JPS6025586A - Post-treatment of distilled water - Google Patents

Post-treatment of distilled water

Info

Publication number
JPS6025586A
JPS6025586A JP13248083A JP13248083A JPS6025586A JP S6025586 A JPS6025586 A JP S6025586A JP 13248083 A JP13248083 A JP 13248083A JP 13248083 A JP13248083 A JP 13248083A JP S6025586 A JPS6025586 A JP S6025586A
Authority
JP
Japan
Prior art keywords
water
carbon dioxide
distilled water
dioxide gas
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13248083A
Other languages
Japanese (ja)
Other versions
JPS6359756B2 (en
Inventor
Iwao Sawada
沢田 磐雄
Shinji Morita
森田 真二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP13248083A priority Critical patent/JPS6025586A/en
Publication of JPS6025586A publication Critical patent/JPS6025586A/en
Publication of JPS6359756B2 publication Critical patent/JPS6359756B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to reduce the size and the operating cost of a device for converting saline water into fresh water by an evaporation method, by a method wherein gaseous carbon dioxide finally discharged from the terminal end of a vacuum generator provided in the converting device is dissolved in distilled water obtained by the converting device. CONSTITUTION:The gas finally discharged from the terminal end of the vacuum generator 16 contains noncondensable gases such as air and contains gaseous carbon dioxide generated from saline water in each evaporating chamber. The gas is fed through a pipe 17 into a water seal type compressor 18, where it is compressed, and is fed into a separator 19 to be used for water seal of the compressor, whereby it is separated into seal water containing gaseous carbon dioxide and a gas containing gaseous carbon dioxide, which are supplied into a feeding-out pipe 9 for distilled water respectively through pipes 20, 21.

Description

【発明の詳細な説明】 本発明は、蒸発法による塩水淡水化装置で得られた蒸溜
水を、水道水に適した水質に転換するための、後処理方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a post-treatment method for converting distilled water obtained in a desalination apparatus using an evaporation method to a water quality suitable for tap water.

塩水から蒸発法によって得られた蒸溜水は、ミネラル成
分を殆ど含んでいないことがら、以後の給水系統の配管
材料を腐食させ、また、飲料水としては味覚に乏しいの
であった。このため、塩水から蒸発法によって製造され
た蒸溜水には、炭酸カルシウムや消石灰と、炭酸ガスと
を添加する方法が採用されている。そして、この場合の
炭酸ガスとしては、石油や燃料ガスを燃焼させて製造し
た炭酸ガスを用いていたが、炭酸ガスの製造に多大の設
備と運転経費とが必要である欠点があった。
Distilled water obtained from salt water by evaporation contains almost no minerals, corrodes piping materials in the water supply system, and has a poor taste as drinking water. For this reason, a method is adopted in which calcium carbonate, slaked lime, and carbon dioxide gas are added to distilled water produced from salt water by evaporation. In this case, carbon dioxide gas produced by burning petroleum or fuel gas has been used, but it has the disadvantage that a large amount of equipment and operating costs are required to produce carbon dioxide gas.

そこで、先行技術としての特開昭55−35971号公
報は、塩水から蒸発法の淡水化装置によって蒸溜水を製
造するに際して、この蒸発法の淡水化装置における腐食
、スケール生成の防止の目的のために、淡水化装置に供
給する以前の塩水に塩酸又は硫酸等の酸を添加した場合
に炭酸ガスが発生することを利用し、酸を添加した塩水
を淡水化装置に供給する前に、脱炭酸塔に導きここで減
圧下で炭酸ガスを発生させ、これをボイラーからの高圧
蒸気で作動する抽気エゼクタ−で抽気し、凝縮器で先の
高圧蒸気の水分を凝縮除去したのち、前記淡水化装置か
らの蒸溜水に混合することを提案している。
Therefore, Japanese Patent Application Laid-Open No. 55-35971 as a prior art discloses that when producing distilled water from salt water using an evaporation method desalination device, the purpose is to prevent corrosion and scale formation in the evaporation method desalination device. By using the fact that carbon dioxide gas is generated when an acid such as hydrochloric acid or sulfuric acid is added to the salt water before it is supplied to the desalination equipment, decarboxylation is performed before the acid-added salt water is supplied to the desalination equipment. Carbon dioxide gas is generated under reduced pressure in the tower, which is extracted by an extraction ejector operated by high-pressure steam from the boiler, and after condensing and removing moisture from the high-pressure steam in a condenser, the water is removed from the desalination equipment. It is suggested that it be mixed with distilled water from

このようにすれば、炭酸ガスを別の工程で製造しないた
め運転経費がそれだけ安価になり、且つ前記従来法に比
べて設備を小型化できるが、この方法に於いて十分な量
の炭酸ガスを得るには、その明細書に記載しであるよう
に脱炭酸塔内を前記エゼクタ−にて0.2気圧、つまり
−600mmHg程度の高真空にしなければならないか
ら、その抽気エゼクタ−の駆動に要する高圧蒸気の消費
量が多くなることに加えて、この抽気に用6いた蒸気の
凝縮に多量゛の冷却水を必要として、運転経費が嵩むの
であり、しかも、抽気エゼククーが大型になると共に、
これに対する配管も相当太くしなければならないから、
設備の小型化が十分に達成できず、且つ、脱炭酸塔を密
閉型にしなければならないので、設備費用が嵩むのであ
った。
In this way, since carbon dioxide gas is not produced in a separate process, operating costs can be reduced accordingly, and the equipment can be made smaller compared to the conventional method, but in this method, a sufficient amount of carbon dioxide gas cannot be As stated in the specification, the inside of the decarboxylation tower must be brought to a high vacuum of 0.2 atm, that is, about -600 mmHg, using the ejector, so the drive of the decarbonation ejector requires In addition to the increased consumption of high-pressure steam, a large amount of cooling water is required to condense the steam used for this extraction, which increases operating costs.Moreover, as the extraction engine becomes larger,
The piping for this has to be quite thick, so
The equipment cannot be sufficiently miniaturized, and the decarboxylation tower must be of a closed type, which increases equipment costs.

本発明は、蒸発法による塩水淡水化装置におけるスケー
ル生成は重合燐酸塩等のスケール防止剤の使用によって
防止できる一方、塩水には炭酸成分が重炭酸イオy (
IICO3)として約140ppm程度含まれており、
これが蒸発法による塩水淡化に際しての加熱によって、 2 HCO3−g CO;−±H,0十 Coみ↑CO
,−t H工0→ 20H−十Co、ヤのように熱分解
して、炭酸ガス(COa )が発生し、この炭酸ガスが
空気等の他の不凝縮性ガスと共に、蒸発法による塩水淡
水化装置における真空発生装置から大気中に抽気放出さ
れることに鑑み、大気中に放出されているこの炭酸ガス
を、前記淡水化装置で製造した蒸溜水に溶解させるよう
にすることにより、装置の小型化と、運転経費の低減と
を図ったものである。
According to the present invention, scale formation in salt water desalination equipment using the evaporation method can be prevented by using a scale inhibitor such as a polymerized phosphate, while the carbonic acid component in the salt water is bicarbonate sulfur (
Contains about 140 ppm as IICO3),
By heating during salt water desalination by evaporation method, 2 HCO3-g CO;-±H,00 Co↑CO
, -tH0 → 20H-10Co, Carbon dioxide (COa) is generated by thermal decomposition as shown in the figure, and this carbon dioxide, along with other non-condensable gases such as air, is converted into salt water and fresh water by the evaporation method. Considering that the vacuum generator in the desalination equipment releases extracted gas into the atmosphere, by dissolving this carbon dioxide released into the atmosphere into the distilled water produced in the desalination equipment, it is possible to improve the efficiency of the equipment. This is aimed at downsizing and reducing operating costs.

以下本発明を図面について説明するに、本発明における
蒸発法の塩水淡水化装置には、多段フラッユ型塩水淡水
化装置と、多重効用型塩水淡水化装置、蒸気圧縮式塩水
淡水化装置等のすべての塩水淡水化装置を含み、第1図
は従来より良(知られているブライン循環式多段フラッ
シュ型塩水淡水化装置に本発明を適用した場合の実施の
一例を示すフローシートである。
To explain the present invention with reference to the drawings below, the evaporation method brine desalination apparatus of the present invention includes all types of desalination apparatus such as a multi-stage flail type brine desalination apparatus, a multi-effect brine desalination apparatus, a vapor compression type brine desalination apparatus, etc. FIG. 1 is a flow sheet showing an example of the implementation when the present invention is applied to a brine circulation multi-stage flash type desalination apparatus which is better known than the conventional one.

この装置は、ブライン加熱器1、多段の蒸発室2、及び
スケール防止剤注入装置3を有し、前記各蒸廃會2には
、蒸発段4と凝縮器5とを各々備えている。
This apparatus has a brine heater 1, a multistage evaporation chamber 2, and a scale inhibitor injection device 3, and each steaming and waste chamber 2 is equipped with an evaporation stage 4 and a condenser 5, respectively.

原水である塩水は、管6より系に供給され、熱放出部凝
縮器5′を通過した後、一部は排出され、残りの塩水は
スケール防止剤注入装置3によりイスケール防止剤を添
加された後蒸発室に導入される。最終段蒸発室に至った
濃縮塩水(ブライン)は前記塩水と混合された後、各蒸
発室2の凝縮器5の管内を低温段より高温段へと順次流
れ、その蒸発段から発生する蒸気により順次高温に加熱
され、次いで、ブライン加熱器1で、例えばボイラーか
ら管7で送られてくる高温蒸気によりさらに加熱され、
そして、塩水は蒸発室2の高温蒸発段に供給され、以下
フラッシュ蒸発を繰り返し、最終の低温蒸発段よりポン
プ45によって一部は再循環一部は管8を経て系外に排
出される一方、各蒸発段で発生した蒸気は凝縮器5の管
外で凝縮し、蒸溜水となって送出管9からポンプ10に
て炭酸カルシウム溶解装置11を経て系外に送出される
のであり、各蒸発室2内は、低藻の蒸発室に接続した抽
気エゼクタ−12,13と凝縮器14、15とからなる
真空発生装置16にて、不凝縮性ガスを抽気することに
より、低温の蒸発室はど高真空度になるように構成され
ている。なお、多段フラッシュ型塩水淡水装置は貫流式
その他であっても差支えない。
Salt water, which is raw water, is supplied to the system through a pipe 6, and after passing through a heat release condenser 5', a portion is discharged, and the remaining salt water is added with an anti-scaling agent by an anti-scaling agent injection device 3. After that, it is introduced into the evaporation chamber. After the concentrated salt water (brine) that has reached the final stage evaporation chamber is mixed with the above-mentioned salt water, it sequentially flows through the tubes of the condenser 5 of each evaporation chamber 2 from the low temperature stage to the high temperature stage, and is caused by the steam generated from the evaporation stage. It is successively heated to a high temperature, and then further heated in a brine heater 1 by high temperature steam sent, for example, from a boiler through a tube 7,
Then, the salt water is supplied to the high temperature evaporation stage of the evaporation chamber 2, and then flash evaporation is repeated, and from the final low temperature evaporation stage, a part is recirculated by the pump 45 and a part is discharged to the outside of the system via the pipe 8. The steam generated in each evaporation stage is condensed outside the pipe of the condenser 5, becomes distilled water, and is sent out of the system from the delivery pipe 9 by the pump 10 via the calcium carbonate dissolving device 11. 2, a vacuum generator 16 consisting of bleed ejectors 12 and 13 and condensers 14 and 15 connected to the low-temperature evaporation chamber bleeds non-condensable gas, thereby removing the low-temperature evaporation chamber. It is constructed to provide a high degree of vacuum. Note that the multi-stage flash type saltwater freshwater apparatus may be a once-through type or other type.

そして、前記真空発生装置16の末端から最終的に放出
されるガスには、空気等の不凝縮性ガスを含むと共に、
各蒸発室で塩水から発生ずる炭酸ガスを含んでいるから
、これを管17にて水封式圧縮機18に送って圧縮した
のち、セパレータ19に送り、該セパレータ19内で、
前記圧縮機18の水封に用いることで炭酸ガスが溶解し
た水封水と、炭酸ガスを含むガスとに分離し、炭酸ガス
が熔解した水封水及び炭酸ガスを含むガスを管20.2
1を介して、前記蒸溜水の送出管9に供給するのである
The gas finally released from the end of the vacuum generator 16 contains non-condensable gas such as air, and
Since each evaporation chamber contains carbon dioxide gas generated from salt water, it is sent through a pipe 17 to a water-ring compressor 18 and compressed, and then sent to a separator 19, and within the separator 19,
By using the compressor 18 as a water seal, the water seal in which carbon dioxide gas is dissolved is separated into the water seal water in which carbon dioxide gas is dissolved and the gas containing carbon dioxide gas, and the water seal water in which carbon dioxide gas is dissolved and the gas containing carbon dioxide gas are transferred to the pipe 20.2.
1, it is supplied to the distilled water delivery pipe 9.

なお、前記水封式圧縮機18の水封水として、管20.
21からの炭酸ガスを溶解する前の蒸溜水の一部を管2
2及びポンプ23にて導出して、これを用いるようにし
たから、清水の使用量を節減できるのであり、勿論清水
を水封水として管24より切換え供給するようにしても
良い。
In addition, as the water seal of the water ring compressor 18, the pipe 20.
A portion of the distilled water from 21 before dissolving the carbon dioxide gas is transferred to pipe 2.
2 and the pump 23 for use, the amount of fresh water used can be reduced. Of course, the fresh water may also be switched and supplied from the pipe 24 as water seal water.

前記セパレータ19からの水封水と炭酸ガスを含むガス
とを蒸溜水の送出管9に供給するには、セパレータ19
の管20からの水封水を、管21からの炭酸ガスを含む
ガスの供給個所より下流側にするのが好ましい、なぜな
らば、ごれが逆であると、換言すると炭酸ガスが溶解し
ている水封水と混合した蒸溜水に炭酸ガスを溶解させる
と、炭酸ガスの溶解量が、前記水封水に溶解している炭
酸ガスのために低下するからである。(勿論配置等の都
合により注入の順序がやむをえず逆となる場合もありう
るa)また、カルシウムを主成分とする塩を溶解するに
際して、消石灰を用いる場合には、該消石灰を蒸溜水送
出管9に注入すれば良いが、一方炭酸カルシウム溶解装
置11を用いた場合には、前記セパレータ19からの水
封水及び炭酸ガスの供給個所の下流側に炭酸カルシウム
溶解装ff1lを設けることにより、炭酸カルシウムの
熔解量を向上できる利点がある。
In order to supply the sealed water and gas containing carbon dioxide from the separator 19 to the distilled water delivery pipe 9, the separator 19 is
It is preferable to place the seal water from the pipe 20 downstream from the point where the gas containing carbon dioxide is supplied from the pipe 21, because if the dirt is the opposite, in other words, the carbon dioxide gas is dissolved. This is because when carbon dioxide is dissolved in distilled water mixed with water seal water, the amount of dissolved carbon dioxide gas decreases due to the carbon dioxide gas dissolved in the water seal water. (Of course, there may be cases where the injection order is unavoidably reversed due to arrangement etc.a) Also, if slaked lime is used to dissolve salts whose main component is calcium, the slaked lime should be poured into the distilled water delivery pipe. However, when the calcium carbonate dissolving device 11 is used, the calcium carbonate dissolving device ff1l is installed downstream of the water seal and carbon dioxide gas supply point from the separator 19. It has the advantage of increasing the amount of calcium dissolved.

なお、上記実施例は、真空発生装置16が抽気エゼクタ
−12,13と凝縮器14.15より構成された場合で
あるが、本発明における真空発生装置としては、前記実
施例に限らず、第3図に示すように抽気エゼクタ−12
、凝縮器14および真空ポンプ25から構成される場合
、または第4図のように真空発生装置が空気を駆動源と
する抽気エゼクタ−26と、真空ポンプ25との組み合
せからなる場合、あるいは凝縮器と真空ポンプとの組合
わせからなる場合、さらに真空ポンプ25のみで構成さ
れる場合も含むことはいうまでもない。
In the above embodiment, the vacuum generator 16 is composed of the bleed ejectors 12, 13 and condensers 14, 15, but the vacuum generator of the present invention is not limited to the above embodiment. As shown in Figure 3, the bleed air ejector 12
, a condenser 14 and a vacuum pump 25, or as shown in FIG. Needless to say, this includes cases in which the vacuum pump 25 is configured in combination with a vacuum pump and a case in which the vacuum pump 25 is configured only in the vacuum pump 25.

第2図は、従来から良く知られている多重効用型塩水淡
水化装置に適用した場合の実施の一例を示し、塩水は管
28より系に供給され最終コンデンサを通過したのち、
所定量の給水はまずスケール防止剤注入装置3によりス
ケール防止剤を添加された後、蒸発室29の予熱器30
の管内を低温部より、高温部へと順次流れて加熱され、
この加熱された塩水は第一効用蒸発)31の伝熱管32
の外面に散布され、その伝熱管32内に管33より供給
されている加熱蒸気によって蒸発し、未蒸発の塩水は第
二効用蒸発室34の伝熱管35の外面に散布され、以下
順次下段の効用蒸発室に供給され、最終の効用蒸発室3
6から管37より系外に排出される一方、第一効用蒸発
室31で発生した蒸気は第二効用蒸発室34の伝熱管3
5内に供給されて凝縮すると同時にその外面に散布され
た塩水を蒸発させ、以下前記作用を順次各効用蒸発室に
ついて繰り返し、最終効用蒸発室36で発生した蒸気は
凝縮器38で、該凝縮器38内の伝熱管39内を流れる
塩水により冷却されて凝縮し、前記各効用蒸発室におけ
る伝熱管からの凝縮水と一緒になり、目的の蒸溜水とし
て送出管40から炭酸カルシウム溶解装置11を経て系
外に送り出されるのである。
FIG. 2 shows an example of implementation when applied to a conventionally well known multi-effect brine desalination system, in which brine is supplied to the system through pipe 28 and passes through a final condenser.
A predetermined amount of water is first added with an anti-scaling agent by the anti-scaling agent injection device 3, and then is added to the preheater 30 of the evaporation chamber 29.
It flows sequentially through the pipe from the low temperature section to the high temperature section and is heated.
This heated salt water is the first effect evaporator) 31 heat exchanger tube 32
The unevaporated salt water is sprayed on the outer surface of the heat transfer tube 35 of the second effect evaporation chamber 34, and is evaporated by the heated steam supplied from the tube 33 into the heat transfer tube 32. is supplied to the effect evaporation chamber, and the final effect evaporation chamber 3
The steam generated in the first effect evaporation chamber 31 is discharged from the heat exchanger tube 3 of the second effect evaporation chamber 34 to the outside of the system through the pipe 37.
At the same time as the salt water supplied to the final effect evaporation chamber 36 is condensed, the salt water sprayed on the outer surface of the chamber is evaporated. It is cooled and condensed by the salt water flowing through the heat exchanger tubes 39 in the heat exchanger tubes 38, and is combined with the condensed water from the heat exchanger tubes in each of the effect evaporation chambers, and is sent from the delivery tube 40 through the calcium carbonate dissolving device 11 as the target distilled water. It is sent out of the system.

各蒸発室は真空発生装置16にて不凝縮ガスを抽気する
ことにより、低温の蒸発室はど高真空度になるように構
成されている。そして該真空発生装置の末端から最終的
に放出されるガスは水封式圧縮機18に送られて圧縮さ
れた後セパレータ19にて水封水と炭酸ガスを含むガス
とに分離され、これらの水とガスは管20.2】を介し
て前記蒸溜水の送出管40に供給されるのである。
Each evaporation chamber is configured so that a low-temperature evaporation chamber can attain a high degree of vacuum by extracting non-condensable gas using a vacuum generator 16. The gas finally released from the end of the vacuum generator is sent to the water ring compressor 18 and compressed, and then separated by the separator 19 into water ring water and gas containing carbon dioxide. Water and gas are supplied to the distilled water delivery pipe 40 via the pipe 20.2.

ここに用いられる真空発生装置としては、第2図に示す
ものに限らず、多段フラッシュ型塩水淡水化装置の実施
例で説明したと同様に、第3図、第4図などの抽気エゼ
クタ−1凝縮器および真空ポンプの組合せによる各種の
構成の場合をも含むことは言うまでもない。
The vacuum generating device used here is not limited to the one shown in FIG. 2, but also the bleed ejector 1 shown in FIGS. It goes without saying that the present invention also includes various configurations in which a condenser and a vacuum pump are combined.

さて、上記の多段フラッシュ型および多重効用型のいず
れの塩水淡水化装置の実施例においても、炭酸ガスを含
む不凝縮性ガスとしては高温から低温までのそれぞれの
蒸発室で塩水から分離抽出されたものを用いるが高温部
分から取り出されたものについて、第1図、第2図に二
点鎖線にて示すとおり圧力によっては真空発生装置内の
一部またはすべての抽気エゼクタ−を通らず、管42に
よって直接真空発生装置内の凝縮器14及び/又は15
に導入したり、第4図のように別の凝縮器27を介して
取出して利用する場合もある。
Now, in both the multi-stage flash type and multi-effect type brine desalination devices mentioned above, non-condensable gases including carbon dioxide are separated and extracted from the brine in each evaporation chamber from high temperature to low temperature. However, as shown by the two-dot chain line in Figures 1 and 2, when the gas is taken out from the high-temperature part, depending on the pressure, it may not pass through some or all of the bleed ejectors in the vacuum generator and may be removed from the pipe 42. condenser 14 and/or 15 directly in the vacuum generator by
In some cases, it may be introduced into the air or taken out through another condenser 27 as shown in FIG. 4 for use.

また破線にて示すごとく最高温蒸発室に導入される前の
塩水から気水分離器43にて分離抽出された不凝縮性ガ
スを用いる場合も同様であり、これらは設計条件に応じ
て適宜、設計者が定めるところである。
The same applies to the case where non-condensable gas separated and extracted in the steam-water separator 43 from the salt water before being introduced into the highest temperature evaporation chamber is used as shown by the broken line. This is determined by the designer.

この真空発生装置に蒸気駆動の抽気エゼクタ−が用いら
れる場合、その駆動源であるボイラーの蒸気に脱酸剤と
してのヒドラジン(N≧114 )が含まれていて、こ
れが蒸溜水中に前記炭酸ガスの供給と共に混入して人体
に悪影響を及ぼず恐れがある場合には、蒸溜水ラインに
酸化剤注入装置44を設けて塩素またはオゾン等の酸化
剤を注入することにより N2H4+ 2 C10→N2↑+4Hclの反応が行
われ、無害化を達成できる。
When a steam-driven extraction ejector is used in this vacuum generator, the steam from the boiler that is the driving source contains hydrazine (N≧114) as a deoxidizing agent, and this removes the carbon dioxide from the distilled water. If there is a risk that it will be mixed with the supply and have no adverse effect on the human body, install an oxidizing agent injection device 44 in the distilled water line and inject an oxidizing agent such as chlorine or ozone. A reaction takes place and detoxification can be achieved.

以上要するに本発明は、蒸発法による塩水淡水化装置で
得られた蒸溜水に、カルシウムを主成分とする塩と、炭
酸ガスとを溶解させる蒸溜水の後処理方法において、前
記蒸溜水に熔解する炭酸ガスとして、前記蒸発法による
塩水淡水化装置において真空発生装置の末端から最終的
に放出された炭酸ガスを利用することを特徴とする蒸溜
水の後処理方法であって、従来何等利用されずに大気へ
放出されていた炭酸ガスを利用して蒸溜水の味付けと配
管の腐食防止を行うもので経済的に頗る有利である。こ
のように蒸発法による塩水淡水化装置において真空発生
装置によって不凝縮性ガスと共に抽気した炭酸ガスを利
用したことにより、前記したように炭酸ガス発生用の密
閉型脱炭酸塔及び該説炭酸塔内を高真空にするための抽
気エゼクタ−を必要としないから、設備を安価に且つ小
型゛ 化できると共に、炭酸ガスの抽気のための多量の
高圧蒸気が不必要であるから、運転経費を低減できるの
である。また、炭酸ガスは真空発生装置の末端から最終
的に放出されたものを使用するから、炭酸ガスの取出し
に際しては最終ガス放出管の端部に単に管を接続するだ
けで十分であり、塩水淡水化装置の設計を大きく変更す
る必要もなく、また既設の塩水淡水化装置に容易に併設
することができるので、むだがなくかつ経済的にも有利
である。
In summary, the present invention provides a method for post-treatment of distilled water in which a salt containing calcium as a main component and carbon dioxide gas are dissolved in distilled water obtained by a salt water desalination apparatus using an evaporation method. A method for post-treatment of distilled water, which is characterized in that the carbon dioxide gas finally released from the end of the vacuum generator in the desalination equipment using the evaporation method is used as the carbon dioxide gas, which has not been used in the past. It uses carbon dioxide gas, which was previously released into the atmosphere, to flavor distilled water and prevent corrosion of pipes, making it extremely economically advantageous. By using the carbon dioxide gas extracted together with non-condensable gas by the vacuum generator in the desalination equipment using the evaporation method, as mentioned above, a closed decarboxylation tower for generating carbon dioxide gas and a carbonation tower inside the carbonation tower have been developed. Since there is no need for a bleed ejector to create a high vacuum, the equipment can be made cheaper and smaller, and since a large amount of high pressure steam is not required to bleed the carbon dioxide gas, operating costs can be reduced. It is. In addition, since the carbon dioxide gas that is finally released from the end of the vacuum generator is used, it is sufficient to simply connect the pipe to the end of the final gas release pipe when taking out the carbon dioxide gas, and it is sufficient to extract the carbon dioxide gas from salt water and fresh water. There is no need to make any major changes to the design of the desalination device, and it can be easily installed alongside an existing desalination device, so it is efficient and economically advantageous.

また、他の発明は、前記発明に加えて、淡水化装置から
抽気した炭酸ガスを、水封式の圧縮機で圧縮して、その
水封水と共に蒸溜水に供給するもので、水封式の圧縮機
における圧縮時に、炭酸ガスを当該圧縮機における水封
水に十分に熔解させることができる効果がある。
In addition to the above invention, another invention is to compress carbon dioxide gas extracted from a desalination apparatus using a water ring type compressor and supply it to distilled water together with the water ring type water ring type compressor. During compression in the compressor, carbon dioxide gas can be sufficiently dissolved in the water seal in the compressor.

更に他の発明は、蒸溜水に塩素またはオゾン等の酸化剤
を注入したから、ボイラ給水にヒドラジンが使用されて
万一それが真空発生装置を経て蒸溜水に混入してもオゾ
ン等により酸化されて無害化され、大体への悪影響は排
除できると共にボイラへの乳酸剤の使用につき何等の制
限をも必要なく、効率的にボイラーの腐食を防止し寿命
を長くできる効果がある。
Still another invention is that since oxidizing agents such as chlorine or ozone are injected into distilled water, even if hydrazine is used in boiler feed water and is mixed into distilled water through a vacuum generator, it will not be oxidized by ozone, etc. It has the effect of effectively preventing corrosion of the boiler and prolonging its lifespan without requiring any restrictions on the use of lactic acid agents in the boiler.

【図面の簡単な説明】[Brief explanation of drawings]

例を示すフローシートであり、第3図および第4図は他
の形式の真空発生装置を用いた場合を示す要部のフロー
シートである。 1・・・・ブライン加熱器、2・・・・多段の蒸発室、
3・・・・スケール防止剤注入装置、4・・・・蒸発段
、5・・・・凝縮器、6・・・・管、7・・・・管、8
・・・・管、9・・・・送出管、10・・・・ポンプ、
11・・・・炭酸カルシウム溶解装置、12.13・・
・・抽気エゼクタ−114,15・・・・凝縮器、16
・・・・真空発生装置、17・・・・管、18・・・・
水封式圧縮機、19・・・・セパレータ、20.21・
・・・管、22・・・・管、23・・・・ポンプ、24
・・・・管、25・・・・真空ポンプ、26・・・・抽
気エゼクタ−127・・・・凝縮器、28・・・・管、
29・・・・蒸発室、30・・・・予熱器、31・・・
・第1効用蒸発室、32・・・・伝熱管、33・・・・
管、34・・・・第2効用室、35・・・・伝熱管、3
6・・・・最終効用室、37・・・・管、38・・・・
凝縮器、39・・・・伝熱管、40・・・・送出管、4
2・・・・管、43・・・・気水分離器、44・・・・
酸化剤注入装置、45・・・・ポンプ。
This is a flow sheet showing an example, and FIGS. 3 and 4 are flow sheets of essential parts showing a case where another type of vacuum generator is used. 1...Brine heater, 2...Multi-stage evaporation chamber,
3...Scale inhibitor injection device, 4...Evaporation stage, 5...Condenser, 6...Pipe, 7...Pipe, 8
... pipe, 9 ... delivery pipe, 10 ... pump,
11... Calcium carbonate dissolving device, 12.13...
...Bleed air ejector-114, 15...Condenser, 16
...Vacuum generator, 17...Tube, 18...
Water ring compressor, 19...Separator, 20.21.
...Pipe, 22 ...Pipe, 23 ...Pump, 24
... pipe, 25 ... vacuum pump, 26 ... bleed ejector-127 ... condenser, 28 ... pipe,
29... Evaporation chamber, 30... Preheater, 31...
・First effect evaporation chamber, 32... Heat exchanger tube, 33...
Pipe, 34...Second effect chamber, 35...Heat transfer tube, 3
6...final utility chamber, 37...tube, 38...
Condenser, 39... Heat transfer tube, 40... Sending pipe, 4
2...Pipe, 43...Steam water separator, 44...
Oxidizing agent injection device, 45...pump.

Claims (4)

【特許請求の範囲】[Claims] (1)、蒸発法による塩水淡水化装置で得られた蒸溜水
に、カルシウムを主成分とする塩と、炭酸ガスとを溶解
させる蒸溜水の後処理方法において、前記蒸溜水に溶解
する炭酸ガスとして、前記蒸発法による塩水淡水化装置
の真空発生装置の末端から最終的に放出された炭酸ガス
を利用することを特徴とする蒸溜水の後処理方法。
(1) In a method for post-treatment of distilled water, in which salt containing calcium as a main component and carbon dioxide gas are dissolved in distilled water obtained by a salt water desalination apparatus using an evaporation method, the carbon dioxide gas dissolved in the distilled water A method for post-treatment of distilled water, characterized in that the carbon dioxide gas finally released from the end of the vacuum generator of the desalination apparatus using the evaporation method is used.
(2)、蒸発法による塩水淡水化装置で得られた蒸溜水
に、カルシウムを主成分とする塩と、炭酸ガスとを熔解
させる蒸溜水の後処理方法において、前記蒸発法による
塩水淡水化装置において真空発生装置にて抽気した炭酸
ガスを、水封式圧縮機で圧縮し、該圧縮機の水封水と共
に前記多段蒸発法による塩水淡水化装置からの蒸溜水に
供給するようにしたことを特徴とする蒸溜水の後処理方
法。
(2) In a distilled water post-treatment method of dissolving a salt containing calcium as a main component and carbon dioxide gas in the distilled water obtained by the evaporation method, the evaporation method is used in the evaporation method. The carbon dioxide gas extracted by the vacuum generator is compressed by a water ring compressor, and is supplied together with the water ring of the compressor to the distilled water from the desalination equipment using the multistage evaporation method. Distinctive post-treatment method for distilled water.
(3)、水封式の圧縮機の水封水として、前記塩水淡水
化装置からの蒸溜水を使用することを特徴とする特許請
求の範囲第2項記載の蒸溜水の後処理方法。
(3) The method for post-treatment of distilled water according to claim 2, characterized in that distilled water from the desalination apparatus is used as water sealing water for a water ring compressor.
(4)、蒸発法による塩水淡水化装置で得られた蒸溜水
に、カルシウムを主成分とする塩と、炭酸ガスとを溶解
させる蒸溜水の後処理方法において、前記蒸溜水に溶解
する炭酸ガスとして、前記蒸発法による塩水淡水化装置
の真空発生装置の末端から最終的に放出された炭酸ガス
を利用し、且つ蒸溜水に塩素又はオゾン等の酸化剤を注
入することを特徴とする蒸溜水の後処理方法。
(4) A method for post-treatment of distilled water in which a salt containing calcium as a main component and carbon dioxide gas are dissolved in distilled water obtained by a salt water desalination apparatus using an evaporation method, in which carbon dioxide gas is dissolved in the distilled water. Distilled water, characterized in that the carbon dioxide gas finally released from the end of the vacuum generator of the desalination equipment using the evaporation method is used, and an oxidizing agent such as chlorine or ozone is injected into the distilled water. Post-processing method.
JP13248083A 1983-07-20 1983-07-20 Post-treatment of distilled water Granted JPS6025586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13248083A JPS6025586A (en) 1983-07-20 1983-07-20 Post-treatment of distilled water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13248083A JPS6025586A (en) 1983-07-20 1983-07-20 Post-treatment of distilled water

Publications (2)

Publication Number Publication Date
JPS6025586A true JPS6025586A (en) 1985-02-08
JPS6359756B2 JPS6359756B2 (en) 1988-11-21

Family

ID=15082355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13248083A Granted JPS6025586A (en) 1983-07-20 1983-07-20 Post-treatment of distilled water

Country Status (1)

Country Link
JP (1) JPS6025586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673443A (en) * 1985-03-18 1987-06-16 Motorola, Inc. Continuous ionizer for semiconductor manufacturing processes
CN114081122A (en) * 2021-12-03 2022-02-25 金杰食品(漳州)有限公司 Method for removing salt of pickled product made from sugared ginger raw material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673443A (en) * 1985-03-18 1987-06-16 Motorola, Inc. Continuous ionizer for semiconductor manufacturing processes
CN114081122A (en) * 2021-12-03 2022-02-25 金杰食品(漳州)有限公司 Method for removing salt of pickled product made from sugared ginger raw material

Also Published As

Publication number Publication date
JPS6359756B2 (en) 1988-11-21

Similar Documents

Publication Publication Date Title
US7037430B2 (en) System and method for desalination of brackish water from an underground water supply
US5346592A (en) Combined water purification and power of generating plant
EP0933331B1 (en) Evaporative concentration apparatus for waste water
KR100774546B1 (en) Seawater desalinating apparatus using blowdown of heat recovery steam generator
KR101539339B1 (en) Desalination apparatus and method of desalination
JP2012525529A (en) Power plant and water treatment plant with CO2 capture
US11607622B2 (en) Low energy ejector desalination system
US3951752A (en) Method and apparatus for converting saline water to fresh water
US4795532A (en) Aftertreatment method and apparatus for distilled water
EP0187432A1 (en) Aftertreatment of distilled water
CA1162802A (en) Installation for generating superheated process steam from salt-containing raw water
JPS6025586A (en) Post-treatment of distilled water
KR101323160B1 (en) Marine vertical multistage desalinator
US1134269A (en) Refrigerating apparatus.
CN110697814B (en) Ammonia-containing sulfate wastewater treatment system and process
JPS6219238B2 (en)
JPS60168582A (en) Steam compression type water distillation apparatus
KR920002812B1 (en) Treating method of distilled water
SU1638360A1 (en) Power plant for geothermal power station
JPS60161796A (en) Post-treatment of distilled water
JPS60143894A (en) Post-treatment of distilled water
JPS62262791A (en) Method for forming potable water from fresh water formed by evaporation type sea water desalting device
Cadwallader Carbon dioxide—The key to economical desalination
JPS60161795A (en) Post-treatment of distilled water
JPS60161794A (en) Post-treatment of distilled water