JPS60162748A - Carbon fiber/carbon/metal composite material and production thereof - Google Patents

Carbon fiber/carbon/metal composite material and production thereof

Info

Publication number
JPS60162748A
JPS60162748A JP1824184A JP1824184A JPS60162748A JP S60162748 A JPS60162748 A JP S60162748A JP 1824184 A JP1824184 A JP 1824184A JP 1824184 A JP1824184 A JP 1824184A JP S60162748 A JPS60162748 A JP S60162748A
Authority
JP
Japan
Prior art keywords
carbon
composite material
metal
matrix
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1824184A
Other languages
Japanese (ja)
Inventor
Keizo Masuda
升田 恵三
Atsushi Kitamura
厚 北村
Shigeru Kaito
海東 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1824184A priority Critical patent/JPS60162748A/en
Publication of JPS60162748A publication Critical patent/JPS60162748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To produce a carbon fiber/carbon/metal composite material having high ordinary-temp. strength and good heat resistance by casting a molten metal into the open pores of the carbon fiber/carbon composite material consisting of carbon fibers and carbon matrix having the open pores. CONSTITUTION:Carbon fibers such as polycarylonitrile or the like and a carbonizable material such as a phenolic resin or the like are heated and pressurized in dies to form a composite molding. The composite molding is then heated to about 600-3,000 deg.C in inert gaseous flow to carbonize the above-mentioned carbonizable material and to form the carbon matrix having the pores open with each other around the carbon fibers by which the carbon fiber/carbon composite body is obtd. The melt of Al, Mg, Cu, Sn, Zn, Pb, Ni or an alloy consisting essentially of at least one l kind thereof is cast under the pressure exerted thereto into the above-mentioned open pores of such composite body and is solidified. The carbon fiber/carbon/metal composite material is thus easily obtd.

Description

【発明の詳細な説明】 (イ)この発明の技術分野 この発明は、炭素繊維と、炭素と、金属との複合材料に
関する。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a composite material of carbon fiber, carbon, and metal.

(ロ)従来技術とその欠点 炭素繊維と金属との複合材Fl(以下、CF RMとい
う)は、金属のみからなる材料にくらべて比強度や比弾
性率が高いことから、軽但化を必要とするいろいろな分
野で注目されている。しかしながら、かかるCFRMは
、金属の融点近くから著しい弾痕低下が起こり、材料と
しての形態保持さえ困難になる。つまり、CFRMは耐
熱性が低い。
(b) Conventional technology and its drawbacks Carbon fiber and metal composite material Fl (hereinafter referred to as CF RM) has higher specific strength and specific modulus than materials made only of metal, so it is necessary to make it lighter. It is attracting attention in various fields. However, such CFRM suffers from a significant drop in bullet impact near the melting point of the metal, making it difficult to maintain its shape as a material. In other words, CFRM has low heat resistance.

これに対し、炭素繊維と炭素との複合材料(以下、CF
RCという)は、本質的に炭素からなる材料であるため
、CFRMにくらべて耐熱性が高い。また、能動特性も
良好である。そのため、たとえば航空宇宙産業などの分
野で描造祠として注目されている。しかしながら、CF
RCは常温強電がCFRMはど高くない。それは、炭素
繊維の集合体にフェノール樹脂などの炭化可能物質を含
浸し、焼成して炭素マトリクスを形成するというWA3
m方法に問題があり、そのような方法では炭素マトリク
スに多数の空隙ができてしまうからである。つまり、こ
の空隙の生成がCFRCの強度を向上させるうえでの大
きな障害になっている。
On the other hand, composite materials of carbon fiber and carbon (hereinafter referred to as CF
Since RC is a material essentially consisting of carbon, it has higher heat resistance than CFRM. Furthermore, the active characteristics are also good. For this reason, it is attracting attention as a drawing shrine in fields such as the aerospace industry. However, C.F.
RC has high power at room temperature, but CFRM is not expensive. WA3 involves impregnating an aggregate of carbon fibers with a carbonizable substance such as phenolic resin and firing them to form a carbon matrix.
There is a problem with the m method because such a method creates a large number of voids in the carbon matrix. In other words, the generation of voids is a major obstacle to improving the strength of CFRC.

(ハ)この発明の目的 この発明の目的は、従来技術の上記欠点を解決し、常温
弾痕が高く、しかも耐熱性が良好な炭素lAl1111
/炭素/金属複合材料およびその製造方法を提供゛ジー
るにある。
(c) Purpose of the present invention The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide carbon lAl1111 with high bullet holes at room temperature and good heat resistance.
/ Carbon/metal composite material and its manufacturing method.

(ニ)この発明の構成 上記目的を達成するために、この発明においては、炭素
繊維と、炭素と、金属との複合材料からなり、前記炭素
および金属はマトリクスを形成しており、かつ前記炭素
マトリクスは互に連通した孔を有し、前記金属は前記炭
素マトリクスの前記連通孔を埋めていることを特徴とす
る炭素繊維/炭素/金属複合材料が提供される。また、
この発明においては、そのような複合材料を製造する方
法として、炭素11Mの周りに互に連通した孔を有する
炭素マトリクスを形成して炭素繊維/炭素複合I料を得
る工程と、その炭素線IN/炭素複合材料の前記連通孔
に溶融金属を流し込み、凝固させる工程とを含むことを
特徴ど゛す゛る炭素繊維/炭素/金属複合材料の製造方
法が提供される。
(d) Structure of the present invention In order to achieve the above object, the present invention is made of a composite material of carbon fiber, carbon, and metal, the carbon and metal form a matrix, and the carbon A carbon fiber/carbon/metal composite material is provided, wherein the matrix has pores communicating with each other, and the metal fills the communicating pores of the carbon matrix. Also,
In the present invention, as a method for manufacturing such a composite material, a step of forming a carbon matrix having interconnected pores around carbon 11M to obtain a carbon fiber/carbon composite I material, and a step of forming the carbon fiber/carbon composite I material, A method for manufacturing a carbon fiber/carbon/metal composite material is provided, which comprises the steps of: pouring molten metal into the communicating holes of the carbon composite material and solidifying the molten metal.

この発明をさらに詳細に説明するに、この発明の複合材
料は、炭素繊維を、いわゆる補強繊維とし、炭素および
金属をマトリクスとするものである。しかして、上記炭
素マトリクスは、互に連通した孔を有している。つまり
、炭素マトリクスは、形態的にはスポンジないしは連続
気泡樹脂の如きものである。そして、上記金属は、その
ような炭素マトリクスの連通孔に充填されたような形で
その孔を埋めている。したがって、この金属マトリクス
もまた、形態的には炭素マトリクスと同じである。その
ため、この発明の複合材料は、比較的低温においては従
来のCFRMとCFRCの間の強度を示し、マトリクス
を形成している金属の融点近くの温度になると炭素マト
リクスの特性が発現されてCFRCに近い強度を示す。
To explain this invention in more detail, the composite material of this invention uses carbon fibers as so-called reinforcing fibers and carbon and metal as a matrix. Thus, the carbon matrix has pores that communicate with each other. In other words, the carbon matrix is shaped like a sponge or an open-cell resin. The metal fills the communicating pores of the carbon matrix. Therefore, this metal matrix is also morphologically the same as the carbon matrix. Therefore, the composite material of this invention exhibits a strength between that of conventional CFRM and CFRC at relatively low temperatures, and when the temperature approaches the melting point of the metal forming the matrix, it develops the characteristics of a carbon matrix and becomes CFRC. Shows similar strength.

すなわち、am強度が従来のCFRMはと低下せず、良
好な耐熱性を示すのである。
That is, the AM strength does not decrease as much as that of conventional CFRM, and it exhibits good heat resistance.

上記において、炭素繊維は、ポリアクリルニトリル系、
レーヨン系、ピッチ系のいずれであってもよく、また炭
素質であっても黒鉛質であってもよいものである。その
ような炭素繊維の直径は3〜15μ程度である。また、
形態は、長さ0.05〜5II1m1好ましくは0.2
〜31Il程度の短繊維ぐあってもよいし、連続繊維で
あってもよい。織物やフェルト、マットなどのシート形
態に加工されていてもよいものである。しかして、炭素
繊維は、炭素および金属マトリクス中に全くランダム八
方向を向いて存在していてもよく(短繊維やフェルト、
マットの場合)、任意の特定の方向に配列されていても
よい(連続繊維や織物の場合)。
In the above, the carbon fiber is polyacrylonitrile-based,
It may be either rayon-based or pitch-based, and may be carbonaceous or graphite. The diameter of such carbon fibers is on the order of 3 to 15 microns. Also,
The form is length 0.05~5II1m1 preferably 0.2
It may be short fibers of about 31 Il or continuous fibers. It may be processed into a sheet form such as woven fabric, felt, or mat. Therefore, the carbon fibers may be present in the carbon and metal matrix with completely random orientation in eight directions (short fibers, felt, etc.).
(in the case of mats), they may be arranged in any specific direction (in the case of continuous fibers or woven fabrics).

マトリクスを形成している炭素は、いわゆる軟質炭素(
ソフトカーボン)や硬質炭素(ハードカーボン)、熱分
解炭素などである。軟質炭素は、1層を経て炭化する石
油重質油、ピッチ、アントラセンなどの多環−芳香族化
合物や、塩化ビニル樹脂を炭化することによって得られ
るものである。
The carbon that forms the matrix is the so-called soft carbon (
These include soft carbon), hard carbon, and pyrolytic carbon. Soft carbon is obtained by carbonizing polycyclic aromatic compounds such as heavy petroleum oil, pitch, and anthracene, and vinyl chloride resin, which are carbonized through one layer.

また、硬質炭素は、固相のまま炭化するフェノール樹脂
、フラン樹脂、アクリル樹脂などの熱硬化性樹脂を炭化
することによって得られるものである。さらに、熱分解
炭素は、メタン、プロパン、ベンゼン、アセチレンなど
の炭化水素ガスを700〜2000℃の水素ガス気流中
に通ずことによって得られるものである。
Moreover, hard carbon is obtained by carbonizing thermosetting resins such as phenol resins, furan resins, and acrylic resins, which are carbonized in a solid state. Furthermore, pyrolytic carbon is obtained by passing hydrocarbon gas such as methane, propane, benzene, acetylene, etc. into a hydrogen gas stream at 700 to 2000°C.

また、マトリクスを形成している金属は、アルミニウム
、マグネシウム、銅、錫、亜鉛、鉛、ニッケルなど、ま
たはこれらの少なくとも1種を主成分とする、たとえば
アルミニウムーケイ素合金、アルミニウムー銅合金、マ
グネシウム−アルミニウム合金、マグネシウム−亜鉛合
金、銅−錫合金、銅−亜鉛合金などの合金である。
The metal forming the matrix may be aluminum, magnesium, copper, tin, zinc, lead, nickel, etc., or a metal containing at least one of these as a main component, such as an aluminum-silicon alloy, an aluminum-copper alloy, or a magnesium alloy. - Alloys such as aluminum alloy, magnesium-zinc alloy, copper-tin alloy, copper-zinc alloy, etc.

この発明の複合@料は、まずCFRCを作り、そのCF
RCに溶融金属を加圧、含浸し、加圧を解いて、または
加圧状態のまま溶融金属を凝固させることによって製造
することができる。次に、好ましい製造方法を示す。
The composite @ material of this invention first makes CFRC, and then
It can be manufactured by pressurizing and impregnating RC with molten metal, releasing the pressure, or solidifying the molten metal while being pressurized. Next, a preferred manufacturing method will be shown.

すなわち、炭素繊維が短繊維である場合には、その短繊
維と、フェノール樹脂、フラン樹脂、ピッチなどの炭化
可能物質またはその溶液とを混合する。
That is, when the carbon fibers are short fibers, the short fibers are mixed with a carbonizable substance such as phenol resin, furan resin, pitch, or a solution thereof.

次に、上記混合物を所望の複合材料の形状をした金型に
入れ、1〜1000Kg/Cl112、好ましくは20
〜500Kg/cg+2の圧力を加えながら50〜50
0℃に加熱し、その温度に数十分〜数時間保持して短繊
維と炭化可能物質との複合体を得る。
Next, the above mixture is put into a mold in the shape of the desired composite material, and the mixture is poured into a mold with a density of 1 to 1000 Kg/Cl112, preferably 20 Kg/Cl112.
~50~50 while applying pressure of ~500Kg/cg+2
It is heated to 0° C. and maintained at that temperature for several tens of minutes to several hours to obtain a composite of short fibers and carbonizable material.

次に、上記複合体を不活性ガス気流中にて1〜b 爪で600〜3000℃、好ましくは1000〜300
0℃に加熱して上記炭化可能物質を炭化し、CF RC
を得る。
Next, the above composite was heated in an inert gas stream at 600 to 3000°C, preferably 1000 to 300°C with a fingernail.
The carbonizable material is carbonized by heating to 0°C, and CF RC
get.

炭素繊維が連続繊維またはシートの形態である場合には
、それらに上記炭化可能物質またはその溶液を含浸した
後、適当な大きさまたは形状に裁断し、金型内に積層す
る。以下の工程は短繊維の場合と同様である。
When the carbon fibers are in the form of continuous fibers or sheets, they are impregnated with the carbonizable substance or its solution, cut into appropriate sizes or shapes, and laminated in a mold. The following steps are similar to those for short fibers.

次に、上記CFRCを鋳型に入れた後、その鋳型に金属
マトリクスとなる溶融金属を注ぎ込み、10〜2000
KO/am2の圧力を加えてCFRCに含浸する。圧力
を解いて、またはJ、圧力を加えた状態で溶融金属を凝
固させれば、この発明の複合材料が得られる。
Next, after putting the CFRC into a mold, molten metal that will become a metal matrix is poured into the mold.
Impregnate the CFRC by applying a pressure of KO/am2. The composite material of the present invention is obtained by solidifying the molten metal with the release of pressure or with the application of pressure.

この発明の複合材料は、上述したように常温強度が高く
、かつ耐熱性が優れている。また、比強度や比弾性率も
高い。そのため、いろいろな用途に使用層ることができ
る。たとえば、航空機、ロケット、人工衛星の各種部品
などの航空・宇宙用途に好適である。また、自動車や航
空機などのブレーキシューを構成することができる。さ
らに、内燃機関のピストン、ピストンピン、アペックス
シール、コンロッドなどの格成材料として好適である。
As described above, the composite material of the present invention has high strength at room temperature and excellent heat resistance. It also has high specific strength and specific modulus. Therefore, it can be used for various purposes. For example, it is suitable for aerospace applications such as various parts for aircraft, rockets, and artificial satellites. Furthermore, brake shoes for automobiles, aircraft, etc. can be constructed. Furthermore, it is suitable as a material for pistons, piston pins, apex seals, connecting rods, etc. of internal combustion engines.

さらにまた、鉄道車両の集電用すり板、回転電機のブラ
シ、電気機器の接点などを構成することができる。
Furthermore, it can be used to construct current collector sliders for railway vehicles, brushes for rotating electric machines, contacts for electrical equipment, and the like.

(ホ)この発明の効果 この発明の複合材料は、マトリクスが炭素と金属からな
っているからして、比較的低温においては強度が高いと
いうCFRMの特性が主として発現され、また比較的高
温においては耐熱性が高いというCF RCの特性が主
として発現される。そのIこめ、常温強度が高いばかり
か耐熱性が優れている。しかも、そのような複合材料は
、CFRCに溶融金属を流し込み、凝固させることで製
造できるから、CFRCやCFRM用の既存設備を利用
することができ、特別な設備を特に必要としない。
(E) Effects of this invention Since the matrix of the composite material of this invention is made of carbon and metal, it mainly exhibits the characteristics of CFRM, which is high strength at relatively low temperatures, and also exhibits the characteristics of CFRM, which is high strength at relatively low temperatures. The main feature of CF RC is its high heat resistance. Not only does it have high strength at room temperature, but it also has excellent heat resistance. Moreover, such a composite material can be manufactured by pouring molten metal into CFRC and solidifying it, so existing equipment for CFRC and CFRM can be used, and special equipment is not particularly required.

実施例 東し株式会社製炭素m雑゛トレカ” M 40の織物(
目付:約2000/m2 )にフェノール樹脂の30重
量%メタノール溶液を含浸し、室温で乾燥した後、長さ
100mm、幅50+mに裁断した。
Example Carbon m miscellaneous "Trading card" M40 fabric manufactured by Toshi Co., Ltd. (
Fabric weight: approximately 2000/m2) was impregnated with a 30% by weight methanol solution of phenolic resin, dried at room temperature, and then cut to a length of 100 mm and a width of 50+ m.

次に、上記裁断片をそれと同じ大きさのキャビティーを
有する金型の中に織物の経糸方向を揃えて70枚積み重
ね、約150KO/ci2の圧力を加えながら約り00
℃/時の速度で約200℃まぐ昇温し、その温度に約1
時間保持してフェノール樹脂を硬化し、長さ100m1
.幅5Qsw、厚み10.5smの炭素縁[/フェノー
ル樹脂複合体をIC) /:。
Next, 70 pieces of the above-mentioned cut pieces were stacked in a mold having a cavity of the same size with the warp directions of the fabrics aligned, and the cut pieces were stacked together in a mold having a cavity of the same size as the cut pieces.
The temperature increases at a rate of about 200℃ per hour, and the temperature rises by about 1
Hold for a period of time to harden the phenolic resin, length 100m1
.. Carbon rim with width 5Qsw and thickness 10.5sm [/IC phenolic resin composite] /:.

次に、上記複合体を約200℃で約100時間加熱して
フェノール樹脂を十分硬化させた後、窒素ガス気流中に
て約30℃/時の速度で約1500℃まで昇温し、その
温度に約1時間保持してフェノール樹脂を炭化し、炭素
繊維の体積含有率が約70%であるCFRCを得た。
Next, the above composite was heated at about 200°C for about 100 hours to fully cure the phenolic resin, and then the temperature was raised to about 1500°C at a rate of about 30°C/hour in a nitrogen gas stream. The phenol resin was carbonized by holding for about 1 hour to obtain CFRC having a carbon fiber volume content of about 70%.

次に、上記CFRGを鋳型に入れ、その鋳型にアルミニ
ウム/ケイ素合金(ケイ素m:約7重M%)の溶湯(温
度:約750℃)を注ぎ込み、約500K(J/cm2
の圧力を加えてCFRCに含浸し、固化させてこの発明
の複合材料を得た。
Next, the above-mentioned CFRG was placed in a mold, and molten aluminum/silicon alloy (silicon m: approximately 7% by weight) (temperature: approximately 750°C) was poured into the mold at approximately 500K (J/cm2).
The composite material of the present invention was obtained by impregnating CFRC with a pressure of

次に、上記複合材料の表面を研磨し、光学顕微鏡で観察
した。観察結果を第1図に写真(倍率600倍)で示す
。第1図において、やや黒っぽく見えるのは織物の経糸
および緯糸を構成している炭素繊維であり、それよりも
さらに黒っぽく見えるのが炭素マトリクスである。白く
、かつ米沢をもっているのがアルミニウム/ケイ素合金
マトリクスである−0 次に、上記複合材料から織物の経糸方向を長手方向とツ
°ル長さ80IIII111幅5n+n+、厚み2n+
n+の試験ハを切り出し、株式会社島津製作所製万能試
験機l5−2000を用いて3点曲げ曲げ強度を測定し
たところ、約40KO/112であった。また、800
℃までの各温度Tにおける曲げ強度Sを100℃ごとに
測定したが、第2図に実線で示すように高温になっても
極端に大きな低下はなく、良好な耐熱性を示した。
Next, the surface of the composite material was polished and observed with an optical microscope. The observation results are shown in Figure 1 as a photograph (magnification: 600x). In FIG. 1, what looks a little black are the carbon fibers that make up the warp and weft of the fabric, and what looks even darker is the carbon matrix. What is white and has Yonezawa is an aluminum/silicon alloy matrix.
When the n+ test piece was cut out and its three-point bending strength was measured using a universal testing machine 15-2000 manufactured by Shimadzu Corporation, it was approximately 40 KO/112. Also, 800
The bending strength S at each temperature T up to 100°C was measured at every 100°C, and as shown by the solid line in FIG. 2, there was no extremely large decrease even at high temperatures, indicating good heat resistance.

比較例1 実施例で使用したのと同じ炭素m維織物を長さ100m
m、幅50mgmに裁断し、これを織物の経糸方向を揃
えて70枚積層して金型に入れた後、その金型の中に実
施例と同様にアルミニウム/ケイ素合金の溶湯を流し込
み、固化させて、炭素繊維の体積含有率が約70%であ
るCFRMを得た。
Comparative Example 1 The same carbon fiber fabric used in the example was made with a length of 100 m.
70 pieces of fabric were stacked with the warp direction aligned and placed in a mold.The molten aluminum/silicon alloy was poured into the mold in the same manner as in the example and solidified. In this way, a CFRM having a carbon fiber volume content of about 70% was obtained.

このCFRMについて実施例と同様に測定した常温曲げ
強度は、約60Ko/mga2であった。つまり、実施
例のものよりも常温弾痕は高かった。
The room temperature bending strength of this CFRM was measured in the same manner as in the example and was approximately 60 Ko/mga2. In other words, the normal temperature bullet holes were higher than those of the examples.

しかしながら、その曲げ強度は、第2図に点線で示°す
゛ように400℃付近から徐々に低下し始め、500℃
を越えると大きく低下して、約570℃付近でついにこ
の発明のものよりも低くなってしまった。
However, as shown by the dotted line in Figure 2, its bending strength gradually begins to decrease around 400°C, and
When the temperature exceeds 570°C, the temperature decreases significantly, and finally becomes lower than that of the present invention at around 570°C.

比較例2 実施例で得たC F RCを圧力容器に入れ、容器内を
約5111HQに減圧した後フェノール樹脂の30重量
%メタノール溶液を注入し、約100K。
Comparative Example 2 The CF RC obtained in Example was placed in a pressure vessel, the pressure inside the vessel was reduced to approximately 5111 HQ, and then a 30% by weight methanol solution of phenol resin was injected at approximately 100K.

/ci2の圧力を加えて上記CFRCに含浸した。The above CFRC was impregnated with a pressure of /ci2.

次に、CFRCを容器から取り出し、空気中にて約60
℃で約24時間乾燥した後、約200℃で約100時間
加熱してフェノール樹脂を硬化させ、さらに窒素ガス気
流中にて約り0℃/時の速度で約1500℃まで昇温し
、その温度に約1時間保持してフェノール樹脂を炭化し
た。かかる操作を2回繰り返し行い、いわゆる′tfA
密度CFRCを得た。
Next, the CFRC was removed from the container and placed in air for about 60 minutes.
After drying at ℃ for about 24 hours, heating at about 200℃ for about 100 hours to harden the phenol resin, and then heating it in a nitrogen gas stream at a rate of about 0℃/hour to about 1500℃. The temperature was held for approximately 1 hour to carbonize the phenolic resin. This operation is repeated twice and the so-called 'tfA
Density CFRC was obtained.

かかるCFRCについて実施例と同様の試験をしたとこ
ろ、高密度CFRCであるにもかかわらず常温曲げ強度
は約25Kg/a+s2にすぎず、実施例のものにくら
べて、また比較例1のものにくらべでも大変低かった。
When such a CFRC was subjected to the same test as in the example, the bending strength at room temperature was only about 25 kg/a+s2, despite being a high-density CFRC, which was higher than that of the example and comparative example 1. But it was very low.

しかし、その曲げ強度は、第2図に一点鎖線で示すよう
に約800℃までほとんど変わらなかった。
However, the bending strength remained almost unchanged up to about 800° C., as shown by the dashed line in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の複合材料の研磨面における繊維の
形状を示す光学顕微鏡写真(倍率60048 ) 、第
2図は、この発明の一複合材料、CFRMおよびCFR
Cついてそれぞれ測定した、温度T(℃)ど曲げ強度S
 (KO/+ua2 )との関係を示Jグラフである。 特許出願人 東し株式会社 耶1図 第2図 7(τ)
Figure 1 is an optical micrograph (magnification: 60048) showing the shape of fibers on the polished surface of the composite material of the present invention, and Figure 2 is a composite material of the present invention, CFRM and CFR.
Temperature T (°C) and bending strength S measured for C
It is a J graph showing the relationship between (KO/+ua2). Patent applicant: Toshi Co., Ltd. Figure 2 Figure 7 (τ)

Claims (2)

【特許請求の範囲】[Claims] (1) 炭素繊維と、炭素と、金属との複合材料からな
り、前記炭素および金属はマトリクスを形成しており、
かつ前記炭素マトリクスは互に連通した孔を有し、前記
金属は前記炭素マトリクスの前記連通孔を埋めているこ
とを特徴とする炭素繊維/炭素/金属複合材料。
(1) Made of a composite material of carbon fiber, carbon, and metal, the carbon and metal forming a matrix,
A carbon fiber/carbon/metal composite material, wherein the carbon matrix has pores communicating with each other, and the metal fills the communicating pores of the carbon matrix.
(2) 炭素繊維の周りに互に連通した孔を有する炭素
マトリクスを形成して炭素繊M/炭素複合材料を得る工
程と、その炭素IIat11/炭素複合材料の前記連通
孔にWJ191金属を流し込み、凝固させる工程とを含
むことを特徴とする炭素繊M/炭素/金FfhNJ合材
料の製造方法。
(2) forming a carbon matrix having interconnected pores around the carbon fibers to obtain a carbon fiber M/carbon composite material, and pouring WJ191 metal into the communicating holes of the carbon IIat11/carbon composite material; A method for producing a carbon fiber M/carbon/gold FfhNJ composite material, the method comprising a solidifying step.
JP1824184A 1984-02-06 1984-02-06 Carbon fiber/carbon/metal composite material and production thereof Pending JPS60162748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1824184A JPS60162748A (en) 1984-02-06 1984-02-06 Carbon fiber/carbon/metal composite material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1824184A JPS60162748A (en) 1984-02-06 1984-02-06 Carbon fiber/carbon/metal composite material and production thereof

Publications (1)

Publication Number Publication Date
JPS60162748A true JPS60162748A (en) 1985-08-24

Family

ID=11966179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1824184A Pending JPS60162748A (en) 1984-02-06 1984-02-06 Carbon fiber/carbon/metal composite material and production thereof

Country Status (1)

Country Link
JP (1) JPS60162748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621310A1 (en) * 1986-06-13 1989-04-07 Akebono Brake Ind FRICTION MATERIAL COMPRISING A CARBON COMPOSITE REINFORCED WITH CARBON FIBERS, AND OF WHICH THE PORTS OF THE COMPOSITE CONTAIN A METAL
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621310A1 (en) * 1986-06-13 1989-04-07 Akebono Brake Ind FRICTION MATERIAL COMPRISING A CARBON COMPOSITE REINFORCED WITH CARBON FIBERS, AND OF WHICH THE PORTS OF THE COMPOSITE CONTAIN A METAL
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material

Similar Documents

Publication Publication Date Title
US5586152A (en) Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
JP4226100B2 (en) Carbon fiber reinforced composite material and method for producing the same
JP4829465B2 (en) Carbon-substrate complexes and related compositions and methods
Chung Composite materials: functional materials for modern technologies
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
JPH08157273A (en) Unidirectional carbon fiber reinforced carbon composite material and its production
JP2002507956A (en) Carbon composite
US5061414A (en) Method of making carbon-carbon composites
JPH069270A (en) Preparation of carbon/carbon composite material part using mesophase powder
JPS60162748A (en) Carbon fiber/carbon/metal composite material and production thereof
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP2001107203A (en) Composite material and its production method
JP2018052791A (en) Matrix composition for precursor for carbon/carbon composite material and manufacturing method of prepreg using the same
JPS63210065A (en) Carbon-carbon fiber composite material
JP2006002240A (en) High thermal conduction-low thermal expansion composite body and its production method
JPS60191057A (en) Carbon fiber/carbon composite material
JP4053729B2 (en) Composite material and manufacturing method thereof
JP3215701B2 (en) Method for producing high heat load resistant C / C material and first wall material of fusion reactor
JPH0456788B2 (en)
JPH08183674A (en) Production of c/c composite material
Ting Tensile properties of VGCF reinforced carbon composites
JP3969600B2 (en) C / C composite and manufacturing method thereof
Nagao et al. Manufacture of Unidirectional Carbon Fiber Reinforced Carbon Composites by Preformed-Yarn Method
JPS6311570A (en) Manufacture of carbon fiber reinforced carbon material
Wang et al. Advanced Manufacturing of Carbon Fiber Material