JPS60162942A - Spectral fluorophotometer - Google Patents

Spectral fluorophotometer

Info

Publication number
JPS60162942A
JPS60162942A JP1704684A JP1704684A JPS60162942A JP S60162942 A JPS60162942 A JP S60162942A JP 1704684 A JP1704684 A JP 1704684A JP 1704684 A JP1704684 A JP 1704684A JP S60162942 A JPS60162942 A JP S60162942A
Authority
JP
Japan
Prior art keywords
correction
sample
correction function
light source
spectrofluorophotometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1704684A
Other languages
Japanese (ja)
Other versions
JPH0641916B2 (en
Inventor
Taro Nogami
野上 太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1704684A priority Critical patent/JPH0641916B2/en
Publication of JPS60162942A publication Critical patent/JPS60162942A/en
Publication of JPH0641916B2 publication Critical patent/JPH0641916B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry

Abstract

PURPOSE:To enable correction over a wide wavelength region by determining the specific 1st and 2nd correction functions with respect to different wavelength regions and correcting spectral data in the stage of measurement with the correction function in the wide wavelength region determined from at least one thereof. CONSTITUTION:The data from respective plates 4, 5 where a photon meter and tungsten lamp (not shown in a figure) are installed in a sample chamber 3 are read via an A/D converter 9 into a RAM16 in correction of the wavelength characteristics of a fluorescent side optical system consisting of a spectroscope 6 and detector 7 for detecting the fluorescence of the sample (not shown in the figure) in the chamber 3. Storage parts 18, 19 for respective fluorescent side correction functions by photon meter method and lamp method are further provided to the RAM16. The characteristic in a 200-600mm. wavelength region is measured by photon meter method and the correction function thereof is stored in the part 18. The correction function in a 500-800mm. wavelength region by lamp method is stored in the part 19. The entire part of the correction function by lamp method is multiplied by a factor so that the correction functions for 500mm. by both methods coincide with each other.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は分光螢光光度計に係り、特にスペクトルの広波
長域にわたって除去した真のスペクトルを記録すること
のできる分光螢光光度計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a spectrofluorophotometer, and more particularly to a spectrofluorophotometer that is capable of recording a true spectrum removed over a wide wavelength range of the spectrum.

〔発明の背景〕[Background of the invention]

一般に行われている螢光光度計のスペクトル補正は、(
けい光分析−講談社サイエンティフィック(P81〜8
7)に示されているように、励起側装置関数の読み取り
を光量子計(通常の場合、標準試料として高濃度のロー
ダミンB)を用いて行ない、螢光側は、光量子計を用い
て測定励起光量に基づく励起側の装置関数を使用して装
置関数(補正関数)を算出する方法である。またに記文
献に示されたように、出方が既知の標準タングステンラ
ンプを用いて螢光側の装置関数を読み取る(2) 方法もある。螢光側のスペクトル補正に関しては、前者
の方法が2001TInより600皿の波長域に限定さ
れ、後者の方法が330I以上の波長域に限定されるた
め、必要な波長域のすべてについて有効な補正手段が従
来、存在しなかった。
The commonly performed spectral correction of a fluorophotometer is (
Fluorescence analysis - Kodansha Scientific (P81-8
As shown in 7), the device function on the excitation side is read using a photon meter (usually high concentration rhodamine B as a standard sample), and the fluorescence side is measured using a photon meter. This is a method of calculating an apparatus function (correction function) using an excitation-side apparatus function based on the amount of light. As shown in the literature, there is also a method (2) in which the device function on the fluorescent side is read using a standard tungsten lamp whose output is known. Regarding spectral correction on the fluorescent side, the former method is limited to a wavelength range of 600 discs from 2001TIn, and the latter method is limited to a wavelength range of 330I and above, so there is no effective correction means for all necessary wavelength ranges. did not previously exist.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、分光螢光光度計の螢光側において、2
00nit付近より800I1wn付近まででの波長域
において、自由に連続した補正スペクl〜ルを記録でき
る分光螢光光度計を提供するにある。
The object of the present invention is to provide two
It is an object of the present invention to provide a spectrofluorophotometer that can freely record continuous corrected spectra in the wavelength range from around 00 nits to around 800 Ilwns.

〔発明の概要〕[Summary of the invention]

本発明は試料測定に先立ち励起光を標準試料に照射し光
量子計により測定された励起光量に基づいて得られるス
ペクトルの第1の補正関数と出力既知の光源から照射さ
れる光量を螢光側光学系により測定し、該測定値と理論
値との比からめられるスペクトルの第2の補正関数とを
それぞれ異なる波長域についてめ且つ上記二つの補正関
数が連続するようにこれらの補正関数のいずれか一方ま
たは双方を補正演算して広波長域の一つの補(3) 正関数をめると共に、試料測定時に該補正関数データに
基づいてスペクトルデータの補正を行うことを特徴とす
るものである。
In the present invention, prior to sample measurement, excitation light is irradiated onto a standard sample, and the first correction function of the spectrum obtained based on the amount of excitation light measured by a photon meter and the amount of light irradiated from a light source with known output are A second correction function of the spectrum measured by the system and determined from the ratio of the measured value and the theoretical value is set for each different wavelength range, and one of these correction functions is adjusted so that the two correction functions are continuous. Alternatively, the present invention is characterized in that a corrective function (3) in a wide wavelength range is calculated by correcting both of them, and the spectral data is corrected based on the correction function data at the time of sample measurement.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図に本発明の実施例の原理図を示す。光斌子計法に
より、螢光側の装置の波長特性を光量子計法及びタング
ステンランプ法によってめ、それらの逆数である補正関
数曲線を500Iで接続している。手順としては、第1
に光量子計により200I〜600nwnの波長域にお
ける装置の波長特性を測定してその逆数である補正関数
を記憶装置に記憶させる。次にタングステンランプ法に
より500 ntn以」−の波長域における補正関数を
記憶装置に読み込む際に、光量子計法における500圃
の補正係数とタングステンランプ法による500mの補
正値が一致するようにタングステンランプ法の補正値全
体に係数をかけて記憶装置に記憶させる。このようにし
て得られた補正関数により200 +inより800圃
のでの波長域において連続(4) したスペクトル補正が可能となる。
FIG. 1 shows a principle diagram of an embodiment of the present invention. The wavelength characteristics of the device on the fluorescence side are determined by the optical quantum meter method and the tungsten lamp method, and the correction function curves, which are the reciprocals thereof, are connected at 500I. The first step is
The wavelength characteristics of the device in the wavelength range of 200I to 600nwn are measured using a photon meter, and the correction function, which is the reciprocal thereof, is stored in a storage device. Next, when reading the correction function in the wavelength range of 500 ntn or more into the storage device by the tungsten lamp method, the tungsten lamp is The entire correction value of the method is multiplied by a coefficient and stored in a storage device. The correction function thus obtained enables continuous (4) spectral correction in the wavelength range from 200+in to 800in.

第2図は、本発明に係る分光螢光光度計の一実施例の構
成を示しており、同図において光源1を出た光は、励起
側分光器2を経て試料室3に導かれ、試料に照射される
。試料から発する螢光は、螢光側分光器6を経て検知器
7に入る。今対象としているのは、螢光側分光器6と検
知器7よりなる螢光側光学系の波長特性の補正である。
FIG. 2 shows the configuration of an embodiment of the spectrofluorophotometer according to the present invention. In the figure, light emitted from the light source 1 is guided to the sample chamber 3 via the excitation side spectrometer 2. The sample is irradiated. Fluorescence emitted from the sample enters a detector 7 via a fluorescence-side spectrometer 6. What we are currently targeting is the correction of the wavelength characteristics of the fluorescent side optical system consisting of the fluorescent side spectrometer 6 and the detector 7.

試料室3には、光量子計設置場所4があるが、これと別
にタングステンランプ設置場所5が存在する。装置の波
長特性データ及び実際の測定データは、ともに検知器7
よりA/D変換器9、パスライン12を経由してR,A
M16に読み込まれる。
In the sample chamber 3, there is a photon meter installation location 4, but apart from this, there is a tungsten lamp installation location 5. Both the wavelength characteristic data of the device and the actual measurement data are sent to the detector 7.
R, A via A/D converter 9 and pass line 12
Read into M16.

RAM16には励起側補正関数記憶部17、光電子法に
よる螢光側補正関数を記憶する記憶部18、タングステ
ンランプ法による螢光側補正関数を記憶する記憶部19
が独立して設けられている。マイクロプロセッサユニッ
ト(MPU)14はR,0M15に格納されているプロ
グラムに基づいて既述した補正関数をめ、該補正関数デ
ータ(5) をRAM]、6に記憶させると共にRAM l 6に記
憶された補正関数データに基づいて試料の測定データを
補正し、D/A変換器10を介して記録系11に補正さ
れたスペクトルを記録させる。
The RAM 16 includes an excitation side correction function storage section 17, a storage section 18 that stores a fluorescence side correction function based on the photoelectron method, and a storage section 19 that stores a fluorescence side correction function based on the tungsten lamp method.
are set up independently. The microprocessor unit (MPU) 14 calculates the above-mentioned correction function based on the program stored in the R,0M15, and stores the correction function data (5) in the RAM 16. The measurement data of the sample is corrected based on the corrected correction function data, and the corrected spectrum is recorded in the recording system 11 via the D/A converter 10.

第3図は、上記実施例によれ実際に取った補正スペクト
ルの例である。広い波長域にあたった補正スペクトルが
実録されている。このデータは、量子収率算出を目的と
して取られた補正スペクトルであり、スペクトルの裾の
部分まで正しく補正することが必要である。本発明が最
も有効に活用される例の一つである。
FIG. 3 is an example of a corrected spectrum actually obtained according to the above embodiment. Correction spectra covering a wide wavelength range have been recorded. This data is a corrected spectrum taken for the purpose of quantum yield calculation, and it is necessary to correctly correct the tail of the spectrum. This is one of the examples in which the present invention is most effectively utilized.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、 1)300on付近から600I以上までの波長域にわ
たって螢光側補正スペクトルが得られる。
According to the present invention: 1) A fluorescent side correction spectrum can be obtained over a wavelength range from around 300 on to over 600 I.

2)量子収率算出が容易となる。2) Quantum yield calculation becomes easy.

3)標準タングステンランプとして330 +nm付近
まで使用可能な高価なものを使用する必要がなく、50
0 mn+以」二のもので十分であるという効果がある
3) There is no need to use an expensive standard tungsten lamp that can be used up to around 330 + nm;
It has the effect that 0 mn+ or less is sufficient.

(6)(6)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図、第2図は本
発明に係る分光螢光光度計の一実施例の構成図、第3図
は本発明に係る分光螢光光度計により得られた補正スペ
クトルの一例を示す図である。 1・・・光源、2・・・励起側分光器、3・・・試料室
、6・・・螢光側分光器、7・検知器、8・・・機械系
制御回路、9・・・A / I)変換器、10・・D/
A変換暮、14・・・MPU、+5・ROM、16・・
・RA M 。 代理人 弁理士 高橋明夫 (7) 軒四譚叫捉#(七−飾部)
FIG. 1 is a diagram for explaining the present invention in detail, FIG. 2 is a block diagram of an embodiment of the spectrofluorophotometer according to the present invention, and FIG. 3 is a diagram for explaining the spectrofluorophotometer according to the present invention. It is a figure which shows an example of the obtained correction spectrum. DESCRIPTION OF SYMBOLS 1... Light source, 2... Excitation side spectrometer, 3... Sample chamber, 6... Fluorescence side spectrometer, 7... Detector, 8... Mechanical system control circuit, 9... A/I) converter, 10...D/
A conversion fee, 14...MPU, +5・ROM, 16...
・RAM. Agent Patent Attorney Akio Takahashi (7)

Claims (1)

【特許請求の範囲】 ■、光源からの励起光を試料に照射し、試料から発せら
れる螢光を分析する分光螢光光度計において、試料が設
置される試料室内に設けられる光量子計及び出力が既知
の光源と、試料に1q定に先立ち励起光を標準試料に照
射し前記光量子計により測定された励磁光量に基づいて
得られるスペク1ヘルの第1の補正関数と前記出力既知
の光源から照射される光量を螢光側光学系により測定し
、該測定値と理論値との比からめられるスペクトルの第
2の補正関数とをそれぞれ異なる波長域についてめ、上
記二つの補正関数が連続するようにこれらの補正関数の
いずれか一方または双方を補正演算して広波長域の一つ
の補正関数をめる演算装置と、該演算装置によりめられ
た補正関数データを記憶する記憶装置とを有し、演算装
置は試料測定時に記憶装置に格納された補正関数データ
に基づいてスペクトルデータの補正を行うことを特(1
) 徴とする分光螢光光度計。 2、前記出力が既知の光源はタングステンランプである
ことを特徴とする特許請求の範囲第1項に記載の分光螢
光光度計。
[Claims] (1) In a spectrofluorophotometer that irradiates a sample with excitation light from a light source and analyzes fluorescence emitted from the sample, a photon meter and an output are provided in a sample chamber in which the sample is installed. A known light source, a first correction function of spectrum 1H obtained based on the amount of excitation light measured by the photon meter by irradiating the standard sample with excitation light prior to 1q constant on the sample, and irradiation from the light source with the known output. A second correction function of the spectrum calculated from the ratio of the measured value and the theoretical value is determined for each different wavelength range, so that the two correction functions are continuous. It has an arithmetic device that performs a correction operation on one or both of these correction functions to obtain one correction function in a wide wavelength range, and a storage device that stores the correction function data determined by the arithmetic device, In particular, the arithmetic device corrects the spectral data based on the correction function data stored in the storage device at the time of sample measurement (1).
) A spectrofluorophotometer. 2. The spectrofluorophotometer according to claim 1, wherein the light source with a known output is a tungsten lamp.
JP1704684A 1984-02-03 1984-02-03 Spectrofluorometer Expired - Lifetime JPH0641916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1704684A JPH0641916B2 (en) 1984-02-03 1984-02-03 Spectrofluorometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1704684A JPH0641916B2 (en) 1984-02-03 1984-02-03 Spectrofluorometer

Publications (2)

Publication Number Publication Date
JPS60162942A true JPS60162942A (en) 1985-08-24
JPH0641916B2 JPH0641916B2 (en) 1994-06-01

Family

ID=11933047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1704684A Expired - Lifetime JPH0641916B2 (en) 1984-02-03 1984-02-03 Spectrofluorometer

Country Status (1)

Country Link
JP (1) JPH0641916B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026731A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Spectrophotofluorometer and spectrum correction method for the same
JP2015025824A (en) * 2014-11-07 2015-02-05 ソニー株式会社 Microparticle measuring device
US9400251B2 (en) 2011-09-13 2016-07-26 Sony Corporation Fine particle measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026731A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Spectrophotofluorometer and spectrum correction method for the same
US9400251B2 (en) 2011-09-13 2016-07-26 Sony Corporation Fine particle measuring apparatus
USRE49543E1 (en) 2011-09-13 2023-06-06 Sony Corporation Fine particle measuring apparatus
JP2015025824A (en) * 2014-11-07 2015-02-05 ソニー株式会社 Microparticle measuring device

Also Published As

Publication number Publication date
JPH0641916B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JPH0255741B2 (en)
Fryling et al. Intensity calibration and sensitivity comparisons for CCD/Raman spectrometers
US20070046933A1 (en) Method Of Instrument Standardization For A Spectroscopic Device
Strasser et al. Fluorescence emission spectra of photosystem I, photosystem II and the light-harvesting chlorophyll a/b complex of higher plants
JPS58103625A (en) Photometer
EP0760476A3 (en) Method of quantitatively determining one or more characteristics of a substance
EP0226855B1 (en) Absorption analysis method
JPS6337224A (en) Fluorescent spectrophotometer
JPS60162942A (en) Spectral fluorophotometer
US5179580A (en) X-ray analyzer with self-correcting feature
US5155545A (en) Method and apparatus for the spectroscopic concentration measurement of components in a gas mixture
US4266872A (en) Method of measuring the amount of reduction of a dot film, and device for practicing same
JP2003232681A (en) Spectrophotometer
JP3102485B2 (en) Spectrophotometer
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPS6070319A (en) Spectrometer
JP3660472B2 (en) Interferogram correction method
JPH0658871A (en) Atomic absorption/emission analyzer
JP4279983B2 (en) X-ray fluorescence analyzer
CA1136292A (en) Method of measuring the content of a given element in a sample by means of x-ray radiation
JPS62215850A (en) Photometric apparatus for emission spectrum analysis
JPH0377003A (en) Method for measuring coating amount of oil on surface of steel sheet
JP2758612B2 (en) Overheat detector
JP3572734B2 (en) Emission spectroscopy method
JPS60239652A (en) Measurement of spectrum for spectrophotofluorometer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term