〇(2) コ
ンデンサが容量値を可変できる可変コンデンサであり、
また抵抗が抵抗値を可変できる可変抵抗である特許請求
の範囲第(1)項に記載のガスレーザ発振装置。
(1) In a gas laser oscillation device that excites the laser medium by discharge and generates continuous pulse oscillation, a capacitor and a resistor are connected in series between the discharge electrodes of the discharge tube, and the pulse is turned off.
When the minute discharge current IO is 1 () = , VACeXp (-, t()FF
) However, α==R'→-R R': Resistance value between electrodes for discharging when pulse is off R: Low resistance resistance value C: Capacitance value of capacitor v〇: Potential difference between electrodes for discharging when pulse is off tOFF:
A gas laser oscillation device in which the capacitance value C of the cosidenser and the resistance value R of the resistor are set so as to satisfy the pulse-off time 〇(2) The capacitor is a variable capacitor whose capacitance value can be varied,
The gas laser oscillation device according to claim 1, wherein the resistor is a variable resistor whose resistance value can be varied.
JP1862884A 1984-02-03 1984-02-03 Gas laser oscillation device Pending JPS60163479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1862884A JPS60163479A (en) 1984-02-03 1984-02-03 Gas laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1862884A JPS60163479A (en) 1984-02-03 1984-02-03 Gas laser oscillation device

Publications (1)

Publication Number Publication Date
JPS60163479A true JPS60163479A (en) 1985-08-26

Family

ID=11976879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1862884A Pending JPS60163479A (en) 1984-02-03 1984-02-03 Gas laser oscillation device

Country Status (1)

Country Link
JP (1) JPS60163479A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285333A (en) * 1976-01-02 1977-07-15 Coherent Radiation Power source for pulse raser
JPS54140893A (en) * 1978-04-24 1979-11-01 Nec Corp Laser unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285333A (en) * 1976-01-02 1977-07-15 Coherent Radiation Power source for pulse raser
JPS54140893A (en) * 1978-04-24 1979-11-01 Nec Corp Laser unit

Similar Documents

Publication Publication Date Title
US5914974A (en) Method and apparatus for eliminating reflected energy due to stage mismatch in nonlinear magnetic compression modules
US4837773A (en) Discharge excitation type short pulse laser
US3515938A (en) Control circuit for a multiple pulse laser machining device
US5181217A (en) Laser oscillator circuit
CN115085700B (en) Solid-state pulse source output waveform delay control device and method
JPS6350132B2 (en)
JP3815578B2 (en) Excimer laser oscillator
US4797888A (en) Circuit for the preionization and main discharge of a pulsed gas laser
JPH077857B2 (en) Discharge excitation pulse laser device
WO1985003894A1 (en) Power source for electric discharge machining
US20020003820A1 (en) Discharge circuit for pulsed laser and pulsed power source
JPS60163479A (en) Gas laser oscillation device
JPS60163478A (en) Gas laser oscillation device
JPS61122725A (en) Regulated power supply
JPS60163477A (en) Gas laser oscillation device
JPS60123218A (en) Power source for electric discharge machining
JPS60157281A (en) Gas laser oscillation device
JP2996706B2 (en) Pulse laser oscillation device
JPS6235277B2 (en)
JPH0536523A (en) Pulse current supplying apparatus
RU2241278C1 (en) Pulsed electron-beam gas-discharge source (alternatives)
EP0357121B1 (en) High-frequency power oscillator
US3223946A (en) Wide range multivibrator circuit
JPH01112787A (en) Discharge type excimer laser device
Bochkov et al. Research and development of pseudospark switch drivers