JPS6016117B2 - Circuit board with resistor and its manufacturing method - Google Patents

Circuit board with resistor and its manufacturing method

Info

Publication number
JPS6016117B2
JPS6016117B2 JP57104592A JP10459282A JPS6016117B2 JP S6016117 B2 JPS6016117 B2 JP S6016117B2 JP 57104592 A JP57104592 A JP 57104592A JP 10459282 A JP10459282 A JP 10459282A JP S6016117 B2 JPS6016117 B2 JP S6016117B2
Authority
JP
Japan
Prior art keywords
resistor
circuit board
nickel
plating
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57104592A
Other languages
Japanese (ja)
Other versions
JPS58220491A (en
Inventor
和芳 柴垣
佳久 森
孝彦 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP57104592A priority Critical patent/JPS6016117B2/en
Priority to US06/505,126 priority patent/US4532186A/en
Priority to DE3321900A priority patent/DE3321900C2/en
Priority to NL8302150A priority patent/NL8302150A/en
Publication of JPS58220491A publication Critical patent/JPS58220491A/en
Publication of JPS6016117B2 publication Critical patent/JPS6016117B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は抵抗体付き回路基板とその製造法に関する。[Detailed description of the invention] The present invention relates to a circuit board with a resistor and a method for manufacturing the same.

従来、抵抗体を内蔵した回路基板は、一般に、電気絶縁
層、この層上に接合された抵抗体の層およびこの抵抗体
に接合された高導電体層からなる積層板の形態で提供さ
れる。また、目的とする抵抗回路パターンの作製に際し
ては、所定の回路パターンの形状にしたがって、絶縁領
域(絶縁層上の全層を除去)、抵抗領域(高導電体の層
のみ除去)、及び導体領域(各れの層も除去せず、通常
はこの高導電体上にさらに金などの貴金属の薄膜メッキ
を施す)が、サブトラクティブ法(マスクーェツチング
法)により形成されるか、あるいは該抵抗体部分などを
所定のパターン形状をしたスクリーン印刷版を介して印
刷する直接形成法などにより形成される。ところで、当
該技術分野における抵抗体材料は、炭素系、酸化金属物
系、金属系及びこれらの混合体などからなっている。
Conventionally, circuit boards with built-in resistors are generally provided in the form of a laminate consisting of an electrically insulating layer, a layer of resistor bonded onto this layer, and a highly conductive layer bonded to the resistor. . In addition, when fabricating the desired resistance circuit pattern, in accordance with the shape of the predetermined circuit pattern, an insulating region (all layers on the insulating layer are removed), a resistive region (only the highly conductive layer is removed), and a conductive region. (Normally, a thin film of noble metal such as gold is further plated on top of this highly conductive material without removing each layer.) It is formed by a direct forming method in which body parts and the like are printed through a screen printing plate having a predetermined pattern shape. By the way, resistor materials in this technical field include carbon-based materials, metal oxide-based materials, metal-based materials, and mixtures thereof.

かかる材料から抵抗体の層を形成する方法としては、ペ
ースト状物たとえばカーボン粒子などを種々の樹脂成分
で混合したものを印刷する方法、各種の炭化水素系化合
物を種々の条件下で炭化し蒸着する方法、金属ないし二
元系以上の合金を蒸着、スパッタリングする方法などが
知られている。しかるに、ペースト状物の印刷の場合は
抵抗値自体のコントロールが困難であり、しかも回路板
全面にわたる抵抗値のバラッキが大きく特性も悪い。
Methods for forming resistor layers from such materials include printing a paste-like material, such as carbon particles mixed with various resin components, and carbonizing various hydrocarbon compounds under various conditions and vapor deposition. A method of vapor-depositing a metal or a binary or more-component alloy, and a method of sputtering are known. However, in the case of printing a paste-like material, it is difficult to control the resistance value itself, and furthermore, the resistance value varies widely over the entire surface of the circuit board, resulting in poor characteristics.

また、蒸着及びスパッタリングによる方法でも抵抗値の
管理が難かしく、その上設備的に高価となる。そこで、
近年、抵抗体の層をメッキによって、安価にかつ大面積
にして効率よく安定的に製造する方法が着目されている
Further, even with methods using vapor deposition and sputtering, it is difficult to control the resistance value, and the equipment is expensive. Therefore,
In recent years, attention has been focused on a method of efficiently and stably manufacturing resistor layers inexpensively and over a large area by plating.

例えば持閥昭48一73762号公報にはニッケルーリ
ン合金からなる抵抗体を電気メッキで製造する方法が、
また特関階50一71513号公報には上記以外の各種
の二元系合金よりなる抵抗体の層を電気メッキで形成す
る方法がそれぞれ提案されている。しかしながら、上記
合金類は目的とする抵抗体材料としては特性上ならびに
作業性の点で多くの欠点があることが判明した。一般に
、かかる金属薄膜抵抗体からなる回路基板においては、
これらの膜厚を薄くすることによって目的に合った面積
抵抗値を有する抵抗体を得ることができる。
For example, Jibatsu No. 48-173762 describes a method of manufacturing a resistor made of a nickel-phosphorus alloy by electroplating.
Additionally, Tokukankai No. 50-71513 proposes a method of forming resistor layers made of various binary alloys other than those mentioned above by electroplating. However, it has been found that the above-mentioned alloys have many drawbacks in terms of properties and workability as intended resistor materials. Generally, in a circuit board made of such a metal thin film resistor,
By reducing the thickness of these films, a resistor having a sheet resistance value suitable for the purpose can be obtained.

しかし、薄くするに従って金属皮膜自体のミクロ的な均
一性が得られ難く、おのずと腰厚に限度がある。たとえ
ば前述のニッケルーリン合金での工業的に使用し得る面
積抵抗値としてはせし、ぜし、1000/口以下であり
、更に高い面積抵抗値を有するものは得られ難い。その
上、サブトラクティブ法による加工工程中でも重大な欠
陥がある。サブトラクテイブ法では、まず、回路基板の
鋼箔(高導電体)表面全面にフオトレジストを塗布する
However, as the metal film becomes thinner, it becomes difficult to obtain microscopic uniformity of the metal film itself, and there is a natural limit to the thickness. For example, the sheet resistance value of the above-mentioned nickel-phosphorus alloy that can be used industrially is usually less than 1000/unit, and it is difficult to obtain one having an even higher sheet resistance value. Moreover, there are serious defects even during the subtractive processing process. In the subtractive method, first, a photoresist is applied to the entire surface of the steel foil (highly conductive material) of the circuit board.

ついで、目的とする抵抗部分及び導体部分にレジストが
残るようなフオトマスクを介して露光後、現像する。絶
縁領域を形成するために不必要な銅及び抵抗体の層をそ
れぞれの専用エッチング液にて順次エッチング除去する
。引き続き、今度は導体部分のみが残るフオトマスクを
介して露光後、現像する。これにより露出された銅箔を
エッチング除去(抵抗領域の形成)すれば目的とする回
路板(但し、導体領域にはしジストが残存している)を
得ることができる。上記工程においては、抵抗パターン
領域に相当する部分の銅箔をエッチング除去する際、こ
のエッチング液に対して抵抗体の材質が安定で、ほとん
どエッチングされないことが必須条件である。
Next, the resist is exposed to light through a photomask such that the resist remains on the intended resistive portions and conductive portions, and then developed. In order to form an insulating region, unnecessary copper and resistor layers are sequentially etched away using respective dedicated etching solutions. Subsequently, the film is exposed to light through a photomask that leaves only the conductor portion, and then developed. By etching away the exposed copper foil (forming a resistance region), the intended circuit board (however, the resist remains in the conductor region) can be obtained. In the above process, when the copper foil in the portion corresponding to the resistor pattern area is removed by etching, it is essential that the material of the resistor is stable to the etching solution and hardly etched.

しかるに、上記のニッケルーリン合金からなる抵抗体は
銅箔とのエッチング選択性が悪く、銅箔のエッチング時
に抵抗体も部分的にエッチングされてしまい抵抗値が大
幅に増加してしまうことが判明した。つまり、所期の設
定値がそのまま加工 /後の抵抗値にならないと云う欠
点を有していた。また、上述の袴開昭50一71513
号公報に示される各種の二元系合金は、これらが単金属
のメッキ膜より一般に高い抵抗値が得られるものとして
提案されたものであるが、下記の理由により未だ工業的
に採用されるに至っていない。すなわち、前記薄膜化に
よる抵抗値の増大とエッチング選択性などの諸特性のバ
ランスをとりにくい問題があるほか、抵抗値のバラッキ
のない一定組成の合金メッキ膜をメッキ俗から安定に製
造することが非常に難しいという問題があるためである
。このような事情に鑑み、この出願人は、前記提案に係
る各合金とは異なる抵抗体材料としてすでにスズーニッ
ケル合金を案出した。
However, it was discovered that the resistor made of the above-mentioned nickel-phosphorus alloy had poor etching selectivity with the copper foil, and the resistor was also partially etched when the copper foil was etched, resulting in a significant increase in resistance value. . In other words, it has the disadvantage that the intended setting value does not directly correspond to the resistance value after processing/processing. In addition, the above-mentioned hakama Kaisho 50-171513
The various binary alloys shown in the publication were proposed because they would generally provide higher resistance values than single metal plating films, but they have not yet been industrially adopted for the following reasons. Not yet reached. In other words, there is a problem in that it is difficult to balance the increase in resistance value due to the thinning of the film with various properties such as etching selectivity, and it is also difficult to stably produce an alloy plating film with a constant composition without variation in resistance value from conventional plating methods. This is because the problem is extremely difficult. In view of these circumstances, the applicant has already devised a tin-nickel alloy as a resistor material different from the alloys proposed above.

この合金によると、前記提案のものに比し薄膜化が可能
でこれによって約300〜4000/口の面積抵抗値を
得ることができ、またエッチング選択性がよくなり、さ
らに電気メッキで形成する場合の均一電着性にもすぐれ
たものとなることが見し、出された。この発明者らは、
上記スズーニッケル合金からなる抵抗体材料に関する引
き続く研究において、スズーニツケル合金中にさらにィ
オウを含有させたときには面積抵抗値が一段と大きな回
路基板が得られることを知り、この発明を完成するに至
ったものである。すなわち、この発明は、電気絶縁層の
少なくとも片面に抵抗体の層を介して高導電体を接合し
た構造の回路基板において、上記抵抗体がスズーニッケ
ルーィオウの三元合金からなることを特徴とする抵抗体
付き回路基板に係るものである。
According to this alloy, it is possible to make the film thinner than the above-mentioned proposal, and it is possible to obtain a sheet resistance value of about 300 to 4000/hole, and it also has good etching selectivity, and when formed by electroplating. It was found that it had excellent uniform electrodeposition properties, and was developed. The inventors
In continuing research on resistor materials made of the tin-nickel alloy, it was discovered that a circuit board with a higher sheet resistance value could be obtained by further incorporating sulfur into the tin-nickel alloy, which led to the completion of this invention. . That is, the present invention provides a circuit board having a structure in which a highly conductive material is bonded to at least one side of an electrically insulating layer via a resistor layer, in which the resistor is made of a ternary alloy of tin-nickel-di-sulfur. The present invention relates to a characteristic circuit board with a resistor.

この発明における上記の三元合金によれば、前記スズー
ニッケル合金の場合と同様の良好なエッチング選択性や
電気メッキ時のすぐれた均一電着性が得られるほか、面
積抵抗値のきわめて高い回路基板を容易にかつ安定性良
好に製造することができる。たとえば、前記スズーニッ
ケル合金の場合、面積抵抗値1000/口程度のもので
はその膜厚を数100△以下に、また約300〜400
0/口程度のものでは上記よりもさらに薄くしなければ
ならなかった。
According to the above-mentioned ternary alloy of the present invention, in addition to obtaining good etching selectivity and excellent uniform electrodeposition during electroplating as in the case of the tin-nickel alloy, it is also possible to obtain circuit boards with extremely high sheet resistance values. It can be manufactured easily and with good stability. For example, in the case of the above-mentioned tin-nickel alloy, if the sheet resistance value is about 1000/mouth, the film thickness should be reduced to several hundred △ or less, or about 300 to 400
For products with a thickness of about 0/mouth, it had to be made even thinner than the above.

これに対し、この発明の三元合金によると、合金中のィ
オウ原子の含有量を適宜設定するだけで、その膜厚をそ
れほど薄くしなくともたとえば200〜300A以上数
千Aの厚さでも5000/□程度の面積抵抗値を得るこ
とが可能となる。一方、膜厚を薄くすれば、上記の面積
抵抗値はさらに一般と大きくなり、1ぴQ′□程度まで
の面積抵抗値を容易かつ安定に得ることができる。また
、この発明の回路基板は、上記三元合金を抵抗体材料と
したことによって抵抗安定性に非常にすぐれたものとな
り、高温ないし高温下に放置したときの抵抗値の変化率
が4・さく、この点からも信頼性のきわめて高い回路基
板を提供できるとという利点がある。
On the other hand, according to the ternary alloy of the present invention, by simply setting the content of sulfur atoms in the alloy appropriately, the thickness of the film can be reduced to 5000 to 200 to 300A or more even with a thickness of several thousand A without making the thickness very thin. It becomes possible to obtain a sheet resistance value of about /□. On the other hand, if the film thickness is made thinner, the above-mentioned sheet resistance value generally becomes larger, and a sheet resistance value of up to about 1 piQ'□ can be easily and stably obtained. Furthermore, the circuit board of the present invention has excellent resistance stability by using the above-mentioned ternary alloy as the resistor material, and the rate of change in resistance value when left at high temperature or under high temperature is 4. Also from this point of view, there is an advantage that a highly reliable circuit board can be provided.

この発明の三元合金からなる抵抗体がいかなる理由で上
述の如き効果を奏しうるのかは、現在のところ必ずしも
明らかではない。
At present, it is not necessarily clear why the resistor made of the ternary alloy of the present invention is able to produce the above-mentioned effects.

推測では、上記合金の結晶粒子の微細化、非金属成分と
してのィオウ原子の混入による結晶構造の変化などに基
因するものと思われる。この発明において適用される高
導電体としては、銅箔が最も一般的であるが、その他ニ
ッケル箔、スズメッキ鋼箔及び亜鉛箔など従来公知の材
料を広く適用できる。
It is speculated that this is due to the refinement of the crystal grains of the above-mentioned alloy and the change in the crystal structure due to the inclusion of sulfur atoms as a non-metallic component. Copper foil is the most common highly conductive material used in this invention, but other conventionally known materials such as nickel foil, tin-plated steel foil, and zinc foil can be widely used.

また、これら高導電体の製造法は特に限定されず、各種
方法でつくられるものがいずれも適用可能である。この
発明における前記三元合金からなる抵抗体の層は、上記
高導電体に対して一般に電気メッキ手法により形成され
るが、その合金組成としては、スズとニッケルとの合計
量中スズ30〜85重量%、好適には35〜8の重量%
およびニッケル70〜15重量%、好適には65〜2の
重量%を含有し、かっこの含有ニッケルに対しESCA
測定による相対強度比で5〜70%、好適には10〜6
0%の範囲のィオウを含むものであることが望ましい。
Further, the manufacturing method of these highly conductive materials is not particularly limited, and materials manufactured by various methods can be applied. The layer of the resistor made of the ternary alloy in the present invention is generally formed on the high conductive material by electroplating, and the alloy composition includes 30 to 85% tin in the total amount of tin and nickel. % by weight, preferably from 35 to 8 % by weight
and 70-15% by weight of nickel, preferably 65-2% by weight of nickel, relative to the parenthetical nickel content.
Relative intensity ratio measured from 5 to 70%, preferably from 10 to 6
It is desirable that it contains sulfur in the range of 0%.

ニッケルおよびスズの含有量が上記範囲からずれると、
回路基板の面積抵抗値が充分に高くならず、回路特性上
好結果を得にくい。また、ィオウ濃度が低すぎると面積
抵抗値がそれ程高くならず、逆に多くなりすぎると回路
特性上、とくに長期的な耐湿特性の面で好結果が得られ
ない。なお、この明細書で記述するところのESCA測
定とは、ElectronSpectrosCopyf
orChemicalAnal$is(化学分析のため
の電子分光)の頭文字を取った略称であって、実際にd
uPont−島津製作所のX−線光電子分光装置ESC
A65船を用いX線はMgKQ線にて、光電子スペクト
ルを測定して実測したものである。
If the nickel and tin contents deviate from the above range,
The sheet resistance value of the circuit board is not sufficiently high, making it difficult to obtain good results in terms of circuit characteristics. Furthermore, if the sulfur concentration is too low, the sheet resistance value will not be so high, and if it is too high, good results will not be obtained in terms of circuit characteristics, particularly in terms of long-term moisture resistance. Note that the ESCA measurement described in this specification refers to ElectronSpectrosCopyf
It is an abbreviation that stands for orChemicalAnal$is (electron spectroscopy for chemical analysis), and it is actually d
uPont - Shimadzu's X-ray photoelectron spectrometer ESC
The X-rays were actually measured by measuring the photoelectron spectrum using MgKQ rays using the A65 ship.

また、この実測に際し、回路基板の高導電体をエッチン
グにより除去して抵抗体の層を露出させ、この露出面側
から上記光電子スペクトルを測定したものである。この
種のESCA測定はある特定金属に対する相対強度で以
つてその相対含有量を表わすのによく採用されているも
のである。電気メッキ手法による前記抵抗体の層の形成
は、スズ塩およびニッケル塩と共に、ピロリン酸カリウ
ム、含硫アミノ酸またはその塩および好ましくはQ−ア
ミノ酸またはその塩を含有するメッキ液を使用し、この
メッキ液から電気メッキにより高導電体上に抵抗体の層
を電着析出させるものである。
Furthermore, in this actual measurement, the highly conductive material of the circuit board was removed by etching to expose the resistor layer, and the photoelectron spectrum was measured from this exposed surface side. This type of ESCA measurement is often used to express the relative content of a specific metal by its relative strength. The formation of the layer of the resistor by electroplating uses a plating solution containing potassium pyrophosphate, a sulfur-containing amino acid or a salt thereof, and preferably a Q-amino acid or a salt thereof, together with a tin salt and a nickel salt. A layer of a resistor is electrodeposited on a highly conductive material by electroplating from a liquid.

上記のスズ塩としては、塩化第一スズ、ピロリン酸第一
スズ、硫酸第一スズなどを例示でき、おのおの単独又は
2種以上の混合系で使用できる。
Examples of the above-mentioned tin salts include stannous chloride, stannous pyrophosphate, stannous sulfate, etc., and each can be used alone or in a mixture of two or more.

使用量は金属換算で2〜50夕/夕、好ましくは3〜4
0夕/そである。また、ニッケル塩としては、塩化ニッ
ケル、ピロリン酸ニッケル、スルフアミン酸ニッケルな
どを例示でき、おのおの単独又は2種以上の混合系で使
用できる。使用量は金属換算で1.5〜25夕/そ、よ
り好ましくは3〜20夕/そである。ピロリン酸カリウ
ムは、スズ及びニッケル塩をピロリン酸銭塩として溶解
させるためのものであり、その添加量としては上記スズ
とニッケル塩の総量添加量にかんがみ100〜400夕
/その範囲とするのが好ましい。含硫アミノ酸またはそ
の塩は、合金メッキ膜中にイオウ原子を含有させるため
のものであり、システイン、ホモシスティン、システイ
ン塩酸塩、チオール・ヒスチジン、グルタチオン、ホモ
システイン・チオラクタン塩酸塩、シスタチオニン、メ
チオニン、エチオニン、シスチン、ホモシスチン、シス
チン・ジスルホキシド、システィン酸などを例示でき、
おのおの単独又は2種以上の混合系で使用できる。
Usage amount is 2 to 50 evenings/night, preferably 3 to 4 in terms of metal.
0 evening/sleeves. Further, examples of the nickel salt include nickel chloride, nickel pyrophosphate, and nickel sulfamate, and each can be used alone or in a mixture of two or more. The amount used is 1.5 to 25 evenings per day, more preferably 3 to 20 nights per day in terms of metal. Potassium pyrophosphate is used to dissolve tin and nickel salts as pyrophosphate salts, and its addition amount should be in the range of 100 to 400 m/s, considering the total amount of tin and nickel salts added above. preferable. Sulfur-containing amino acids or their salts are used to contain sulfur atoms in the alloy plating film, and include cysteine, homocysteine, cysteine hydrochloride, thiol/histidine, glutathione, homocysteine/thiolactan hydrochloride, cystathionine, methionine, Examples include ethionine, cystine, homocystine, cystine disulfoxide, cystic acid, etc.
Each can be used alone or in a mixed system of two or more.

その使用量は0.05夕/そ以上飽和濃度までとされ、
好ましくは0.1〜15夕/そである。また、必要に応
じて添加されるQーアミノ酸としては、グIJシン、ヒ
スチジン塩酸塩、フェニルアラニン、ロィシン、アスパ
ラギン酸、グルタミン酸などを例示できる。
The amount used is 0.05 evening/more than saturated concentration,
Preferably it is 0.1 to 15 days/sleeve. Furthermore, examples of the Q-amino acid that may be added as necessary include guIJ sine, histidine hydrochloride, phenylalanine, leucine, aspartic acid, and glutamic acid.

その添加量は0〜50夕/〆、好適には5〜30夕/そ
の範囲で、おのおの単独又は2種以上の混合系で使用で
きる。なおメッキ効率、特性値向上等のために、メッキ
格の餌調整剤として塩酸、硫酸、スルフアミン酸、ピロ
リン酸、アンモニア水、水酸化カリウムなどを適量添加
することもできる。上記のメッキ液を用いた電気メッキ
に当っては、そのメッキ格温度は20〜60ooの範囲
で、メッキ電流密度としては0.01A/dで以上で、
かつ5〜1000クーロン/dあの総メッキ電気量の範
囲で〆、ッキを行なうことが好ましい。
The amount added is in the range of 0 to 50 times per month, preferably 5 to 30 times per day, and each can be used alone or in a mixture of two or more types. In order to improve plating efficiency, characteristic values, etc., suitable amounts of hydrochloric acid, sulfuric acid, sulfamic acid, pyrophosphoric acid, aqueous ammonia, potassium hydroxide, etc. can be added as bait conditioners for plating. In electroplating using the above plating solution, the plating temperature is in the range of 20 to 60 oo, and the plating current density is 0.01 A/d or more.
It is preferable to perform the final plating at a total plating electricity amount of 5 to 1000 coulombs/d.

とくに好適には、メッキ作業性、コスト的問題を考慮し
て、第7図に示たように、メッキ電流密度は0.05〜
5.船/dわ、メッキ電気量は10〜400クーロン/
dめの範囲がよい。〆ッキ浴温度が適当でなくまた電流
密度が低すぎると、メッキ格の安定性が損なわれ、得ら
れる抵抗体の抵抗値のばらつきや各種特性値の低下の原
因となる。陽極として用いられる材質としては、カーボ
電極、白金被覆チタン電極、ステンレス電極の如き不溶
性電極や、ニッケル電極、ニッケルースズ合金電極など
の可溶性電極のいずれもが適用できる。このようにして
抵抗体の層を形成したのち、さらにこの層上に常法によ
り電気絶縁層を設けることにより、この発明の目的とす
る抵抗体付き回路基板が得られる。
Particularly preferably, in consideration of plating workability and cost issues, the plating current density is 0.05 to 0.05, as shown in FIG.
5. Ship/dwa, plating electricity amount is 10 to 400 coulombs/
The dth range is better. If the finalizing bath temperature is not appropriate or the current density is too low, the stability of the plating rating will be impaired, causing variations in the resistance value of the resulting resistor and deterioration of various characteristic values. As the material used as the anode, any of insoluble electrodes such as a carbode, platinum-coated titanium electrode, and stainless steel electrode, and soluble electrodes such as a nickel electrode and a nickel-tin alloy electrode can be used. After forming the resistor layer in this manner, an electrically insulating layer is further provided on this layer by a conventional method to obtain a circuit board with a resistor, which is the object of the present invention.

上記電気絶縁層を形成するための材料としては、ェポキ
シ樹脂その他の熱硬化性樹脂が好適に用いられ、またこ
れらの樹脂をガラスク。スその他の繊維基村に含浸させ
てなるプリプレグが用いられる。これら材料を抵抗体の
層上に加熱圧着(硬化)させることによって電気特性、
耐熱性にすぐれた絶縁層となすことができる。このよう
に、この発明によれば、前記工業的有用な回路基板の製
造法として、金属換算で2〜50夕/そのスズ塩と1.
5〜25夕/そのニッケル塩と共に、100〜400タ
′そのピロリン酸カリウム、0.05夕/そ以上飽和濃
度までの含硫アミノ酸またはその塩および0〜50夕/
そのQ−アミノ酸またはその塩を含有するメッキ液を使
用し、このメッキ液から電気メッキにより高導電体上に
抵抗体の層を形成することを特徴とする抵抗体付き回路
基板の製造法を提供できるものである。
Epoxy resin and other thermosetting resins are suitably used as the material for forming the electrical insulating layer, and these resins can be used as a glass material. Prepreg is used, which is impregnated with carbon fiber and other fibers. By heat-pressing (curing) these materials onto the resistor layer, the electrical properties can be improved.
It can be made into an insulating layer with excellent heat resistance. As described above, according to the present invention, as the manufacturing method of the industrially useful circuit board, the tin salt and the tin salt and the tin salt and 1.
5 to 25 evenings/with its nickel salt, 100 to 400 ta' of potassium pyrophosphate, 0.05 evening/more than sulfur-containing amino acid or its salt up to saturation concentration and 0 to 50 evening/
Provided is a method for manufacturing a circuit board with a resistor, which uses a plating solution containing the Q-amino acid or its salt, and forms a resistor layer on a highly conductive material by electroplating the plating solution. It is possible.

第1図は、上述の如くして得られるこの発明の回路基板
から回路板を作製するための工程図を示したもので、こ
の作製工程は従来と特に変るところはない。
FIG. 1 shows a process diagram for manufacturing a circuit board from the circuit board of the present invention obtained as described above, and this manufacturing process is not particularly different from the conventional circuit board.

すなわち、まず■工程において、電気絶縁層3の片面に
抵抗体の層2を介して高導軍体1を接合した構造の回路
基板における上記高導電体1上にフオトレジスト4を形
成し、つぎに{B}工程でフオトマスクを介して露光し
、現像して所定のパターンを形成する。
That is, first, in step (3), a photoresist 4 is formed on the high conductivity body 1 of the circuit board having a structure in which the high conductivity body 1 is bonded to one side of the electrical insulation layer 3 via the resistor layer 2, and then the photoresist 4 is formed on the high conductivity body 1. In step {B}, the film is exposed to light through a photomask and developed to form a predetermined pattern.

しかるのち、‘C}工程でレジスト除去部分にニッケル
メッキ5および金メッキ6を施して一対二個の電極7を
複数形成する。ついで■工程で電極7,7間のフオトレ
ジスト4が残留するようなフオトマスクを介して再び露
光し、現像する。引き続き、‘E}工程において上記■
工程でのレジスト除去部分に露出する高導電体1および
抵抗体の層2をエッチング除去して電気絶縁層3を露出
する。さらに‘F’工程で電極7,7間のフオトレジス
ト4を取り除き、これによって露出する高導電体1を(
G)工程においてエッチング除去する。かくして電極7
,7間にまたがる抵抗体の層2を残して抵抗素子となし
、この上に(H)工程で保護皮膜8を形成して、回路板
を作成する。以上詳述したとおり、この発明の抵抗体付
き回路基板における大きな特色の一つは、1000/口
以上1血○′0程度までの高い面積抵抗値を有する抵抗
体を任意の膜厚で自由に形成でき、しかも耐熱性、耐線
性などが良好で抵抗体の信頼性にすぐれる回路基板を提
供できることにある。特にこの世厭人が先に提案したス
ズーニッケル合金からなる抵抗体の層では得ることが困
難であった4000/□以上、好適には500〜300
00/口の面積抵抗値を有するとともにその抵抗安定性
にすぐれる回路基板を品質安定に製造できるという利点
がある。以下に、この発明の実施例を記載してより具体
的に説明する。なお、この発明は以下の実施例にのみ限
定されるものではない。実施例 1 35r厚の電解鋼箔を20肌×20伽の大きさに裁断し
た後、上記鋼箔(ロール状)製造時のドラム側の片面全
面にマスキング用接着保護シートを圧着し、これを洗浄
液(シップレー社製ニュートラ・クリーン68の1容量
に対して水1容量の割合で希釈した水溶液)に、室温下
3分間浸潰した。
Thereafter, in step 'C}, nickel plating 5 and gold plating 6 are applied to the resist-removed portions to form a plurality of one-to-two electrodes 7. Then, in step (2), the photoresist 4 between the electrodes 7, 7 is exposed again through a photomask and developed. Continue with the above ■ in the 'E} process.
The highly conductive material 1 and the resistive material layer 2 exposed in the portion where the resist is removed in the process are etched away to expose the electrical insulating layer 3. Furthermore, in the 'F' step, the photoresist 4 between the electrodes 7, 7 is removed, and the exposed high conductor 1 is (
G) Remove by etching in step. Thus electrode 7
, 7 is left as a resistive element, and a protective film 8 is formed thereon in step (H) to produce a circuit board. As detailed above, one of the major features of the circuit board with resistors of the present invention is that resistors having a high area resistance value of 1000 to 1000/unit or more can be freely used with any film thickness. The object of the present invention is to provide a circuit board that can be formed, has good heat resistance, wire resistance, etc., and has excellent reliability of resistors. In particular, it was difficult to obtain a resistance of 4000/□ or more, preferably 500 to 300, which was difficult to obtain with the resistor layer made of tin-nickel alloy that this worldly person proposed earlier.
There is an advantage that a circuit board having a sheet resistance value of 0.00/unit and excellent resistance stability can be manufactured with stable quality. EXAMPLES Below, examples of the present invention will be described in more detail. Note that this invention is not limited only to the following examples. Example 1 After cutting 35R thick electrolytic steel foil into a size of 20mm x 20mm, an adhesive protection sheet for masking was crimped onto the entire surface of the drum side during the production of the steel foil (roll shape), and this was It was immersed in a cleaning solution (an aqueous solution diluted at a ratio of 1 volume of NutraClean 68 manufactured by Shipley Co., Ltd. to 1 volume of water) at room temperature for 3 minutes.

その後、流水にて水洗し、さらにこれを脱イオン水にて
水洗した。次に、過硫酸アンモニウム200夕/夕およ
び濃硫酸10の‘/そからなる水溶液(以下、単に過硫
酸アンモン処理液という)に2分間浸潰し、水洗後すみ
やかに電流密度:0.松/dの、温度;25ooの一定
条件、所定時間スズーニツケルーィオウ合金のメッキを
施して抵抗体の層を形成した。なお、メッキ格は下記の
浴組成を適用した。塩化第一スズ(SnC12・班20
) 30夕/ク塩化ニッケル(NiC12・母
LO) 30夕/そピロリン酸カリウム(KP
207) 200多′そグリシン(NH21CH
2COOH) 20タ′Zシスティン塩酸塩(
HSCH2CH(NH2)COO日。HC1・日2〇)
1.5夕/そついで、銅箔
片面の前記保護シートを剥離した後、抵抗体の層上に、
ェポキシ樹脂含浸ガラス・クロス(通称プリプレグ)を
重ね合わせ、積層用プレス機により加熱辻E着すること
により、抵抗体付き回路基板を得た。上記の実施例1に
おいて、抵抗体形成のメッキ時間を15栃吻こ設定した
回路基板を用いて、下記の方法により抵抗体を構成する
三元合金の組成を調べた。結果は第1表に示されるとお
りであった。<合金組成の測定> 供試基板の銅箔全面を、ニュートラ・エッチV1(シッ
プレー社製の銅エッチング液;50午0、pH=7.6
〜7.8)によりエッチング除去した。
Thereafter, it was washed with running water, and further washed with deionized water. Next, it was immersed for 2 minutes in an aqueous solution consisting of 200 parts of ammonium persulfate and 10 parts of concentrated sulfuric acid (hereinafter simply referred to as ammonium persulfate treatment solution), and immediately after washing with water, the current density was 0. A layer of a resistor was formed by plating a tin alloy of Matsu/d at a constant temperature of 25 oo for a predetermined period of time. The following bath composition was used for plating. Stannous chloride (SnC12・Group 20
) 30 evenings/nickel chloride (NiC12/mother LO) 30 evenings/potassium pyrophosphate (KP
207) 200 polyglycine (NH21CH
2COOH) 20T'Z cysteine hydrochloride (
HSCH2CH (NH2) COO day. HC1/day 20)
1.5 pm/Then, after peeling off the protective sheet on one side of the copper foil, on the resistor layer,
A circuit board with a resistor was obtained by laminating epoxy resin-impregnated glass cloth (commonly known as prepreg) and heat cross-bonding using a laminating press. Using the circuit board in which the plating time for forming the resistor in Example 1 was set at 15 minutes, the composition of the ternary alloy constituting the resistor was investigated by the following method. The results were as shown in Table 1. <Measurement of alloy composition> The entire surface of the copper foil of the test board was coated with Nutra Etch V1 (copper etching solution manufactured by Shipley; 50:00, pH = 7.6).
~7.8) to remove it by etching.

充分に水洗したのち、中央部2肌角を切断し、再度充分
に水洗したのち乾燥させ、ESCA測定用試料とし、合
金中に含まれるィオウ濃度を含有ニッケル原子に対する
相対強度で測定した。一方、上記試料の残部を再度充分
に水洗したのち、濃硝酸30の【および脱イオン水70
机‘よりなる溶解液を用いて完全に溶解させ、スズおよ
びニッケルの濃度を原子吸光光度法により測定した。第
1表 つぎに、上記の実施例1において、メッキ時間を30〜
25の砂間に設定して得た種々の基板を用いて下記の方
法で回路板を作製した。
After thorough washing with water, two skin corners were cut from the central part, washed thoroughly with water again, and dried to prepare a sample for ESCA measurement.The sulfur concentration contained in the alloy was measured as a relative strength to the nickel atoms contained. On the other hand, after thoroughly washing the remaining part of the sample with water again, add 30% of concentrated nitric acid and 70% of deionized water.
The tin and nickel concentrations were measured by atomic absorption spectrophotometry after complete dissolution using a dissolving solution made from a mechanical solution. Table 1 Next, in the above Example 1, the plating time was 30~
Circuit boards were produced by the following method using various substrates obtained by setting 25 sand spaces.

この回路板(メッキ時間の設定によって所定の抵抗値と
されたもの)の耐熱性および耐縦性を調べた結果は、後
記の第2表に示されるとおりであった。なお、耐熱性は
100℃に10畑時間放置したときの抵抗変化率(%)
を示したものであり、また耐湿性とは40℃、90%R
H下に10餌時間放置したときの抵抗変化率(%)を示
したものである。また、上記回路板の板面全体の平均抵
抗値および抵抗値の面分布(バラッキの範囲)と、メッ
キ時間との相関性を調べた結果は、第2図に示されると
おりであった。
The results of examining the heat resistance and vertical resistance of this circuit board (which had a predetermined resistance value by setting the plating time) were as shown in Table 2 below. In addition, heat resistance is the resistance change rate (%) when left at 100℃ for 10 hours.
40℃, 90%R
The figure shows the rate of change in resistance (%) when left under H for 10 feeding hours. Further, the results of examining the correlation between the average resistance value of the entire board surface of the circuit board and the surface distribution (range of variation) of the resistance value and the plating time were as shown in FIG. 2.

<抵抗体付き回路板の作製> 抵抗体付き回路基板を前述の洗浄液に3分間浸潰した後
、水洗し乾燥させた。
<Production of circuit board with resistor> The circuit board with resistor was immersed in the above-mentioned cleaning solution for 3 minutes, then washed with water and dried.

その後、AZ−111(シップレー社製ポジ型フオトレ
ジスト)を引上げ速度5〜10仇ノ分でディッピング・
コートし、80qoで2晩ふ間加熱乾燥することにより
、銅箔表面にフオトレジスト膜を形成した。つぎに、上
記フォトルジスト膜上に靴Wの超高圧水銀灯(オーク製
作所社製HMW−N6−3、照射距離6&均)にて積算
光量値で45仇hi/の照射し、多数個の抵抗素子の各
電極部分にニッケル・メッキと金メッキとを施すための
所定のパターンを暁付けた。
After that, AZ-111 (positive photoresist manufactured by Shipley) was dipped at a pulling speed of 5 to 10 minutes.
A photoresist film was formed on the surface of the copper foil by coating and drying by heating at 80 qo for two nights. Next, the photolgist film was irradiated with an integrated light amount of 45 hi/by an ultra-high pressure mercury lamp (HMW-N6-3 manufactured by Oak Seisakusho Co., Ltd., irradiation distance: 6 & average) of shoes W, and a large number of resistors were A predetermined pattern for applying nickel plating and gold plating to each electrode portion of the device was formed.

その後、AZ−303(シップレー社製のアルカリ現像
液)を用いて室温下3分間現像し、上記各電極部分のフ
オトレジスト膜を除去し、さらに流水および脱イオン水
で30〜6町砂間洗浄した。その後、前記の過硫酸アン
モン処理液にて室温下3硯砂間処理した後、水洗した。
この除去部分に2A/d〆、5030、6分間の条件下
でニッケル・メッキを施し、さらにこのメッキ層上に0
.05A/dで、40qo、2び分間の条件下で金メッ
キを施したのち、水洗し乾燥して一対二個の電極を複数
形成した。ついで、各抵抗素子部分のフオト・レジスト
膜が残留するようなフオト・マスクを介して、前記露光
器にて前記同様の条件下で露光し、さらに前記同様の現
像および水洗処理を行なって、各抵抗素子部分以外のフ
オト・レジスト膜を除去した。
After that, it was developed for 3 minutes at room temperature using AZ-303 (an alkaline developer manufactured by Shipley) to remove the photoresist film on each of the electrodes, and then washed with running water and deionized water for 30-6 minutes. did. Thereafter, it was treated with the above-mentioned ammonium persulfate treatment solution at room temperature for 3 cycles, and then washed with water.
Nickel plating is applied to this removed part under the conditions of 2A/d〆, 5030, and 6 minutes, and then 0.
.. After gold plating was performed under the conditions of 05 A/d, 40 qo, and 2 minutes, it was washed with water and dried to form a plurality of one-to-two electrodes. Next, the photoresist film of each resistive element portion is exposed to light using the exposure device under the same conditions as described above through a photo mask that leaves the photoresist film on each resistor element portion, and then the same development and water washing treatment as described above is performed. The photoresist film other than the resistor element portion was removed.

しかるのち、ニュートラ・エッチV1(シツプレー社製
の銅エッチング液;50qo、pH=7.6〜7.8)
にて、上記除去部分に露出する電解鋼箔をエッチング除
去した。水洗後、濃硫酸335舷、濃硝酸15の‘、濃
塩酸50の上、過酸化水素水10叫および脱ィオン水5
0心からなるエッチング液を用いて、銅箔除去部分に露
出する抵抗体の層をエッチング除去した。引き続き、各
抵抗素子部分に残留するフオトレジスト膜をアセトンに
て室温下、10〜2の砂間で除去したのち、この除去部
分に露出する銅箔を前記同様のエッチング液(ニュート
ラ・エッチVI)にてエッチング除去し、充分に水洗し
た後、乾燥した。
After that, Nutra Etch V1 (copper etching solution manufactured by Shippray Co., Ltd.; 50 qo, pH = 7.6-7.8)
The electrolytic steel foil exposed in the removed portion was etched away. After washing with water, 335 ml of concentrated sulfuric acid, 15 ml of concentrated nitric acid, 50 ml of concentrated hydrochloric acid, 10 ml of hydrogen peroxide, and 5 ml of deionized water.
The layer of the resistor exposed in the area where the copper foil was removed was etched away using an etchant made of zero core. Subsequently, the photoresist film remaining on each resistor element portion was removed using acetone at room temperature with 10 to 2 sand, and then the copper foil exposed in this removed portion was etched with the same etching solution (Nutra Etch VI) as described above. The etching process was performed, the film was thoroughly washed with water, and then dried.

かくして一対二個の電極間を接続する各抵抗体の層を露
出させ、この露出抵抗体を抵抗素子として、この素子上
及びこの素子に近接する電極部分の一部にソルダーレジ
ストィンキをスクリーン印刷により塗布した。これを所
定の条件下加熱硬化させることにより、目的とする抵抗
体付き回路板を作成した。第2表 比較例 1 抵抗体のメッキ液中にシスティン塩酸塩を添加せず、か
つメッキ条件を0.5A/d〆、2500、4〜3現段
・間とした以外は、実施例1と全く同様にして抵抗体付
き回路基板をつくった。
In this way, the layer of each resistor that connects one pair of two electrodes is exposed, and this exposed resistor is used as a resistor element, and solder resist tint is screen printed on this element and a part of the electrode part near this element. It was applied by. By heating and curing this under predetermined conditions, the intended circuit board with a resistor was created. Table 2 Comparative Example 1 Same as Example 1 except that cysteine hydrochloride was not added to the resistor plating solution and the plating conditions were 0.5 A/d〆, 2500, and 4 to 3 current stages. A circuit board with a resistor was made in exactly the same way.

この基板の抵抗体の合金組成(メッキ時間15の砂間)
を前記の第1表に併記した。さらに、この基板より前記
実施例1と同様にして回路板をつくり、メッキ時間と得
られた各回路の抵抗値との関係を求めた。結果は第3図
に示されるとおりであり、抵抗値としてはせし、ぜし、
300Q′□が限度であることが判った。また、その特
性試験として実施例1の場合と同様の耐熱性および耐湿
性試験を行なった結果は、前記の第2表に併記されると
おりであった。実施例 2 抵抗体のメッキ液として、グリシンを添加せず、かつシ
スティン塩酸塩の代わりにシスチン2.0夕/そを添加
してなるものを用いた以外は、実施例1と全く同様にし
て抵抗体付き回路基板を作製した。
Alloy composition of the resistor of this board (sunama at plating time 15)
are also listed in Table 1 above. Furthermore, a circuit board was made from this board in the same manner as in Example 1, and the relationship between the plating time and the resistance value of each circuit obtained was determined. The results are shown in Figure 3, and the resistance values are
It was found that 300Q'□ was the limit. Further, as a characteristic test, heat resistance and moisture resistance tests similar to those in Example 1 were conducted, and the results were as shown in Table 2 above. Example 2 The process was carried out in exactly the same manner as in Example 1, except that glycine was not added and cystine 2.0/cystine was added instead of cysteine hydrochloride as the plating solution for the resistor. A circuit board with a resistor was fabricated.

この基板の抵抗体の合金組成を実施例1と同様にして調
べた結果は、スズ70.2重量%、ニッケル29.8重
量%で、ィオゥ含有量はESCA測定でのニッケルに対
する相対強度で19.2%であった。つぎに、上記基板
から実施例1と同様にして回路板を作製し、この回路板
の抵抗値とメッキ時間との関係を調べた結果は、第4図
に示されるとおりであった。
The alloy composition of the resistor of this board was investigated in the same manner as in Example 1, and the results were 70.2% by weight of tin and 29.8% by weight of nickel, and the iodine content was 19% by weight relative to nickel in ESCA measurement. It was .2%. Next, a circuit board was prepared from the above substrate in the same manner as in Example 1, and the relationship between the resistance value of this circuit board and the plating time was investigated, and the results were as shown in FIG.

また、耐熱性および耐湿性を前記同様にして調べた結果
は、つぎの第3表に示されるとおりであった。第3表 実施例 3〜6 抵抗体合金メッキ用のメッキ液として、つぎの第4表に
示す如く、塩化第一スズを6〜45夕/夕及び塩化ニッ
ケルを15〜54夕/その範囲でしかも両者の和が60
タ′そとなるように調整したメッキ液を用い、かつシス
ティン塩酸塩の代わりにホモシスチン1.1夕/夕を添
加した以外は、実施例1と全く同様にして抵抗体付き回
路基板を作製した。
Further, the heat resistance and moisture resistance were investigated in the same manner as above, and the results were as shown in Table 3 below. Table 3 Examples 3 to 6 As a plating solution for resistor alloy plating, as shown in Table 4 below, stannous chloride was used in a range of 6 to 45 m/m and nickel chloride was added in a range of 15 to 54 m/m. Moreover, the sum of both is 60
A circuit board with a resistor was prepared in exactly the same manner as in Example 1, except that a plating solution adjusted to be resistant to heat was used, and 1.1 μl/ml of homocystine was added instead of cysteine hydrochloride. .

この基板の合金組成を前記同様にして調べた結果、およ
び上記基板から前記同様に回路板をつくり、その抵抗値
が約4500′口のものについて特性試験を行なった結
果は、つぎの第4表に示される通りであった。第4表 比較例 2 抵抗体メッキ用のメッキ液として、塩化ニッケルを6夕
/夕、かつ塩化第一スズを54タ′そ添加してなるもの
を用いた以外は、実施例4と全く同様にして抵抗体付き
回路基板を作製した。
The alloy composition of this board was investigated in the same manner as above, and the results of a characteristic test on a circuit board made from the above board and having a resistance value of approximately 4500' are shown in Table 4 below. It was as shown in Table 4 Comparative Example 2 Completely the same as Example 4, except that the plating solution for resistor plating was one in which nickel chloride was added for 6 days/day and stannous chloride was added for 54 times. A circuit board with a resistor was fabricated using the same method.

この基板の合金組成を前記第4表に併記した。またこの
基板から前記同様にして回路板を得、メッキ時間(8〜
10鼠砂)と得られた回路板の抵抗値との関係を求めた
。結果は第5図に示されるとおり、抵抗値が1000′
口以下と非常に低かった。参考までに抵抗値が600/
口のものにつき、その耐熱性および耐泡性を調べた結果
を前記第4表に併記した。比較例 3抵抗体メッキ用の
メッキ液として、塩化第一スズを添加せず、かつ塩化ニ
ッケルを60夕/Z添加してなるものを用いた以外は、
実施例4と全く同様にして抵抗体のメッキを行なった。
The alloy composition of this substrate is also listed in Table 4 above. Further, a circuit board was obtained from this board in the same manner as described above, and the plating time (8~
The relationship between the resistance value of the obtained circuit board and the resistance value of the obtained circuit board was determined. As shown in Figure 5, the result is a resistance value of 1000'.
It was very low, less than a mouthful. For reference, the resistance value is 600/
The results of examining the heat resistance and bubble resistance of the mouthpieces are also listed in Table 4 above. Comparative Example 3 Except for using a plating solution for resistor plating in which stannous chloride was not added and nickel chloride was added at 60/Z.
Plating of a resistor was carried out in exactly the same manner as in Example 4.

しかし、0.5A/d〆では5分間メッキしてもほとん
どメッキされず、ヤケの原因と思われる黒っぽさがある
のみであった。参考のために長時間メッキにより得た抵
抗体の合金組成だけを前記第4表に併記した。実施例
7〜10 抵抗体合金メッキ用のメッキ液として、つぎの第5表に
示される組成のものを用いた以外は、実施例1と同様に
して抵抗体付き回路基板を得た。
However, at 0.5 A/d, there was almost no plating after 5 minutes of plating, and only a blackish appearance was observed, which is thought to be the cause of discoloration. For reference, only the alloy composition of the resistor obtained by long-term plating is also listed in Table 4 above. Example
7-10 Circuit boards with resistors were obtained in the same manner as in Example 1, except that the plating solution shown in Table 5 below was used as the plating solution for resistor alloy plating.

この基板の合金組成を調べた結果、およびこの基板から
回路板を作製し、その抵抗値が約6000/口のものに
ついて特性試験を行なった結果は、つぎの第5表に示さ
れるとおりであった。第5表実施例 11〜15 抵抗体合金のメッキ液として、システイン塩酸塩の代わ
りにシスチン0.1〜12夕/そ添加してなるものを用
い、かつメッキ時間を100秒とした以外は、実施例1
と同様にして抵抗体付き回路基板を作製した。
The results of investigating the alloy composition of this board, and of conducting a characteristic test on a circuit board made from this board with a resistance value of approximately 6000/unit, are as shown in Table 5 below. Ta. Table 5 Examples 11 to 15 Except that the plating solution for the resistor alloy was one containing 0.1 to 12 hours of cysteine instead of cysteine hydrochloride, and the plating time was 100 seconds. Example 1
A circuit board with a resistor was fabricated in the same manner as above.

この基板の合金組成を調べた結果、およびこの基板から
作製した回路板の耐熱性、耐湿性を調べた結果は、つぎ
の第6表に示されるとおりであった。また、第6図は上
記シスチンの添加量と面積抵抗値との関係を図示したも
のである。第6表実施例 16〜19 抵抗体合金メッキ用のメッキ液として、システィン塩酸
塩の代わりに、つぎの第7表に示される各種の含硫アミ
ノ酸を用いた以外は、実施例1と同様にして抵抗体付き
回路基板を作製した。
The results of examining the alloy composition of this substrate and the heat resistance and moisture resistance of a circuit board made from this substrate are as shown in Table 6 below. Further, FIG. 6 illustrates the relationship between the amount of cystine added and the sheet resistance value. Table 6 Examples 16 to 19 The same procedure as Example 1 was carried out except that various sulfur-containing amino acids shown in Table 7 below were used instead of cysteine hydrochloride as the plating solution for resistor alloy plating. A circuit board with a resistor was fabricated.

このX基板の合金組成を調べた結果、およびこの基板か
ら回路板を作製し、その抵抗値が約5000′口のもの
につき、耐熱性および耐湿性を調べた結果は、第7表に
併記される通りであった。第7表 実施例 20〜24 メッキ条件を、つぎの第8表に示される如く「0.1〜
2.5A′d枕、30〜6000にした以外は、実施例
13と全く同様にして抵抗体付き回路基板を作製した。
The results of investigating the alloy composition of this X substrate, as well as the results of investigating the heat resistance and moisture resistance of a circuit board made from this substrate and having a resistance value of approximately 5000', are listed in Table 7. It was as expected. Table 7 Examples 20 to 24 The plating conditions were set to 0.1 to 24 as shown in Table 8 below.
A circuit board with a resistor was produced in exactly the same manner as in Example 13, except that the thickness was 2.5 A'd and 30 to 6,000.

この基板の合金組成を調べた結果、およびこの基板から
回路板を作製し、その抵抗値が約8000/口のものに
つき耐熱性および耐緑性を調べた結果は、第8表に示さ
れる通りであった。第8表
Table 8 shows the results of investigating the alloy composition of this board, and the heat resistance and green resistance of a circuit board made from this board with a resistance value of approximately 8000/piece. Met. Table 8

【図面の簡単な説明】[Brief explanation of drawings]

・ 第1図A〜日はこの発明の抵抗体付き回路基板から
所定の回路板を形成するための工程図、第2図、第4図
および第6図はこの発明の抵抗体付き回路基板の性能を
示す特性図、第3図および第5図はこの発明とは異なる
抵抗体付き回路基板の性能を示す特性図、第7図はこの
発明の抵抗体付き回路基板における抵抗体の層を形成す
るための好適なメッキ条件の範囲を示す説明図である。 1・・・・・・高導電体、2・・・・・・抵抗体の層、
3・…・・電気絶縁層。第1図 第2図 第3図 第ム図 第5図 第6図 第7図
- Figures 1A-1 are process diagrams for forming a predetermined circuit board from the circuit board with a resistor of the present invention, and Figures 2, 4, and 6 are diagrams of the circuit board with a resistor of the present invention. Characteristic diagrams showing the performance, Figures 3 and 5 are characteristic diagrams showing the performance of a circuit board with a resistor different from the present invention, and Figure 7 shows the formation of the resistor layer in the circuit board with a resistor of the present invention. FIG. 3 is an explanatory diagram showing a range of suitable plating conditions for the purpose of the present invention. 1... High conductor, 2... Resistor layer,
3... Electrical insulation layer. Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1 電気絶縁層の少くとも片面に抵抗体の層を介して高
導電体を接合した構造の回路基板において、上記抵抗体
がスズ−ニツケル−イオウの三元合金からなることを特
徴とする抵抗体付き回路基板。 2 三元合金がスズとニツケルとの合計量中スズ30〜
85重量%およびニツケル70〜15重量%を含有し、
かつこの含有ニツケルに対しESCA測定による相対強
度比で5〜70%のイオウを含むものからなる特許請求
の範囲第1項記載の抵抗体付き回路基板。 3 電気絶縁層の少くとも片面に抵抗体の層を介して高
導電体を接合した構造の回路基板を製造するに当たり、
金属換算で2〜50g/lのスズ塩と1.5〜25g/
lのニツケル塩と共に、100〜400g/lのピロリ
ン酸カリウム、0.05g/l以上飽和濃度までの含流
アミノ酸またはその塩および0〜50g/lのα−アミ
ノ酸またはその塩を含有するメツキ液を使用し、このメ
ツキ液から電気メツキにより高導電体上に抵抗体の層を
形成することを特徴とする抵抗体付き回路基板の製造法
[Scope of Claims] 1. A circuit board having a structure in which a highly conductive material is bonded to at least one side of an electrically insulating layer via a resistor layer, wherein the resistor is made of a ternary alloy of tin-nickel-sulfur. A circuit board with a resistor featuring the following. 2 The ternary alloy contains 30 to 30 tin in the total amount of tin and nickel.
85% by weight and 70-15% by weight of nickel,
The circuit board with a resistor according to claim 1, which contains sulfur in a relative intensity ratio of 5 to 70% based on ESCA measurement with respect to the nickel contained therein. 3. When manufacturing a circuit board having a structure in which a highly conductive material is bonded to at least one side of an electrically insulating layer via a resistor layer,
2 to 50 g/l of tin salt and 1.5 to 25 g/l of metal equivalent
nickel salt, 100 to 400 g/l of potassium pyrophosphate, 0.05 g/l or more of a saturated amino acid or its salt, and 0 to 50 g/l of α-amino acid or its salt. A method for producing a circuit board with a resistor, characterized in that a layer of a resistor is formed on a highly conductive material by electroplating from this plating solution.
JP57104592A 1982-06-16 1982-06-16 Circuit board with resistor and its manufacturing method Expired JPS6016117B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57104592A JPS6016117B2 (en) 1982-06-16 1982-06-16 Circuit board with resistor and its manufacturing method
US06/505,126 US4532186A (en) 1982-06-16 1983-06-16 Circuit substrate with resistance layer and process for producing the same
DE3321900A DE3321900C2 (en) 1982-06-16 1983-06-16 Substrate for a circuit with a resistive layer and method for its manufacture
NL8302150A NL8302150A (en) 1982-06-16 1983-06-16 OUTPUT PLATE FOR A PRESSURE CIRCUIT WITH A RESISTANCE COAT AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57104592A JPS6016117B2 (en) 1982-06-16 1982-06-16 Circuit board with resistor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS58220491A JPS58220491A (en) 1983-12-22
JPS6016117B2 true JPS6016117B2 (en) 1985-04-23

Family

ID=14384696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57104592A Expired JPS6016117B2 (en) 1982-06-16 1982-06-16 Circuit board with resistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6016117B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330210A3 (en) * 1988-02-26 1990-11-07 Gould Electronics Inc. Resistive metal layers and method for making same

Also Published As

Publication number Publication date
JPS58220491A (en) 1983-12-22

Similar Documents

Publication Publication Date Title
US3808576A (en) Circuit board with resistance layer
HU208715B (en) Method for forming printed circuits with selectively etchable metal layers, as well as method for final forming pattern of high definition
CA2076738A1 (en) Resistive metal layers and method for making same
JPH0224037B2 (en)
JP2013254961A (en) Rolled copper foil or electrolytic copper foil for electronic circuit, and method of forming electronic circuit using the same
JPH09500762A (en) Circuit board material with barrier layer
US4532186A (en) Circuit substrate with resistance layer and process for producing the same
DE2847821C2 (en) A substrate for a printed circuit board with a resistive coating and a method for its manufacture
JPS6016117B2 (en) Circuit board with resistor and its manufacturing method
JP3022969B2 (en) Resistive metal layer and its manufacturing method
JP2003526196A (en) Compositions and methods for manufacturing integrated resistors on printed circuit boards
US5560812A (en) Method for producing a metal film resistor
JPS59103396A (en) Circuit board with resistor and method of producing same
JPS6346561B2 (en)
JPS6089582A (en) Etching solution for tin-nickel-sulfur alloy
JPS59214290A (en) Method of producing circuit board with resistor
JPS59215787A (en) Circuit board with resistor and method of producing same
JPS6256677B2 (en)
JPS63149393A (en) Invar foil
JP6954345B2 (en) Conductive substrate, manufacturing method of conductive substrate
DE2164490B2 (en) Process for producing a conductor pattern of an electronic circuit by etching
JPS5823954B2 (en) Teiko Taitsuki Kairo Banzai Ryo
JPS62238393A (en) Method for electroplating aluminum material
JPH0417211A (en) Formation of electric conductive layer on insulation material
JPS5996275A (en) Manufacture of slit metallic plate