JPS59210289A - Gas-liquid catalytic device for liquefied gas - Google Patents

Gas-liquid catalytic device for liquefied gas

Info

Publication number
JPS59210289A
JPS59210289A JP8017484A JP8017484A JPS59210289A JP S59210289 A JPS59210289 A JP S59210289A JP 8017484 A JP8017484 A JP 8017484A JP 8017484 A JP8017484 A JP 8017484A JP S59210289 A JPS59210289 A JP S59210289A
Authority
JP
Japan
Prior art keywords
gas
liquid
perforated plate
plate
overflow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8017484A
Other languages
Japanese (ja)
Other versions
JPS6159761B2 (en
Inventor
吉松 幸祥
誠 縄田
陽一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8017484A priority Critical patent/JPS59210289A/en
Publication of JPS59210289A publication Critical patent/JPS59210289A/en
Publication of JPS6159761B2 publication Critical patent/JPS6159761B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液化ガス用気液接触装置に係り、特に液が流下
する溢流管を有する旋回流方式の複数の多孔板を内蔵し
た液化ガス用精留塔に好適な気液接触装置に関するもの
である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gas-liquid contact device for liquefied gas, and particularly to a gas-liquid contact device for liquefied gas that incorporates a plurality of perforated plates of a swirling flow type having an overflow pipe through which liquid flows down. The present invention relates to a gas-liquid contact device suitable for a rectification column.

〔発明の背景〕[Background of the invention]

溢流管を有する多孔板を用いた気液接触装置は、圧力損
失が少なく、しかも、高い精留性能を有し、かつ、構造
が簡単なため、蒸留、精留、吸収等の化学工業の種々の
気液接触装置として幅広曵使用されている。
Gas-liquid contact equipment using a perforated plate with an overflow pipe has low pressure loss, high rectification performance, and simple structure, so it is suitable for chemical industries such as distillation, rectification, and absorption. It is widely used as a variety of gas-liquid contact devices.

ところで、多孔板を内蔵した精留塔の能力を充分に発揮
させるためには、多孔板上の気液の流動状態を最良にす
る必要がある。また、精留塔の圧力損失は、空気圧縮機
の消費電力に大きく作用するため、それを極力小さ嘔す
ることが望ましい。
By the way, in order to fully utilize the capacity of a rectification column incorporating a perforated plate, it is necessary to optimize the flow state of gas and liquid on the perforated plate. Further, since the pressure loss of the rectification column has a large effect on the power consumption of the air compressor, it is desirable to minimize the pressure loss as much as possible.

圧力損失を低減する方法として、気体の上昇速度を減少
する方法があるが、これは、処理量と塔径とのかねあい
から得策とはいえない。また、次の理由により圧力損失
の低減には限度がある。第1は、多孔板の操作範囲の下
限は、多孔板の孔より液が直接1段下の多孔板上に落下
するウィービングによって定まるが、高い精留効率を要
求される空気分離等に利用される溢流管を有する有理多
孔板においては、ウィービングは直接精留性能を低下さ
せるため、ウィービング防止が重要な課題となっている
からである。第2は、液が多孔板上で部分的にしか発泡
しない部分発泡状態になるが、部分発泡状態になると、
多孔板上での気液接触が部分的にしか行われな(なり、
ウィービングと同様直接精留性能を低下せしめるからで
ある。
One way to reduce pressure loss is to reduce the rate of rise of gas, but this is not a good idea due to the trade-off between throughput and column diameter. Furthermore, there is a limit to the reduction in pressure loss due to the following reasons. First, the lower limit of the operating range of a perforated plate is determined by weaving, in which the liquid falls directly from the pores of the perforated plate onto the perforated plate one level below. This is because in a rationally porous plate having an overflow pipe, weaving directly reduces the rectification performance, so preventing weaving is an important issue. The second is a partially foamed state in which the liquid foams only partially on the perforated plate;
Gas-liquid contact on the perforated plate is only partially carried out.
This is because, like weaving, it directly reduces rectification performance.

ウィービングおよび部分発泡状態は、上昇ガス流量およ
び多孔板上にたまる液の高さく本考案では靜液深という
。)によって大きく影響される。
The weaving and partially foaming state is due to the rising gas flow rate and the height of the liquid accumulated on the perforated plate, and is referred to as the liquid depth in the present invention. ) is greatly influenced by

同一の装置においては、多孔板上を流れる液体の物性値
、多孔板の孔径、配列ピッチ、板厚等が決定されれば、
多孔板の孔を通過するガス流量(以下孔部流速という。
In the same device, once the physical properties of the liquid flowing on the perforated plate, the hole diameter of the perforated plate, the arrangement pitch, the plate thickness, etc. are determined,
Gas flow rate passing through the holes in the perforated plate (hereinafter referred to as hole flow rate).

)および静液深との関係により、ウィービングおよび部
分発泡状態を生ずることは周知の通りである。したがっ
て、ウィービングおよび部分発泡状態を避けるためには
、塔内な上昇するガス流量を一定値以上に維持し、かつ
、くし、多孔板全面において同−静液深とすることが重
要である。
) and the static liquid depth, it is well known that weaving and partially foaming conditions occur. Therefore, in order to avoid weaving and partial foaming, it is important to maintain the rising gas flow rate in the column above a certain value and to maintain the same static liquid depth over the entire surface of the comb and perforated plate.

精留塔の圧力損失低減のために、多孔板の流動状態につ
いて種々の実験を行った結果、次の事項が明らかとなっ
た。
In order to reduce the pressure loss in the rectification column, various experiments were conducted on the flow state of the perforated plate, and the following points were clarified.

1、開口比(孔部面積/多孔板有効面積)および孔部流
速が一定のとき、静液深が大きいほど、ウィービングお
よび部分発泡が起りやすい。
1. When the aperture ratio (hole area/perforated plate effective area) and hole flow rate are constant, the greater the static liquid depth, the more likely weaving and partial foaming will occur.

2、開口比および靜液深が一定のとき、孔部流速がある
値より小さ鳴なれば、ウィービングおよび部分発泡が起
る。
2. When the aperture ratio and liquid depth are constant, if the hole flow velocity becomes lower than a certain value, weaving and partial foaming will occur.

第1図〜第3図は、従来技術の旋回流方式の多孔板の場
合の液の流動の説明図で、以下第1図〜第3図を用いて
従来技術の説明を行う。旋回流方式には、多孔板上を流
れる液体の流路の数によって1方流、2方流、4方流と
があるが、ここでは2方流の場合について説明する。
FIGS. 1 to 3 are explanatory diagrams of the flow of liquid in a perforated plate of a swirling flow type according to the prior art, and the prior art will be explained below using FIGS. 1 to 3. The swirling flow system includes one-way flow, two-way flow, and four-way flow, depending on the number of channels for liquid flowing on the perforated plate, and here, the case of two-way flow will be explained.

第1図〜第3図において、lは精留塔外壁、2は入口堰
、3は多孔板、4は孔、5は出口堰、6は溢流管で、液
体は多孔板3の孔4より上昇する気体と多孔板3上で気
液接触しつつ入口堰2から出口堰5側に円周方向に沿っ
て多孔板3上を流れるため、遠心力の影響および流れ抵
抗を受けることになり、多孔板3上の静液深は、精留塔
中心から半径方向に向って大きくなる傾向を示し、多孔
板3の最外周で最も大き曵、最内周で最も小さい静液深
の分布となる。
In Figures 1 to 3, l is the outer wall of the rectification column, 2 is the inlet weir, 3 is the perforated plate, 4 is the hole, 5 is the outlet weir, 6 is the overflow pipe, and the liquid is transferred to the hole 4 of the perforated plate 3. Since it flows over the perforated plate 3 from the inlet weir 2 to the outlet weir 5 side along the circumferential direction while coming into gas-liquid contact with the rising gas on the perforated plate 3, it is subject to the influence of centrifugal force and flow resistance. , the static liquid depth on the perforated plate 3 shows a tendency to increase in the radial direction from the center of the rectification column, and the static liquid depth is the largest at the outermost periphery of the perforated plate 3 and the smallest at the innermost periphery. Become.

第4図、第5図は水−空気系で実験を行ったときの静液
深の分布を示す線図で、この例の場合、静液深は、最内
周で8111+最外周で25u+程度であり、遠心力お
よび液の流れ抵抗の影響を太き鳴受け、最内周と最外周
とでは大きな差があることがわかる。
Figures 4 and 5 are diagrams showing the distribution of static liquid depth when conducting experiments in a water-air system. In this example, the static liquid depth is approximately 8111 at the innermost periphery + 25 u + at the outermost periphery. It can be seen that there is a large difference between the innermost and outermost peripheries due to the effects of centrifugal force and liquid flow resistance.

一方、多孔板3での全圧力損失は、気体が多孔板3の孔
4を通過するときの乾き圧力損失、液体の表面張力の影
響による表面張力圧力損失および静液深による湿り圧力
損失との和で与えられる。
On the other hand, the total pressure loss in the perforated plate 3 is composed of the dry pressure loss when gas passes through the holes 4 of the perforated plate 3, the surface tension pressure loss due to the effect of the surface tension of the liquid, and the wet pressure loss due to the depth of the static liquid. given by the sum.

ここで、孔部流速が一定であれば、乾き圧力損失と表面
張力圧力損失とは一定である。しかし、ウィービングお
よび部分発泡に関係する静液深は、内周側で小さく、反
対に外周側で大き々なり、全圧力損失も大き々なる。つ
まり、静液深が大きい外周側でウィービングおよび部分
発泡が起りやすくなっている。
Here, if the hole flow rate is constant, the drying pressure loss and the surface tension pressure loss are constant. However, the static liquid depth related to weaving and partial foaming is small on the inner circumferential side and becomes large on the outer circumferential side, and the total pressure loss is also large. In other words, weaving and partial foaming are more likely to occur on the outer peripheral side where the static liquid depth is greater.

ウィービングおよび部分発泡を防止するためには、孔部
流速な静液深が大きい多孔板3の外周部分を基準として
計画し、それに加えて多孔板3上の圧力バランスを考慮
して決定する必要がある。
In order to prevent weaving and partial foaming, it is necessary to plan based on the outer periphery of the perforated plate 3, where the static liquid depth at the hole flow rate is large, and to determine the pressure balance on the perforated plate 3 in addition to this. be.

しかし、静液深が小さい内周側では、外周側より小さい
孔部流速でウィービングおよび部分発泡を防止できるの
で、静液深が大きい外周側のウィービングおよび部分発
泡を防止するように孔部流速を決めると、必要以上に大
きい孔部流速となってしまう。実験により観察した結果
においても、次第に孔部流速を大き鳴すると、多孔板3
は内周側と外周側部分の圧力バランスをとりながら気液
接触を行ない、最終的に必要以上の孔部流速でウィービ
ングがな鳴なり、全面発泡となった。このため、圧力損
失が大きくなり、精留塔において、圧力損失を必要以上
に許容することになり、また、反対に孔部流速を低くす
れば、外周部にウィービングおよび部分発泡が起り、精
留性能を低下させ、運転操作範囲も限られてくるという
問題があった。
However, on the inner periphery side where the static liquid depth is small, weaving and partial foaming can be prevented with a smaller hole flow rate than on the outer periphery side, so the hole flow rate should be adjusted to prevent weaving and partial foaming on the outer periphery side where the static liquid depth is large. If this is determined, the hole flow velocity will be higher than necessary. The experimental results also show that when the flow velocity in the holes is gradually increased, the perforated plate 3
The gas-liquid contact was carried out while maintaining the pressure balance between the inner and outer circumferential parts, and in the end, the flow rate at the hole was higher than necessary, causing the weaving to squeak, resulting in complete foaming. For this reason, the pressure loss becomes large, and the rectification column is allowed to have a pressure loss higher than necessary.On the other hand, if the flow rate at the hole is made low, weaving and partial foaming will occur on the outer periphery, resulting in the rectification column. There were problems in that performance deteriorated and the operating range became limited.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなされたもので、その目的とする
ところは、圧力損失を小さくでき、かつ、運転操作範囲
を広くすることができる溢流管を有する液化ガス用気液
接触装置を提供することにある。
The present invention has been made in view of the above, and its purpose is to provide a gas-liquid contact device for liquefied gas having an overflow pipe that can reduce pressure loss and widen the operating range. It's about doing.

〔発明のSt要〕[St key points of invention]

本発明は、多孔板上に少なくとも静液深以上の高さの整
流板を溢流管入口と溢流管出口との間に液の流れ方向に
沿って少なくとも1列取り付けた構成としたものである
The present invention has a structure in which at least one row of rectifying plates having a height at least equal to or higher than the static liquid depth is attached on a perforated plate between an overflow pipe inlet and an overflow pipe outlet along the flow direction of the liquid. be.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第6図、第7図、第11図、第12図に示
した実施例および第8図ないし第10図を用いて詳細に
説明する。
The present invention will be explained in detail below with reference to the embodiments shown in FIGS. 6, 7, 11, and 12, and FIGS. 8 to 10.

第6図は本発明の気液接触装置の一実施例な示す説明図
で、第7図は第6図の平面図である。第6図、第7図に
おいて、lは精留塔で、図示しない溢流管6(第1図参
@)を有していて入口堰2および出口堰5を形成した旋
回流式多孔板3を複数個内蔵している。入口堰2は、溢
流管6を液封し、上昇ガスの溢流管6への流入を防+L
L、、出口堰5は、多孔板3上に一定の靜液深を保持さ
せるためのものである。多孔板3は、精留塔1内に水平
に取り付けてあり、多孔板3上には、液の流れ方向に沿
って整流板7が取り付けである。
FIG. 6 is an explanatory diagram showing one embodiment of the gas-liquid contact device of the present invention, and FIG. 7 is a plan view of FIG. 6. In FIGS. 6 and 7, l is a rectification column, which has a swirling flow type perforated plate 3 having an overflow pipe 6 (see FIG. 1 @) and forming an inlet weir 2 and an outlet weir 5. It has multiple built-in. The inlet weir 2 seals the overflow pipe 6 and prevents rising gas from flowing into the overflow pipe 6.
L, the outlet weir 5 is for maintaining a constant liquid depth on the perforated plate 3. The perforated plate 3 is installed horizontally within the rectification column 1, and a rectifier plate 7 is installed on the perforated plate 3 along the flow direction of the liquid.

多孔板3の内周側と外周側の静液深の差は、孔部速度、
液量、ガス量、流体の物性定数および精留塔lの構成(
大きな、流れ方式)などによって決定される。このため
、整流板7の高さおよび取り付は位置は、これらの諸因
子によって左右されるので、多孔板3上への整流板7の
取り付は位置と整流板7の高さは、これらの因子を考慮
して、多孔版3上での静液深が同一になるように決めで
ある。すなわち、整流板7は、第7図に示すように、溢
流管出口と溢流管入口との間に一列液の流れ方向に沿っ
て取り付け、整流板7の高さは少な々とも静液深以上の
高さとした。
The difference in static liquid depth between the inner and outer circumferential sides of the perforated plate 3 is determined by the hole velocity,
Liquid volume, gas volume, physical property constants of the fluid, and configuration of the rectification column (
large, flow method) etc. For this reason, the height and mounting position of the current plate 7 are influenced by these factors, so the mounting position and the height of the current plate 7 on the perforated plate 3 are determined by these factors. It is decided that the depth of the static liquid on the perforated plate 3 is the same, taking into consideration the following factors. That is, as shown in FIG. 7, the straightening plate 7 is installed between the overflow pipe outlet and the overflow pipe inlet along the flow direction of the liquid in a line, and the height of the straightening plate 7 is set so that the height of the straightening plate 7 is at least the same as that of the static liquid. The height was greater than the depth.

上述した本発明の実施例によれば、液が多孔板3上を上
昇ガスと気液接触しながら流れるとき、整流板7の作用
により、遠心力および流れ抵抗によって、静液深が太き
(なる多孔板外周側では従来より静液深が小さくなり、
反対に内周側では太き(なる。第8図、第9図はその一
例を示す線図で、これより精留塔中心から半径方向に対
しての静液深の分布が一様になり、多孔板3上全面にお
いてほぼ同一の静液深になることがわかる。したがって
、ウィービングおよび部分発泡が起る要因は、多孔板3
上全面でほぼ同一条件となり、例えば、従来技術と同一
の孔部流速であれば、ウィービングおよび部分発泡が起
りに(くなる。
According to the embodiment of the present invention described above, when the liquid flows on the perforated plate 3 while being in gas-liquid contact with the rising gas, the static liquid depth increases ( On the outer periphery of the perforated plate, the static liquid depth is smaller than before,
On the other hand, it becomes thicker on the inner circumferential side. Figures 8 and 9 are diagrams showing examples of this. From this, the distribution of static liquid depth in the radial direction from the center of the rectification column becomes uniform. , it can be seen that the static liquid depth is almost the same over the entire surface of the perforated plate 3. Therefore, the reason why weaving and partial foaming occur is that the perforated plate 3
If the conditions are almost the same over the entire upper surface, for example, if the flow rate at the hole is the same as in the prior art, weaving and partial foaming will occur.

第10図は上記した実施例の効果を説明するための線図
で、孔部流速と圧力損失0発泡率および精留効率との関
係が示しである。それぞれ実線は従来の場合、破線は本
発明の実施例による場合を示している。上記したように
、ウィービングおよび部分発泡は、精留性能の低下の原
因となり、これを解決するには、孔部流速を増せばよい
が、孔部流速は、静液深が大きい場所では、これに応じ
て孔部流速を太きえする必要がある。したがって、従来
は、静液深が大きい多孔板外周側を基準にして孔部流速
を決定する必要があった。いいかえれば、多孔板3上の
静液深の局部的な差に起因して起るウィービングおよび
部分発泡を防炙゛には、孔部流速を必要以上に太き(し
なければならなかった。それにともない圧力損失が大き
鳴なっていた。
FIG. 10 is a diagram for explaining the effect of the above-described embodiment, and shows the relationship between the hole flow velocity, the zero pressure loss foaming rate, and the rectification efficiency. The solid line shows the conventional case, and the broken line shows the case according to the embodiment of the present invention. As mentioned above, weaving and partial foaming cause deterioration of rectification performance, and this can be solved by increasing the hole flow rate. It is necessary to increase the hole flow velocity according to the Therefore, conventionally, it has been necessary to determine the hole flow velocity based on the outer peripheral side of the porous plate where the static liquid depth is large. In other words, in order to prevent weaving and partial foaming caused by local differences in the depth of the static liquid on the perforated plate 3, the flow velocity in the holes had to be made thicker than necessary. As a result, the pressure loss was becoming louder.

一方、プラントの減量運転時、つまり、孔部流速が小さ
いときは、ウィービングおよび部分発泡を起し、性能低
下を招いていた。これに対して、本発明の実施例によれ
ば、多孔板3上の静液深が、全面にわたって一様な分布
となっているから、基準とする静液深を従来の場合より
小さ曵することができ、大きな孔部流速を必要とせず、
しかも、ウィービングおよび部分発泡が起らないように
することができる。したがって、孔部流速が小さ曵なる
減量運転時においても、精留性能が低下することがなく
、運転操作範囲を従来よりも広くすることができる。ま
た、低い孔部流速で全面発泡が達成され、ウィービング
が皆無となるので、全面発泡状態における多孔板3によ
る圧力損失を小さくすることができる。
On the other hand, when the plant is operated at a reduced capacity, that is, when the flow velocity at the hole is low, weaving and partial foaming occur, resulting in a decrease in performance. On the other hand, according to the embodiment of the present invention, the static liquid depth on the perforated plate 3 has a uniform distribution over the entire surface, so that the standard static liquid depth can be lowered than in the conventional case. can be used without requiring large hole flow velocities,
Moreover, weaving and partial foaming can be prevented from occurring. Therefore, even during a reduction operation in which the hole flow velocity is low, the rectification performance does not deteriorate, and the operating range can be made wider than before. Further, since the entire surface is foamed at a low flow rate in the holes and there is no weaving, the pressure loss due to the perforated plate 3 in the fully foamed state can be reduced.

第11図、第12図は本発明の他の実施例を示す説明図
で、それぞれ(blは(a)の平面図であり、第6図、
第7図と同一部分は同じ符号で示しである。
11 and 12 are explanatory diagrams showing other embodiments of the present invention, respectively (bl is a plan view of (a), FIG.
The same parts as in FIG. 7 are indicated by the same reference numerals.

第11図においては、整流板7に孔8があけてあり、ま
た、第12図においては、整流板7をクリアランス部9
を有するように断続的に配置した構成としである。これ
らの実施例によれば、整流板7の高さ以下の静液深でも
、整流板7を介して互いに他の領域へ液が移動できるた
め、精留塔1の運転条件および他の因子により、内周側
と外周側に流量の差が起り、内側と外側とで静液深に差
が起る場合に有効である。
In FIG. 11, the rectifying plate 7 is provided with a hole 8, and in FIG.
The structure is arranged intermittently so as to have . According to these embodiments, even if the static liquid depth is less than the height of the rectifying plate 7, the liquid can move from one region to another via the rectifying plate 7, so that depending on the operating conditions of the rectifying column 1 and other factors, This is effective when there is a difference in flow rate between the inner and outer circumferential sides, and a difference in static liquid depth between the inner and outer circumferential sides.

なお、これまでは、液の流れ方式が2方流の場合につい
て説明したが、1方流および4方流の場合にも本発明を
適用可能であり、同様の効果があ数列を設けるようにし
てもよく、同様の効果がある。
Although the case where the liquid flow method is two-way flow has been described so far, the present invention can also be applied to one-way flow and four-way flow, and the same effect can be obtained by providing a number sequence. may be used and have the same effect.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、圧力損失を小さ
くでき、かつ、運転操作範囲を広くすることができると
いう効果がある。
As explained above, according to the present invention, it is possible to reduce pressure loss and widen the operating range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来技術による気液接触装置の構造説
明図、第4図、第5図は従来技術による場合の多孔板上
での静液深の分布を示す線図、第6図は本発明の液化ガ
ス用気液接触装置の一実施例を示す説明図、第7図は第
6図の平面図、第8図、第9図は第6図による場合の多
孔板上での静液深の分布を示す線図、第10図は本発明
の詳細な説明するための線図、第11図、第12図は本
発明の他の実施例を示す説明図である。 1・・・・・・精留塔、2・・・・・・入口堰、3・・
・・・・多孔板、4・・・・・・孔、5・・・・・・出
口堰、6・・・・・・溢流管、7・・・・・・整流板、
8・・・・・・孔、9・・・・・・クリアランス部代理
人 弁理士  高 橋 明 失 業1図       tz図 才4u 、/f?川方用(m次) 才6図 才10図 ″  X#テ踵能ノ   ”
1 to 3 are structural explanatory diagrams of a gas-liquid contact device according to the prior art, FIGS. 4 and 5 are diagrams showing the distribution of static liquid depth on a perforated plate in the case of the prior art, and FIG. The figure is an explanatory diagram showing one embodiment of the gas-liquid contact device for liquefied gas of the present invention, FIG. 7 is a plan view of FIG. 6, and FIGS. FIG. 10 is a diagram for explaining the present invention in detail, and FIGS. 11 and 12 are explanatory diagrams showing other embodiments of the present invention. 1... Rectification tower, 2... Inlet weir, 3...
... Perforated plate, 4 ... Hole, 5 ... Outlet weir, 6 ... Overflow pipe, 7 ... Current plate,
8...Kong, 9...Clearance Department Agent Patent Attorney Akira Takahashi Unemployment 1 figure tz figure 4u, /f? For Kawakata (mth) 6-year-old 10-year old “X#te heel Nono”

Claims (1)

【特許請求の範囲】 1、液が流下する溢流管を有し、液が板上な円周方向に
旋回しながら流れる旋回流方式の複数の多孔板を内蔵し
、下降する液体と上昇する気体とを前記多孔板上にて気
液接触させて精留を行うものにおいて、前記多孔板が多
孔板上の溢流管入口と溢流管出口との間に液の流れ方向
に沿って少くとも静液深以上の高さの整流板を少なくと
も1列取り付けた構成としであることを特徴とする液化
ガス用気液接触装置。 2、前記整流板には孔が設けである特許請求の範囲第1
項記載の液化ガス用気液接触装置。 3、前記整流板は液の流れ方向に沿って断続的に複数枚
配置しである特許請求の範囲第1項記載の液化ガス用気
液接触装置。
[Claims] 1. It has an overflow pipe through which the liquid flows down, and includes a plurality of perforated plates of a swirl flow type in which the liquid flows while swirling in the circumferential direction of the plate, and the liquid descends and rises. In the device in which rectification is carried out by bringing gas into gas-liquid contact on the perforated plate, the perforated plate has a small distance between the overflow pipe inlet and the overflow pipe outlet on the perforated plate along the flow direction of the liquid. 1. A gas-liquid contact device for liquefied gas, characterized in that it has a structure in which at least one row of rectifier plates each having a height equal to or higher than the static liquid depth are attached. 2. Claim 1, wherein the rectifier plate is provided with holes.
A gas-liquid contact device for liquefied gas as described in 1. 3. The gas-liquid contact device for liquefied gas according to claim 1, wherein a plurality of said baffle plates are disposed intermittently along the flow direction of the liquid.
JP8017484A 1984-04-23 1984-04-23 Gas-liquid catalytic device for liquefied gas Granted JPS59210289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8017484A JPS59210289A (en) 1984-04-23 1984-04-23 Gas-liquid catalytic device for liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8017484A JPS59210289A (en) 1984-04-23 1984-04-23 Gas-liquid catalytic device for liquefied gas

Publications (2)

Publication Number Publication Date
JPS59210289A true JPS59210289A (en) 1984-11-28
JPS6159761B2 JPS6159761B2 (en) 1986-12-18

Family

ID=13710976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8017484A Granted JPS59210289A (en) 1984-04-23 1984-04-23 Gas-liquid catalytic device for liquefied gas

Country Status (1)

Country Link
JP (1) JPS59210289A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437871U (en) * 1987-08-31 1989-03-07

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954272A (en) * 1972-05-09 1974-05-27
JPS5273179A (en) * 1975-12-17 1977-06-18 Kurasunodarusuki Poritehinichi Contact plate for tower to carry out substance transit process between gas and liquid
JPS537575A (en) * 1976-05-24 1978-01-24 Merix Corp Vaporrliquid contact system and its apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954272A (en) * 1972-05-09 1974-05-27
JPS5273179A (en) * 1975-12-17 1977-06-18 Kurasunodarusuki Poritehinichi Contact plate for tower to carry out substance transit process between gas and liquid
JPS537575A (en) * 1976-05-24 1978-01-24 Merix Corp Vaporrliquid contact system and its apparatus

Also Published As

Publication number Publication date
JPS6159761B2 (en) 1986-12-18

Similar Documents

Publication Publication Date Title
US3887665A (en) Vapor-liquid contacting
US4174363A (en) Vapor-liquid contacting tray with vapor thrust means
RU2192303C2 (en) Vapor-liquid distributing device used in tanks with two-phase unidirectional downward flow
JPH02277501A (en) Dropping part-tray assembly
US4820456A (en) Mass-transfer apparatus
JPH06182187A (en) Assembly of down-pipe and tray for treating tower utilizing catalytic medium and method for mixing discharged liquid and steam from down-pipe
US6227524B1 (en) High speed mass transfer tray
ES2139895T3 (en) ASSEMBLY OF STEAM / LIQUID CONTACT DISHES AND DOWN PIPES AND THEIR METHOD OF USE.
CA1110538A (en) Outlet means for vapor liquid contacting tray
JP3149606B2 (en) Reactor containment cooling system
JPS59210289A (en) Gas-liquid catalytic device for liquefied gas
Wong et al. CHF prediction for horizontal tubes
AU743982B2 (en) Low pressure drop inlet design to promote good gas flow patterns in high velocity absorbers
US4179487A (en) Contact apparatus for carrying out heat-and-mass exchange processes
US20030086847A1 (en) Flood-limiting devices for gas-liquid reactors
US7559539B2 (en) Stacked packing for heat exchange and mass transfer
US5960867A (en) Condenser and power plant
US2785961A (en) Absorption tower
JPS62163701A (en) Gas-liquid contact device
JP3314599B2 (en) Condenser and power plant
JPH0125638Y2 (en)
JPS60161701A (en) Gas-liquid contact apparatus
JPS621402A (en) Gas-liquid contact device
KR100452407B1 (en) tray of distillation tower
JPS6039938B2 (en) Rectification column for liquefied gas