JPS60161794A - Post-treatment of distilled water - Google Patents

Post-treatment of distilled water

Info

Publication number
JPS60161794A
JPS60161794A JP1920684A JP1920684A JPS60161794A JP S60161794 A JPS60161794 A JP S60161794A JP 1920684 A JP1920684 A JP 1920684A JP 1920684 A JP1920684 A JP 1920684A JP S60161794 A JPS60161794 A JP S60161794A
Authority
JP
Japan
Prior art keywords
distilled water
seawater
gas
carbon dioxide
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1920684A
Other languages
Japanese (ja)
Inventor
Iwao Sawada
沢田 磐雄
Michio Miura
三浦 三智男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP1920684A priority Critical patent/JPS60161794A/en
Publication of JPS60161794A publication Critical patent/JPS60161794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To contrive to miniaturize equipment and to reduce equipment cost, in a method for treating distilled water obtained by a brine desalting apparatus with a Ca-salt and CO2 obtained by the decarbonation treatment of seawater, by using CO2 in extracted gas by the degassing of partially degassed seawater. CONSTITUTION:Seawater is subjected to the injection of an acid in an apparatus 3 and injected into a partial decarbonation apparatus 4 operated under atmospheric pressure and imperfectly decarbonated. CO2-gas generated herein is discharged to the open air from an exhaust port 10 along with air. Seawater containing removing CO2-gas accumulated to the bottom of the apparatus 4 is guided to a vacuum degasifier 13 to be injected thereinto. Degassed seawater enters an evaporation type brine desalting apparatus 15 and is evaporated under heating while generated steam is condensed to form distilled water which, in turn, enters a limestone bed 17. On the other hand, non-condensible gas such as O2 or N2 containing CO2 extracted by an ejector 18 from the apparatus 13 is subjected to the separation of condensed water and introduced into distilled water in a pipe 16 under pressure through a compressor 20 and absorbed thereby.

Description

【発明の詳細な説明】 本発明は、蒸発法による塩水淡水化装置でliられた蒸
溜水を、水道水に適した水質に転換するための、後処理
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a post-treatment method for converting distilled water produced in a desalination apparatus using an evaporation method into water quality suitable for tap water.

塩水から蒸発法によって得られた蒸溜水は、ミネラル成
分を殆ど含んでいないことから、以後の給水系統の配管
材料を腐食させ、また、飲料水としては味覚に乏しいの
であった。このため、塩水から蒸発法によって製造され
た蒸溜水には、炭酸カルシウムや消石灰と、炭酸ガスと
を添加する方法が採用されている。そして、この場合の
炭酸ガスとしては、石油や燃料ガスを燃焼させて製造し
た炭酸ガスを用いていたが、炭酸ガスの製造に多大の設
備と運転経費とが必要である欠点があった。
Distilled water obtained from salt water by evaporation method contains almost no mineral components, so it corrodes the piping materials of the water supply system and has a poor taste as drinking water. For this reason, a method is adopted in which calcium carbonate, slaked lime, and carbon dioxide gas are added to distilled water produced from salt water by evaporation. In this case, carbon dioxide gas produced by burning petroleum or fuel gas has been used, but it has the disadvantage that a large amount of equipment and operating costs are required to produce carbon dioxide gas.

そこで、先行技術としての特開昭55−35971号公
報は、塩水から蒸発法の淡水化装置によって蒸溜水を製
造するに際して、この蒸発法の淡水化装置における腐食
、スケール生成の防止の目的のために、淡水化装置に供
給する以前の塩水に塩酸又は硫酸等の酸を添加した場合
に炭酸ガスが発生することを利用し、酸を添加した塩水
を淡水化装置に供給する前に、脱炭酸塔に導きここで減
圧下で炭酸ガスを発生させ、これをボイラーからの高圧
蒸気で作動する抽気エゼクタ−で抽気し、凝縮器で先の
高圧蒸気の水分を凝縮除去したのち、前記淡水化装置か
らの蒸溜水に混合することを提案している。
Therefore, Japanese Patent Application Laid-Open No. 55-35971 as a prior art discloses that when producing distilled water from salt water using an evaporation method desalination device, the purpose is to prevent corrosion and scale formation in the evaporation method desalination device. By using the fact that carbon dioxide gas is generated when an acid such as hydrochloric acid or sulfuric acid is added to the salt water before it is supplied to the desalination equipment, decarboxylation is performed before the acid-added salt water is supplied to the desalination equipment. Carbon dioxide gas is generated under reduced pressure in the tower, which is extracted by an extraction ejector operated by high-pressure steam from the boiler, and after condensing and removing moisture from the high-pressure steam in a condenser, the water is removed from the desalination equipment. It is suggested that it be mixed with distilled water from

このようにすれば、炭酸ガスを別の工程で製造しないた
め運転経費がそれだけ安価になり、且つ前記従来法に比
べて設備を小型化できるが、この方法に於いて十分な量
の炭酸ガスを得るには、その明細書に記載しであるよう
に脱炭酸塔内を前記エゼクタ−にて0.2気圧、つまり
−600mmHg程度の高真空にしなければならないか
ら、その抽気エゼクタ−の駆動に要する高圧蒸気の消費
量が多くなることに加えて、この抽気に用いた蒸気の凝
縮に多量の冷却水を必要として、運転経費が嵩むのであ
り、しかも、抽気エゼクタ−が大型になると共に、これ
に対する配管も相当太くしなければならないから、設備
の小型化が十分に達成できず、且つ、脱炭酸塔を密閉型
にしなければならないので、設備費用が嵩む。
In this way, since carbon dioxide gas is not produced in a separate process, operating costs can be reduced accordingly, and the equipment can be made smaller compared to the conventional method, but in this method, a sufficient amount of carbon dioxide gas cannot be As stated in the specification, the inside of the decarboxylation tower must be brought to a high vacuum of 0.2 atm, that is, about -600 mmHg, using the ejector, so the drive of the decarbonation ejector requires In addition to the increased consumption of high-pressure steam, a large amount of cooling water is required to condense the steam used for this extraction, increasing operating costs.Moreover, as the extraction ejector becomes larger, Since the piping must be made quite thick, the equipment cannot be sufficiently miniaturized, and the decarbonation tower must be of a closed type, which increases equipment costs.

一方、海水には炭酸成分が重炭酸イオンなどの形で約9
0ppm (CO2として)程度台まれており、蒸留水
の後処理に必要な炭酸ガスの量は、蒸留水に対して40
ppm程度(供給海水量を蒸留水量の2倍と考えれば上
記90ppn+のうちの20ppm )であるから、海
水中の炭酸ガス全量を使用する必要はない。
On the other hand, seawater contains approximately 9 carbonates in the form of bicarbonate ions.
The amount of carbon dioxide required for post-treatment of distilled water is approximately 0 ppm (as CO2), and the amount of carbon dioxide required for post-treatment of distilled water is 40%
Since it is about ppm (20 ppm of the above 90 ppn+ if the amount of seawater supplied is twice the amount of distilled water), it is not necessary to use the entire amount of carbon dioxide gas in the seawater.

したがって、後工程の脱気装置において当初の含有炭酸
成分の95%まで脱炭酸できるものとすれば、該脱気装
置において蒸留水の後処理に必要な炭酸成分を取り出す
ものとして、脱炭酸塔においては約70%程度の部分脱
炭酸におさえるa・要がある。
Therefore, if the deaerator in the post-process can decarboxylate up to 95% of the carbonic acid components initially contained, then the decarboxylation tower will take out the carbonate components necessary for post-treatment of distilled water in the deaerator. It is necessary to suppress partial decarboxylation to about 70%.

本発明は、この炭酸ガス量に着目してなされたものであ
り、原料塩水にスケール防止、PH調整のため酸を添加
したのちほぼ大気圧下で作動する脱炭酸装置において部
分的な脱炭酸を行わせ、炭酸ガスは一部放出し、一部は
塩水中になお残留させた状態に保ち、次工程の真空脱気
では抽気される不凝縮性ガス中の炭酸ガス分圧を、従来
の完全に脱炭酸したのち真空脱気する場合の抽気ガスに
比べて増大させ、しかも処理ガス量を減じて装置を小形
化し、蒸留水の後処理用の炭酸ガスを頗る有利に利用で
きることを目的としてなされたものであり、以下その実
施例を海水を原水とした場合の実施例装置の図面を参照
して説明する。
The present invention was made with a focus on this amount of carbon dioxide gas, and after adding acid to the raw brine to prevent scale and adjust pH, partial decarboxylation is carried out in a decarboxylation device that operates at approximately atmospheric pressure. The partial pressure of carbon dioxide in the non-condensable gas to be extracted in the next step of vacuum degassing is reduced to the conventional complete This was done with the aim of increasing the amount of extracted gas when decarboxylating the water and then vacuum degassing it, and also reducing the amount of gas to be processed, making the equipment more compact, and making it possible to use carbon dioxide gas for after-treatment of distilled water to an advantage. An example of this will be described below with reference to drawings of an example apparatus in which seawater is used as raw water.

海水は管1からポンプ2を経て導入され、酸注入装置3
より硫酸が注入されたのち脱炭酸装置4へ噴出ノズル5
より噴出される。この脱炭酸装置4はほぼ大気圧下で部
分的に脱炭酸を行うのに適するように構成されており、
例えば図示のように下部よりファン6によって導入され
る大気空気量をダンパー7で制限する。この制限された
大気空気は湾曲した開口部8から器内に入って反転上昇
したのち充填層9を通過し、前記噴出海水は充填層9に
おける大気空気との接触によって脱炭酸が行われるが、
空気量が制限されているから部分的脱炭酸、つまり脱炭
酸が不完全な状態となる。ここで発生した炭酸ガスは空
気と共に放出口10から大気へ排出される。
Seawater is introduced from pipe 1 via pump 2, and acid injection device 3
After more sulfuric acid is injected, it is sent to the decarboxylation device 4 through the jet nozzle 5.
More erupts. This decarboxylation device 4 is configured to be suitable for partially performing decarboxylation under approximately atmospheric pressure,
For example, as shown in the figure, the amount of atmospheric air introduced from the bottom by a fan 6 is limited by a damper 7. This restricted atmospheric air enters the vessel through the curved opening 8, reverses upwards, and then passes through the packed bed 9, and the spouted seawater is decarboxylated by contact with the atmospheric air in the packed bed 9.
Since the amount of air is limited, partial decarboxylation, or incomplete decarboxylation, occurs. The carbon dioxide gas generated here is discharged to the atmosphere from the discharge port 10 together with the air.

海水よりの部分的な脱炭酸は前記人気空気の制限による
方法に限らず、例えば脱炭酸装置4の噴出ノズル5の位
置を下げたり、あるいは液面を上げ、または空気導入用
の開口部8を上げるとか、海水導入管に設けた弁11の
開度を大にし海水量を増大して海水負荷を上げるなど種
々の方法によっても行うことができる。
Partial decarboxylation from seawater is not limited to the above-mentioned method of restricting popular air; for example, it is possible to lower the position of the jet nozzle 5 of the decarbonator 4, raise the liquid level, or open the air introduction opening 8. This can also be done by various methods such as increasing the seawater load by increasing the amount of seawater by increasing the opening degree of the valve 11 provided in the seawater introduction pipe.

部分的脱炭酸装置4の底に溜った炭酸ガスが残留してい
る海水は管12によって真空脱気器13に導かれ器内に
噴出する。脱気水は管14を通り、蒸発式塩水淡水化装
置15に入り加熱蒸発し、凝縮して蒸留水となり管16
によって取出され、石灰石床17に入る。
Seawater containing residual carbon dioxide accumulated at the bottom of the partial decarboxylation device 4 is led to a vacuum deaerator 13 through a pipe 12 and is spouted into the vessel. The degassed water passes through the pipe 14, enters the evaporative salt water desalination device 15, is heated and evaporated, and condenses to become distilled water into the pipe 16.
and enters the limestone bed 17.

一方、真空脱気器13から蒸気エゼクタ18で吸引抽気
された炭酸ガスを含む酸素、窒素等の不凝縮性ガスは蒸
気を同伴して凝縮器19に至り、海水によって冷却され
て凝縮水は分離したのち圧縮機20を経て管16中の蒸
留水に圧入吸収され、これにより管16中の蒸留水はP
 I−Iを下げて前記石灰石床17に入り、重炭酸カル
シウムを生成して蒸留水の風味を増し、配管材料の腐食
を防ぎ、管21より製造水として取出される。
On the other hand, non-condensable gases such as oxygen and nitrogen, including carbon dioxide gas, which are suctioned and extracted from the vacuum deaerator 13 by the steam ejector 18, accompany steam and reach the condenser 19, where they are cooled by seawater and the condensed water is separated. After that, the distilled water in the pipe 16 passes through the compressor 20 and is absorbed under pressure, so that the distilled water in the pipe 16 becomes P.
I-I is lowered into the limestone bed 17 to produce calcium bicarbonate, which enhances the flavor of the distilled water and prevents corrosion of piping materials, and is removed via pipe 21 as manufactured water.

前述の圧縮機20は例えば生成蒸留水を封液とする水封
式圧縮機を使用し、炭酸ガスを攪拌溶解した封液を取出
して管16の蒸留水に混合し、さらに該圧縮機から分離
した炭酸ガスも管16の蒸留水に吸収させれば、この炭
酸ガスΦ利用は効果的になる。
The above-mentioned compressor 20 uses, for example, a water ring type compressor that uses produced distilled water as a sealing liquid, takes out the sealing liquid in which carbon dioxide gas is stirred and dissolved, mixes it with the distilled water in the pipe 16, and then separates it from the compressor. If this carbon dioxide gas is also absorbed into the distilled water in the pipe 16, this carbon dioxide gas Φ can be effectively utilized.

本発明においては酸を注入した塩水をほぼ大気圧で作動
する脱炭酸装置に導入して部分的に脱炭酸を行わせ、一
部の炭酸ガスは放出し、一部の炭酸ガスはなお塩水中に
残留させた状態で減圧下の脱気装置に導入して脱気し、
該脱気装置からの抽気ガス中の炭酸ガスを蒸留水に吸収
させたから、減圧下の脱気装置で油気する炭酸ガス量は
少量となって細い配管で間に合うと共に、その減圧式脱
気装置における蒸気エゼクタ−及び凝縮器等の真空発生
装置も小型となり、且つ運転経費を低減できるのである
。また、酸を用いる海水淡水化プラントにおいては大気
圧脱炭酸および真空脱気を行うことは通例であるため容
易に既設プラントに適用することができ、しかも脱炭酸
装置では脱炭酸を部分的に実施するから、この脱炭酸装
置の小型化を図ることができる一方、部分的な脱炭酸の
制限を空気量で行うときは風量が減って動力は減少ごき
る効果がある。
In the present invention, salt water into which acid has been injected is introduced into a decarboxylation device that operates at approximately atmospheric pressure to partially decarboxylate, and some carbon dioxide gas is released while some carbon dioxide gas is still in the salt water. The remaining residue is introduced into a deaerator under reduced pressure and degassed.
Since the carbon dioxide gas in the extracted gas from the deaerator is absorbed into distilled water, the amount of carbon dioxide gas that evaporates in the deaerator under reduced pressure is small, making it possible to use thin piping, and the deaerator can be easily Vacuum generating devices such as steam ejectors and condensers can also be made smaller and operating costs can be reduced. In addition, since it is customary to perform atmospheric pressure decarboxylation and vacuum deaeration in seawater desalination plants that use acids, it can be easily applied to existing plants, and decarboxylation equipment only partially performs decarboxylation. Therefore, while this decarbonation device can be made smaller, when partial decarbonation is limited by the amount of air, the amount of air is reduced and the power is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例装置におけるフローシートである
。 1・・・・管、3・・・・酸注入装置、4・・・・脱炭
酸装置、13・・・・真空脱気装置、15・・・・蒸発
式塩水淡水化装置、17・・・・石灰石床、18・・・
・蒸気エゼクタ−120・・・・圧縮機。 特許出願人 株式会社笹倉機械製作所
The figure is a flow sheet for an apparatus according to an embodiment of the present invention. 1... Pipe, 3... Acid injection device, 4... Decarboxylation device, 13... Vacuum deaerator, 15... Evaporative salt water desalination device, 17... ...Limestone floor, 18...
・Steam ejector-120...Compressor. Patent applicant: Sasakura Machinery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 蒸発法による塩水淡水化装置で得られた蒸留水にカルシ
ウムを主成分とする塩と炭酸ガスとを溶解させる蒸留水
の後処理方法において、前記蒸留水に熔解する炭酸ガス
として、酸を注入した塩水を、前記塩水淡水化装置に供
給する以前においてほぼ大気圧で作動する脱炭酸装置に
導入してgl+l約分脱炭酸を行ない、しかるのち減圧
下で作動する脱気装置に導入して脱気し、該脱気装置か
らの抽気ガス中の炭酸ガスを利用することを特徴とする
蒸留水の後処理方法。
In a method for post-treatment of distilled water in which salts mainly composed of calcium and carbon dioxide gas are dissolved in distilled water obtained by a salt water desalination apparatus using an evaporation method, acid is injected as carbon dioxide gas to be dissolved in the distilled water. Before supplying the salt water to the desalination equipment, it is introduced into a decarboxylation device that operates at approximately atmospheric pressure to decarboxylate approximately gl+l, and then introduced into a deaeration device that operates under reduced pressure to degas it. A method for post-treatment of distilled water, characterized in that the carbon dioxide gas in the extracted gas from the deaerator is used.
JP1920684A 1984-02-02 1984-02-02 Post-treatment of distilled water Pending JPS60161794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1920684A JPS60161794A (en) 1984-02-02 1984-02-02 Post-treatment of distilled water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1920684A JPS60161794A (en) 1984-02-02 1984-02-02 Post-treatment of distilled water

Publications (1)

Publication Number Publication Date
JPS60161794A true JPS60161794A (en) 1985-08-23

Family

ID=11992891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1920684A Pending JPS60161794A (en) 1984-02-02 1984-02-02 Post-treatment of distilled water

Country Status (1)

Country Link
JP (1) JPS60161794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600855A (en) * 2016-03-08 2016-05-25 山东大学(威海) Sea water desalination system with vacuum chamber formed with chemical reaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600855A (en) * 2016-03-08 2016-05-25 山东大学(威海) Sea water desalination system with vacuum chamber formed with chemical reaction
CN107720865A (en) * 2016-03-08 2018-02-23 山东大学 A kind of seawater desalination system that vacuum chamber is formed using single-pipeline
CN107804887A (en) * 2016-03-08 2018-03-16 山东大学 A kind of method that seawater desalination system forms vacuum chamber
CN107720865B (en) * 2016-03-08 2019-03-08 山东大学 A kind of seawater desalination system forming vacuum chamber using single-pipeline
CN107804887B (en) * 2016-03-08 2019-03-08 山东大学 A kind of method that seawater desalination system forms vacuum chamber

Similar Documents

Publication Publication Date Title
US4434057A (en) Water purification utilizing plural semipermeable membrane stages
RU2078054C1 (en) Method of treating aqueous solutions containing hydrogen sulfide, hydrogen cyanide, and ammonia
JP2012525529A (en) Power plant and water treatment plant with CO2 capture
GB2101578A (en) Alkaline scale abatement
US11607622B2 (en) Low energy ejector desalination system
GB1586250A (en) Process and an installation for the treatment of water
JPS60161794A (en) Post-treatment of distilled water
US4795532A (en) Aftertreatment method and apparatus for distilled water
EP0187432B1 (en) Aftertreatment of distilled water
JPS60161796A (en) Post-treatment of distilled water
KR101992304B1 (en) Recovery apparatus and recovery method of diluted draw solution for saving energy expenditure
JPS60161795A (en) Post-treatment of distilled water
CN107921325B (en) Process for removing dissolved gases from evaporator feed streams
JPS61242690A (en) Method for converting distilled water into drinking water in evaporative seawater desalination apparatus
RU2124930C1 (en) Method of treating natural gas
JP2013536754A (en) Seawater desalination system and method
JPS6025586A (en) Post-treatment of distilled water
JP4021167B2 (en) Equipment for separating and treating volatile organic compounds in wastewater
SU1084530A1 (en) Device for degassing softened water
US3984518A (en) Process feed and effluent treatment systems
JPS60143894A (en) Post-treatment of distilled water
JPS6019093A (en) Post-treatment of distilled water
JPS60244391A (en) Extraction and absorption of carbon dioxide in post-treatment method of distilled water
JP3230547B2 (en) Seawater desalination equipment
US4172116A (en) Process feed and effluent treatment systems