JPS60161701A - Gas-liquid contact apparatus - Google Patents

Gas-liquid contact apparatus

Info

Publication number
JPS60161701A
JPS60161701A JP59015132A JP1513284A JPS60161701A JP S60161701 A JPS60161701 A JP S60161701A JP 59015132 A JP59015132 A JP 59015132A JP 1513284 A JP1513284 A JP 1513284A JP S60161701 A JPS60161701 A JP S60161701A
Authority
JP
Japan
Prior art keywords
liquid
perforated plate
gas
receiving box
overflow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59015132A
Other languages
Japanese (ja)
Other versions
JPH055521B2 (en
Inventor
Yukiyoshi Yoshimatsu
吉松 幸祥
Chikao Oda
親生 小田
Michimasa Okabe
岡部 道昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59015132A priority Critical patent/JPS60161701A/en
Publication of JPS60161701A publication Critical patent/JPS60161701A/en
Publication of JPH055521B2 publication Critical patent/JPH055521B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the flowing states of gas and a liquid, in a gas-liquid contact apparatus, by arranging at least two sets, each of which consists of a liquid receiving box and a liquid flooding pipe arranged in adjacent relation, at every shelf stage and flowing a liquid to the same direction on the perforated plate of each shelf stage. CONSTITUTION:A rectifying column is constituted of a cylindrical core metal 2 and a large number of shelf stages arranged in a vertical direction. The liquid 1 flowed down to a liquid receiving box 4a from a liquid flooding pipe 3a is flowed onto a perforated plate 6 and contacted with gas rising through small perforations of the perforated plate 6 from below to form a foam layer and revolved toward an outlet edge 8, while receives the action of gas-liquid contact, to be flowed into a liquid receiving box 4b' from a liquid flooding pipe 3b' and flowed down onto the perforated plate 7 of the next shelf stage 7 to be similarly revolved to a clockwise direction. Further, the liquid 12 flowed down onto a liquid receiving box 4a' through a liquid flooding pipe 3a' is flowed onto the perforated plate 6 and revolved clockwise, while receives the action of gas-liquid contact, to be flowed down to a liquid flooding pipe 3b and flowed onto the perforated plate 7 through the liquid receiving box 4b and receives the action of gas- liquid contact while revolved clockwise.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液受箱、溢流管を有した気液接触装置に係り
、特に多孔板上で気液接触させ、部質交換を行うに好適
な気液接触装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gas-liquid contacting device having a liquid receiving box and an overflow pipe, and particularly to a gas-liquid contacting device having a liquid receiving box and an overflow pipe, and particularly to a gas-liquid contacting device on a perforated plate to exchange parts. The present invention relates to a suitable gas-liquid contact device.

〔発明の背景〕[Background of the invention]

溢流管を有する棚段塔は、圧力損失が少なく、高い精留
効率を有し、かつ、構造が簡単なため精留、蒸留、吸収
等の気液接触操作に幅広く適用されているが、ここでは
精留塔を例にとって説明することにする。溢流管を備え
た棚段を内蔵した精留塔の能力を十分に発揮するには、
操作条件の最適化はもちろん、棚段上−の気液の流動を
最良にする必要がある。すなわち、棚段上での気液の部
分発泡1部分的な液体の滞流等を無曵し、棚段上を気液
が滑らかに流動し、理想的な気液の接触を行わせること
が重要である。
Plate columns with overflow pipes have low pressure loss, high rectification efficiency, and simple structure, so they are widely applied to gas-liquid contact operations such as rectification, distillation, and absorption. Here, we will explain using a rectification column as an example. In order to fully utilize the capacity of a rectification column with built-in trays equipped with overflow pipes,
In addition to optimizing operating conditions, it is necessary to optimize the flow of gas and liquid on the shelves. In other words, partial foaming of gas and liquid on the shelf 1 eliminates partial liquid stagnation, etc., allows the gas and liquid to flow smoothly on the shelf, and achieves ideal gas-liquid contact. is important.

このため、精留塔の設計、運転においては次の2点に最
も注意を払う必要がある。第1はウィービング現象であ
る。この現象は多孔板の小孔より多孔板上の液体が該多
孔板上で気液接触することなく直接真下の多孔板上へ流
下するものであり、多孔板上で十分な気液接触が行なわ
れないため、精留効率が極端に低下し、十分な性能を発
揮できない。直接的な原因は多孔板下方から上昇するガ
ス量の不足であるが、多孔板が備える小孔の孔径および
ピッチ等にも密接な原因がある。第2はフラッディング
現象である。これは多孔板上で気液が接触し、形成され
た泡沫層の高さが棚段と棚段の間隔(段間隔)より大き
くなり、該泡沫層が真上の多孔板に達し、形成された泡
沫層とともに液体が上方の多孔板の小孔を介して逆流す
るものである。フラッディングが起こると精留効率の低
下、あるいは、多孔板上への液体の滞流による圧力損失
の増加を引き起こし、この現象が続けば精留塔の運転不
能となり最悪の状態となる。原因としては、前述したウ
ィービング現象とは逆に多孔板下方からの上昇ガス量が
多すぎるためであるが、その他に前述した段間隔、多孔
板の孔径、ピッチ。
Therefore, the following two points need to be paid the most attention when designing and operating a rectification column. The first is the weaving phenomenon. This phenomenon occurs when the liquid on the perforated plate directly flows down from the small holes of the perforated plate onto the perforated plate directly below without any gas-liquid contact on the perforated plate, and sufficient gas-liquid contact is not made on the perforated plate. As a result, the rectification efficiency is extremely reduced and sufficient performance cannot be achieved. The direct cause is the insufficient amount of gas rising from below the perforated plate, but there is also a closely related cause such as the diameter and pitch of the small holes provided in the perforated plate. The second is the flooding phenomenon. This is because gas and liquid come into contact with each other on the perforated plate, and the height of the foam layer that is formed becomes larger than the interval between the shelves (stage interval), and the foam layer reaches the perforated plate directly above and is formed. The liquid along with the foam layer flows back through the small holes in the upper perforated plate. When flooding occurs, it causes a decrease in rectification efficiency or an increase in pressure loss due to the accumulation of liquid on the perforated plate, and if this phenomenon continues, the rectification column becomes inoperable, resulting in the worst situation. The cause is that the amount of gas rising from below the perforated plate is too large, contrary to the above-mentioned weaving phenomenon, but there are also other factors such as the above-mentioned step spacing, hole diameter, and pitch of the perforated plate.

および棚段の構造等も重要な因子である。The structure of the shelves and the structure of the shelves are also important factors.

気液の処理量が増大するとともに精留塔塔径が大きくな
ると、単に塔径の増大だけの問題に止まらず、多孔板上
の液体の厚さく液深)が太き(なるという問題が生じる
。液深が増加すれば圧力損失の増加、泡沫層高さの増加
が起こる。また、液受箱から溢流管までの長さ、つまり
多孔板上の液体が流れる長さく液パス長さ)の増加にょ
る液深の勾配、あるいは上昇ガス量の偏流等により棚段
上の気液は泡沫層高さの増加、部分発泡あるいは液深の
滞流等を引き起こし、精留塔はフラッディング現象に走
り、不安定となる。
As the throughput of gas and liquid increases and the diameter of the rectification column increases, the problem is not only that of the increase in column diameter, but also that the thickness and depth of the liquid on the perforated plate becomes thicker. As the liquid depth increases, pressure loss increases and the height of the foam layer increases.In addition, the length from the liquid receiving box to the overflow pipe, that is, the length of the liquid flowing on the perforated plate (liquid path length) Due to the gradient of the liquid depth due to the increase in the amount of gas or the uneven flow of the rising gas amount, the gas and liquid on the trays will cause an increase in the height of the foam layer, partial foaming, or stagnation in the liquid depth, and the rectification column will be subject to flooding phenomenon. It runs and becomes unstable.

このフラッディング現象を防止するためには、多孔板上
の液深を小さくし、かつ均一にする。また、棚段と棚段
との段間隔を太き(する。等が考えられるが、前者は棚
段の構造が複雑となり、また後者は精留塔の大形化に起
因し、共に得策とは言えないが、やむを得ず段間隔等の
増大により問題を回避していた。
In order to prevent this flooding phenomenon, the depth of the liquid on the perforated plate is made small and uniform. It is also possible to widen the gap between the trays, but the former would complicate the structure of the trays, and the latter would result in an increase in the size of the rectification column, so both are not advisable. Although it cannot be said, the problem was avoided by unavoidably increasing the stage spacing.

上記したごとく、従来技術では気液の処理量の増大に伴
ないフラッディグ現象が起こり易いという問題があった
As described above, the conventional technology has a problem in that a flooding phenomenon tends to occur as the amount of gas and liquid processed increases.

溢流管を備えた棚段については周知のとおりであり、ま
た棚段上の液体が円弧を描きながら流れる旋回流方式の
棚段には処理量に応じて工方流。
As is well known, shelves equipped with overflow pipes are used, and for shelves with a swirling flow system in which the liquid on the shelves flows in an arc, there is a special method depending on the throughput.

2方流・・・・・・・・・ 多方流があるが、ここでは
2方流の棚段の構造について説明することにする。
Two-way flow: There is a multi-way flow, but here we will explain the structure of the two-way flow tray.

第1図および第2図に旋回流2方流方式の棚段の構造を
示し、従来技術として説明する。第1図は棚段の縦方向
の構造を、第2図は第1図のA −A断面である横方向
の構造を示す。旋回流方式の精留塔は、同筒の外壁lと
円筒の心金2と縦方向に一定間間で数十段組み込まれた
棚段とで構成される。各棚段例えば第1図の2段目の棚
段は、液受箱4b、溢流管3c、多数の小孔5を有する
多孔板7により成っている。溢流管3cと、液受箱4b
は円筒の心金2に対し左右に位置し、多孔板7は溢流管
3c、液受箱4bおよび心金2に対し左右に分割され設
置される。なお、6,9は多孔板であり、上述の多孔板
7と同様のものである。
FIG. 1 and FIG. 2 show the structure of a tray using a two-way swirling flow system, and will be described as a conventional technique. FIG. 1 shows the structure of the shelf in the vertical direction, and FIG. 2 shows the structure in the horizontal direction, which is a cross section taken along line A--A in FIG. The swirling flow type rectification column is composed of a cylindrical outer wall 1, a cylindrical mandrel 2, and several dozen trays installed at regular intervals in the vertical direction. Each shelf, for example the second shelf in FIG. 1, is comprised of a liquid receiving box 4b, an overflow pipe 3c, and a perforated plate 7 having many small holes 5. Overflow pipe 3c and liquid receiving box 4b
are located on the left and right sides of the cylindrical mandrel 2, and the perforated plate 7 is divided into left and right parts and installed with respect to the overflow pipe 3c, the liquid receiving box 4b, and the mandrel 2. Note that 6 and 9 are perforated plates, which are similar to the perforated plate 7 described above.

精留塔上方より溢流管3bを通って流下してきた液体1
1は液受箱4bに流入する。液受箱4bおよび溢流管3
bで多孔板の圧力損失を液シールした後、液体は多孔板
7に流入する。多孔板7上に流入した液体は出口縁8に
向って流れる間に多孔板下方より小孔5を通って上昇す
るガス加と接触し、泡沫層を形成し、気液接触を行う。
Liquid 1 flowing down from the top of the rectification column through the overflow pipe 3b
1 flows into the liquid receiving box 4b. Liquid receiving box 4b and overflow pipe 3
After liquid-sealing the pressure loss of the perforated plate in b, the liquid flows into the perforated plate 7. While flowing toward the outlet edge 8, the liquid flowing onto the porous plate 7 comes into contact with the gas rising from below the porous plate through the small holes 5, forming a foam layer and bringing about gas-liquid contact.

気液接触が終わった液体は、出口縁8を通って溢流管3
cに流入する。多孔板7上の液体の流れは、第2図に示
すように、液受箱4bに流入した液体が左右に分れて多
孔板上に流入し、それぞれ円弧を描きながら溢流管3C
に流入している。次に次段での液体の流れを見ると、次
段では液受箱4cおよび溢流管3dの置位が逆となるた
め、液体の流れ方向も逆となる。すなわち奇数段と偶数
段での液体の流れ方向は逆方向となる。以上説明したと
おり各棚段で気液接触し物質交換を行い、数十段繰り返
すことにより精留を行う。
After the gas-liquid contact, the liquid passes through the outlet edge 8 and flows into the overflow pipe 3.
flows into c. As shown in FIG. 2, the flow of liquid on the perforated plate 7 is such that the liquid that has entered the liquid receiving box 4b is divided into left and right parts and flows onto the perforated plate, each drawing an arc while flowing into the overflow pipe 3C.
is flowing into the country. Next, looking at the flow of liquid in the next stage, the positions of the liquid receiving box 4c and the overflow pipe 3d are reversed in the next stage, so the flow direction of the liquid is also reversed. In other words, the flow directions of the liquid in the odd-numbered stages and the even-numbered stages are opposite. As explained above, gas-liquid contact is carried out on each shelf to exchange substances, and rectification is carried out by repeating several dozen stages.

第3図は、多孔板上の液体の状態を説明する図である。FIG. 3 is a diagram illustrating the state of the liquid on the porous plate.

処理量が増大し、塔径が大き曵なると各棚段の多孔板上
の液深が増大し、同図のように液体の多孔板への入口付
近での液深は、出口付近のそれに比べ大きくなる傾向が
ある。つまり、多孔板上を液体が横切る場合、液体の流
れ抵抗あるいは泡沫層の抵抗等により多孔板上の液深に
差を生ずる。−刀身孔板の圧力損失は乾き圧力損失、液
深による圧力損失および表面張力による圧力損失の総和
で与えられ、同一多孔板においては一定である。つまり
多孔板上の液深の大きい場所での乾き圧力損失は小さ鳴
、液深の小さい場所では逆となる。言い換えれば多孔板
上の液深の大きい場所では、多孔板の小孔を上昇するガ
ス量が小さ々なるため、未発泡(多孔板上に液体があり
、発泡してない状態)となる要因を多分に含んでいる。
As the throughput increases and the column diameter increases, the liquid depth on the perforated plate of each tray increases, and as shown in the figure, the liquid depth near the inlet of the liquid to the perforated plate is smaller than that near the outlet. It tends to get bigger. That is, when a liquid crosses the porous plate, a difference occurs in the depth of the liquid on the porous plate due to the flow resistance of the liquid or the resistance of the foam layer. -The pressure loss of a perforated blade plate is given by the sum of dry pressure loss, pressure loss due to liquid depth, and pressure loss due to surface tension, and is constant for the same perforated plate. In other words, the drying pressure loss will be small at locations on the perforated plate where the liquid depth is large, and the opposite will occur at locations where the liquid depth is small. In other words, in areas where the liquid is deep on the perforated plate, the amount of gas rising through the small holes of the perforated plate is small, which reduces the factor that causes non-foaming (a state where there is liquid on the perforated plate and no foaming occurs). It probably contains a lot.

同図において、多孔板7を上昇するガス加の速度は多孔
板の下流部分にて上流部分より大きくなる。
In the figure, the rate of gas application rising up the perforated plate 7 is greater in the downstream portion of the perforated plate than in the upstream portion.

また多孔板6での液体の流れ方向は多孔板7に対して正
反対であるため、多孔板6と多孔板7での液深の分布は
逆となる。多孔板7を上昇したガスは多孔板6を上昇す
るに関し、多孔板6の液深の小さい下流部分に多く流れ
る傾向を持つ。このため、多孔板7を上昇したガスは多
孔板7の液体の流れ方向とは逆の方向への速度分布を持
つ。この速度分布は多孔板7で形成した泡沫層を溢流管
に流入させるのに大きな抵抗となる。多孔板の上流部分
では未発泡が起こ、り易いことは前述したが、操作条件
等により仮に多孔板7で未発泡部200が発生すれば上
記現象は増々ひど鳴なり、精留塔はフラッディング現象
を起こし運転不能となる場合がある。
Further, since the flow direction of the liquid in the perforated plate 6 is exactly opposite to that in the perforated plate 7, the liquid depth distribution in the perforated plate 6 and the perforated plate 7 is opposite. As the gas ascends through the perforated plate 7, it tends to flow more toward the downstream portion of the perforated plate 6 where the liquid depth is smaller. Therefore, the gas rising through the perforated plate 7 has a velocity distribution in the direction opposite to the flow direction of the liquid in the perforated plate 7. This velocity distribution provides a large resistance to flowing the foam layer formed by the perforated plate 7 into the overflow pipe. As mentioned above, unfoamed areas easily occur in the upstream part of the perforated plate, but if the unfoamed part 200 occurs in the perforated plate 7 due to operating conditions etc., the above phenomenon will become more and more severe, and the rectification column will be flooded. This may cause the vehicle to become inoperable.

上記したとおり、従来技術においては、下方からの上昇
ガスの偏流が泡沫層の流動の障害となり、良好な気液の
流動の維持が難し鳴、やむを得ず段間隔の新人、あるい
は塔径の増大等により問題を回避していた。
As mentioned above, in the conventional technology, the drift of rising gas from below impedes the flow of the foam layer, making it difficult to maintain good gas-liquid flow. I was avoiding the problem.

〔発明の目的〕[Purpose of the invention]

本発明は、前記した従来技術の問題点に鑑み成されたも
ので、目的とするところは多孔板上での気液の流動状態
を良好にした気液接触装置を提供することにある。
The present invention has been made in view of the problems of the prior art described above, and an object thereof is to provide a gas-liquid contacting device that improves the flow state of gas and liquid on a porous plate.

〔発明の概要〕[Summary of the invention]

本発明は、旋回流方式の棚段において、液受箱とその隣
にその先端が下段の多孔板付近まで延びた溢流管とで構
成された組を少なくとも二組設置し、各棚段においては
1対となった液受箱と溢流管とが同方向にずれて設置さ
れることにより、各棚段での多孔板上を流動する液体が
同方向となるようにしたことを特徴とする。
The present invention installs at least two sets of a liquid receiving box and an overflow pipe next to the liquid receiving box whose tip extends to the vicinity of the perforated plate in the lower stage in a swirling flow type shelf, and in each shelf. is characterized in that a pair of liquid receiving boxes and overflow pipes are installed offset in the same direction, so that the liquid flows on the perforated plates of each shelf in the same direction. do.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明における気液接触装置の実施例を第4図、
第5図および第6図によって説明する。
Examples of the gas-liquid contact device according to the present invention are shown in FIG.
This will be explained with reference to FIGS. 5 and 6.

第4図は精留塔の縦断面であり、第5図は第4図のB−
B断面図、第6図は本発明の構造を立体的に表わしたも
のである。本実施例についても旋回流2方流方式を例に
とって説明する。
Figure 4 is a vertical cross section of the rectification column, and Figure 5 is B-B in Figure 4.
The B sectional view and FIG. 6 are three-dimensional representations of the structure of the present invention. This embodiment will also be explained by taking the swirling flow two-way flow system as an example.

精留塔は、円筒の外壁lと円筒の心金2に棚段な縦方向
に数十段組み込んで構成される。介棚段は、多孔板と、
対になった液受箱と溢流管を二組備えている。すなわち
、−組の対は液受箱4a’と隣に設けられたその先端が
次棚段の多孔板付近まで延びた溢流管3b’であり、ま
た他の対は液受箱4aと隣に設けられた前記同様の溢流
管3bである。これらの間には多数の小孔を有する多孔
板7が設けられる。
The rectification column is constructed by incorporating several dozen vertical stages into a cylindrical outer wall 1 and a cylindrical mandrel 2. The intermediate shelf is made of perforated plate,
It is equipped with two pairs of liquid receiving boxes and overflow pipes. That is, the - pair is the overflow pipe 3b' which is installed next to the liquid receiving box 4a' and whose tip extends to the vicinity of the perforated plate of the next shelf, and the other pair is the overflow pipe 3b' which is provided next to the liquid receiving box 4a'. This is an overflow pipe 3b similar to that described above. A perforated plate 7 having a large number of small holes is provided between these.

このように、各棚段は2個の液受箱と2個の溢流管を備
えている。対になった液受箱と溢流管は心金2に対し左
右に設置され、溢流管の真下には次棚段の液受箱が設置
される。おのおのの溢流管を構成する側板の一方6dは
、次棚段の溢流管を構成する側板の一方7dと円周方向
において慧ぼ同位置に設置される。また多孔板6は心金
−2と上 “記対になった液受箱4 a/および溢流管
3b′、液受箱4aおよび溢流管3bに対し左右に分割
され設置される。
Thus, each shelf is provided with two liquid receiving boxes and two overflow pipes. The paired liquid receiving box and overflow pipe are installed on the left and right sides of the mandrel 2, and the liquid receiving box of the next shelf is installed directly below the overflow pipe. One side plate 6d forming each overflow pipe is installed at approximately the same position in the circumferential direction as one side plate 7d forming the overflow pipe of the next shelf. Further, the perforated plate 6 is installed so as to be divided into left and right parts with respect to the liquid receiving box 4a/and overflow pipe 3b' which are paired with the mandrel 2, and the liquid receiving box 4a and the overflow pipe 3b.

このような構成の気液接触装置は次の作用、をなす。The gas-liquid contact device having such a configuration has the following functions.

精留塔上方の溢流管3aより液受箱4aに流下した液体
11は、液受箱4aと溢流管3aとにより多孔板6の圧
力損失に対処すべ4液シールを行う。
The liquid 11 flowing down into the liquid receiving box 4a from the overflow pipe 3a above the rectification column performs four-liquid sealing by the liquid receiving box 4a and the overflow pipe 3a to cope with the pressure loss of the perforated plate 6.

液受箱4aを流出した液体は多孔板6上に流入する。多
孔板6上に流入した液体は下方から多孔板の小孔5を通
って上昇するガス加と接触し、泡沫層を形成し、気液接
触しながら出口縁8に向って旋回しながら(本実施例で
は右回り)流動し溢流管3b’に流入する。溢流管3b
’に流入した液体11は液受箱4b’に流入し、次棚段
の多孔板7上に流入し、上記と同様な過程を得て多孔板
上を前棚段同様に右回りに次回しながら流動し、気液接
触を行う。
The liquid flowing out of the liquid receiving box 4a flows onto the perforated plate 6. The liquid flowing onto the perforated plate 6 comes into contact with the gas rising from below through the small holes 5 of the perforated plate, forms a foam layer, and swirls toward the outlet edge 8 while making contact with the gas and liquid. In the embodiment, it flows clockwise) and flows into the overflow pipe 3b'. Overflow pipe 3b
The liquid 11 that has flowed into the liquid receiving box 4b' flows onto the perforated plate 7 of the next shelf, and through the same process as above, the liquid 11 flows clockwise on the perforated plate in the same manner as the previous shelf. It flows while making gas-liquid contact.

また、精留塔上方より溢流管3a’を通って流下した液
体nは、液受箱4 a/を経て多孔板6上に流入し、前
記同様に多孔板上で気液接触しながら右回りに旋回し溢
流管3bに流下する。溢流管3bに流下した液体は液受
箱4bを経て多孔板7上に流入し、多孔板7上を前記同
様右回りに旋回しながら流動し、気液接触を行う。
In addition, the liquid n flowing down from the upper part of the rectification column through the overflow pipe 3a' flows into the perforated plate 6 through the liquid receiving box 4a/, and is brought into contact with the liquid on the perforated plate in the same manner as described above. It swirls around and flows down into the overflow pipe 3b. The liquid flowing down into the overflow pipe 3b flows through the liquid receiving box 4b onto the perforated plate 7, flows on the perforated plate 7 while rotating clockwise as described above, and brings about gas-liquid contact.

すなわち、精留塔上方から2分されて棚段に流下してき
た液体11および丘は、内蔵される多孔板上を常に同方
向(本実施例では右回り)に流動しながら気液接触を行
う。
That is, the liquid 11 and the ridges that have been divided into two parts from the top of the rectification column and flowed down to the trays are always flowing in the same direction (clockwise in this example) on the built-in perforated plate, and are brought into gas-liquid contact. .

この例では、上記のように構成され作用をなすため次の
効果を奏することができる。
In this example, since it is configured and operates as described above, the following effects can be achieved.

第7図を用いて本実施例の効果を説明する。前述したよ
うに従来技術では、棚段の奇数段と偶数段で多孔板上を
流動する液体の流れ方向が逆であり、処理量の増大等に
よる液深の増加、液パス長さの増加等による多孔板上流
部での液深の増加。
The effects of this embodiment will be explained using FIG. 7. As mentioned above, in the conventional technology, the flow direction of the liquid flowing on the perforated plate is opposite between the odd-numbered and even-numbered shelves, resulting in an increase in liquid depth due to an increase in throughput, an increase in liquid path length, etc. Increase in liquid depth upstream of the perforated plate.

つまり液深分布等により下方からの上昇ガスの偏流が起
こり、発泡し−た気液の流動方向に対して逆向きの力が
加わり、滑らかな流動を阻害し、液体の偏流を引き起こ
し、多孔板上の気液の部分発泡およびフラッディング現
象を起こし、精留塔の操作不能となる場合があった。こ
れに対し、この例では、液受箱の隣に溢流管を設置する
ことにより各棚段の多孔板上を流動する液体の流れ方向
を常に同方向にすることができる。このため、多孔板上
に多少の液深の分布が存在しても下方から多孔板の小孔
を通って上昇するガス加は、多孔板上の液深の小さい場
所、あるいは大きい場所にかかわらず、その速度の方向
に偏流は無く、常に一様の方向で上昇することができる
。したがって、多孔板上の発泡した液体は滑らかに多孔
板上を横切ることができる。
In other words, due to the liquid depth distribution, etc., a biased flow of rising gas occurs from below, and a force is applied in the opposite direction to the flow direction of the foamed gas and liquid, which obstructs smooth flow and causes a biased flow of the liquid. Partial foaming and flooding of the gas and liquid above may occur, making the rectification column inoperable. On the other hand, in this example, by installing an overflow pipe next to the liquid receiving box, the flow direction of the liquid flowing on the perforated plate of each shelf can always be made in the same direction. For this reason, even if there is some liquid depth distribution on the perforated plate, the gas that rises from below through the small holes in the perforated plate will not be affected regardless of whether the liquid depth is small or large on the perforated plate. , there is no drift in the direction of its velocity, and it can always rise in a uniform direction. Therefore, the foamed liquid on the perforated plate can smoothly cross over the perforated plate.

また、何らかの原因で多孔板上で最も未発泡になり易い
多孔板上流側の液深の高い場所が未発泡になった場合、
下方からの上昇ガスの速度分布は溢流管方向となる。こ
の速度分布は多孔板上の液体の流動を促す方向に対する
力となるため、部分発泡を起こしている多孔板上の液体
をより流動させることができる。このため、該多孔板上
の部分発泡を解消でき、部分発泡となり難い効果を持つ
In addition, if for some reason the area on the perforated plate where the liquid depth is high on the upstream side of the perforated plate, which is most likely to become unfoamed, becomes unfoamed,
The velocity distribution of the rising gas from below is in the direction of the overflow pipe. This velocity distribution acts as a force in the direction that promotes the flow of the liquid on the porous plate, so that the partially foamed liquid on the porous plate can be made to flow more. Therefore, partial foaming on the perforated plate can be eliminated and partial foaming is less likely to occur.

このように従来技術の問題であった多孔板上の部分発泡
、フラッディングの問題を解決することができ、操作範
囲の広い、コンパクトな、信頼性の高い気液接触装置を
提供できる。
In this way, the problems of partial foaming and flooding on a perforated plate, which were problems of the prior art, can be solved, and a compact, highly reliable gas-liquid contacting device with a wide operating range can be provided.

なお、上述の実施例では、上方の溢流管から流下する液
体を受けとめる部分を液受箱と表現して説明しているが
、本構造が多孔板と同一面であり、あるいは入口堰を設
けた構造であっても表現の違いであり、当然本発明に包
含されるものである。
In the above embodiment, the part that receives the liquid flowing down from the upper overflow pipe is described as a liquid receiving box, but this structure is on the same surface as the perforated plate, or an inlet weir is provided. Even if the structure is different, it is a difference in expression and is naturally included in the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各棚段の多孔板上を流動する液体(泡
沫層)の流れ方向を同一にすることができるため、下方
からの上昇ガスの偏流あるいは多孔板上を流動する液体
の偏流を無鳴すことが可能となり、気液の流動状態が良
好となる。このため、多孔板上での気液の部分発泡、フ
ラッディング現象の起こり難い、安定した操作範囲を広
くとれる信頼性の高い気液接触装置を提供することがで
きる。
According to the present invention, the flow direction of the liquid (foam layer) flowing on the perforated plate of each shelf can be made the same, so that the uneven flow of rising gas from below or the uneven flow of liquid flowing on the perforated plate It becomes possible to make noiseless noise, and the flow condition of gas and liquid becomes good. Therefore, it is possible to provide a highly reliable gas-liquid contacting device that is unlikely to cause partial foaming or flooding of the gas-liquid on the porous plate and can have a wide stable operation range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は従来の気液接触装置を説明するため
の図である。第4図から第6図は本発明の実施例を示す
図である。第7図は本発明実施例の効果を説明するだめ
の図である。
FIGS. 1 to 3 are diagrams for explaining a conventional gas-liquid contact device. FIGS. 4 to 6 are diagrams showing embodiments of the present invention. FIG. 7 is a diagram for explaining the effects of the embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、心金と核心金をおおう外壁とからなる塔の内部に複
数の棚段を備えており、該棚段は多数の小孔を有する多
孔板と、該多孔板上の液体を下段に流入させる溢流管と
、上段の溢流管から流下する液体を受け該多孔板に供給
する液受箱から成っており、上昇ガスと該棚段の多孔板
上にある液体とを気液接触させ、該液体を旋回させなが
ら流動させる気液接触装置において、前記液受箱と前記
溢流管を隣接配置した組を各棚段毎に少な鳴とも二組設
置したことを特徴とする気液接触装置。
1. A tower consisting of a core metal and an outer wall covering the core metal is equipped with a plurality of trays inside, and each tray has a perforated plate with many small holes, and the liquid on the perforated plate flows into the lower stage. It consists of an overflow pipe that receives the liquid flowing down from the upper overflow pipe and supplies it to the perforated plate, and brings the rising gas into gas-liquid contact with the liquid on the perforated plate of the shelf. , a gas-liquid contact device for causing the liquid to flow while swirling, characterized in that at least two sets of the liquid receiving box and the overflow pipe are arranged adjacently to each other are installed on each shelf. Device.
JP59015132A 1984-02-01 1984-02-01 Gas-liquid contact apparatus Granted JPS60161701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015132A JPS60161701A (en) 1984-02-01 1984-02-01 Gas-liquid contact apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015132A JPS60161701A (en) 1984-02-01 1984-02-01 Gas-liquid contact apparatus

Publications (2)

Publication Number Publication Date
JPS60161701A true JPS60161701A (en) 1985-08-23
JPH055521B2 JPH055521B2 (en) 1993-01-22

Family

ID=11880292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015132A Granted JPS60161701A (en) 1984-02-01 1984-02-01 Gas-liquid contact apparatus

Country Status (1)

Country Link
JP (1) JPS60161701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100780A1 (en) * 2019-11-19 2021-05-27 住友重機械プロセス機器株式会社 Distillation device and tray for gas-liquid contact device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130846U (en) * 1974-08-28 1976-03-05
JPS58112428U (en) * 1982-01-20 1983-08-01 株式会社日立製作所 Gas-liquid contact device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130846B2 (en) * 1972-05-08 1976-09-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130846U (en) * 1974-08-28 1976-03-05
JPS58112428U (en) * 1982-01-20 1983-08-01 株式会社日立製作所 Gas-liquid contact device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100780A1 (en) * 2019-11-19 2021-05-27 住友重機械プロセス機器株式会社 Distillation device and tray for gas-liquid contact device
CN114450076A (en) * 2019-11-19 2022-05-06 住友重机械过程机器株式会社 Distillation apparatus and tray for gas-liquid contact apparatus

Also Published As

Publication number Publication date
JPH055521B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
RU2134138C1 (en) Unit with plate and drain sleeve of gas and liquid contact column (versions) and method of steam escape through column zone (versions)
US4101610A (en) Liquid-gas contacting tray
US4182411A (en) Plate type condenser
US5192466A (en) Method of and apparatus for flow promotion
JPH02277501A (en) Dropping part-tray assembly
US5783119A (en) Liquid distributor for columns
RU2241514C2 (en) Plate for a quality contact of a gas with a liquid
JPH09503702A (en) Contact tray with steam holes
US3075752A (en) Gas-liquid contact tower
US6371455B1 (en) Gas/liquid contacting apparatus
JPS60161701A (en) Gas-liquid contact apparatus
JPS5834162B2 (en) distillation tower
CN210400126U (en) Falling film uniform distribution device capable of improving film distribution and exhaust performance
JPH04268191A (en) Tower packing with louver
JPH04254086A (en) Valve with valve seat having valley clearance
RU2461406C2 (en) Mass exchange contact device for interaction of fluid and gas
JPH0532161Y2 (en)
US6299146B1 (en) Retangular suspending downcomer directing tray
SU1069848A1 (en) Regular packing for heat mass-exchange and reaction processes
US20030086847A1 (en) Flood-limiting devices for gas-liquid reactors
JPS59210289A (en) Gas-liquid catalytic device for liquefied gas
JPS60222104A (en) Gas/liquid contact tower
JPH0824620A (en) Liquid distributor for mass and/or heat exchanging tower with at least two liquid flow paths
CN212882353U (en) Fluted disc formula liquid distributor with remove foam function
JP2003523815A (en) Structured packing assembly