JPS60160178A - Field effect transistor and manufacture thereof - Google Patents

Field effect transistor and manufacture thereof

Info

Publication number
JPS60160178A
JPS60160178A JP1684084A JP1684084A JPS60160178A JP S60160178 A JPS60160178 A JP S60160178A JP 1684084 A JP1684084 A JP 1684084A JP 1684084 A JP1684084 A JP 1684084A JP S60160178 A JPS60160178 A JP S60160178A
Authority
JP
Japan
Prior art keywords
layer
schottky barrier
electrode
semiconductor substrate
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1684084A
Other languages
Japanese (ja)
Inventor
Michitomo Iiyama
飯山 道朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1684084A priority Critical patent/JPS60160178A/en
Publication of JPS60160178A publication Critical patent/JPS60160178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To achieve the improvement in Schottky barrier effect and that in thermal and electrical stability simultaneously by performing ion implantation of the elements which will become impurities doped in Al after vapor deposition of Al which will become Schottky barrier gate electrodes. CONSTITUTION:A GaAs semiconductor layer 2 is grown on a semiinsulating substrate 1 and a source electrode 3 and a drain electrode 4 are formed selectively. The resist layer 5 the desired part of which is exposed is formed on a surface of the layer 2. An Al layer 6 as a Schottky barrier gate electrode is formed by vapor deposition. Oxygen which will become the doped impurity in the layer 6 is ion-implanted, after which the unnecessary Al layer is removed by liftoff technique. Then the improvement in Schottky barrier effect can be contrived by accelerating the speed of vapor deposition when fabricating the Al gate electrode 6. Also, the requirements for improvements in performance and reliability can be satisfied simultaneously by increasing the doped impurities in the vicinity of the electrode 6.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はMショットキバリアゲート電極構造を有する電
界効果トランジスタ及びその製法に関するもので、Mを
連続して蒸着した後Mの含有不純物となる元素をイオン
注入する事により、高性能化と高信頼度化の両要求を同
時に満足させる事を目的としている。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a field effect transistor having an M Schottky barrier gate electrode structure and a method for manufacturing the same, in which M is continuously deposited and then an element that becomes an impurity contained in M is ion-implanted. By doing so, the aim is to simultaneously satisfy the demands for both high performance and high reliability.

以下、半導体基板として砒化ガリウム(GaAs)を用
いたMショットキバリアゲート構造のGaAs電界効果
トランジスタ(GaAs MES FET ) を例に
挙げて説明する。
Hereinafter, a GaAs field effect transistor (GaAs MES FET) having an M Schottky barrier gate structure using gallium arsenide (GaAs) as a semiconductor substrate will be described as an example.

〔背景技術〕[Background technology]

GaAs MBS FET の高性能化及び高信頼度化
を図るには、Mショットキバリア電極の果す役割が重要
な要因である事はよく知られている。そしてこれはりの
GaAs に対するバリアハイド(障壁の高さ)及びパ
ターン微細化によるM膜の抵抗率の良否で代表される性
能要因と、熱的、電気的な劣化速度の大小で論議される
信頼度要因とに大別される。さて、高性能化の観点から
は、M膜中の含有不純物の微量化が不可欠であり、Mの
ような活性な金属の場合、同一真空度の条件の下ではり
蒸着粒子の酸素(02)との反応(吸着及び吸蔵)の確
率を減らすため、作業性に支障を来たさない範囲で蒸着
速度を大きくする事が望ましい。
It is well known that the role played by the M Schottky barrier electrode is an important factor in improving the performance and reliability of GaAs MBS FETs. Performance factors such as the resistivity of the M film due to the barrier hide (height of the barrier) and pattern miniaturization for GaAs, and reliability are discussed in terms of thermal and electrical deterioration rates. It is broadly divided into factors. Now, from the viewpoint of high performance, it is essential to reduce the amount of impurities contained in the M film, and in the case of an active metal such as M, oxygen (02) of the beam-deposited particles under the same vacuum condition. In order to reduce the probability of reaction (adsorption and occlusion) with the metal, it is desirable to increase the deposition rate within a range that does not impede workability.

他方、高信頼度化を考えた場合、微量の酸素の存在がM
の再結晶や再蒸発及びマイグレーションを抑制し、熱的
・電気的に安定な膜質を得る働きをする事が実験的及び
経験的に判っており、しなかって蒸着速度は比較的小さ
くする方が良い。
On the other hand, when considering high reliability, the presence of trace amounts of oxygen
It has been experimentally and empirically found that this function suppresses recrystallization, re-evaporation, and migration of evaporation, and obtains a thermally and electrically stable film quality. good.

このように、これらの両要因は、M膜中の含有不純物(
特KOs 量)で相反する。このような観点□から、従
来、この種のりショットキバリア電極構造では、FET
の使用目的に応じて、両要因の一方に犠牲が強いられる
場合が多く、両要因をほぼ同時に満足するりショットキ
バリアゲート電極を形成する方法としては、蒸着速度を
負の変化率で連続的或いは段階的に変化させる方法が提
案されてい九〇つまり、半導体基板に対するMショット
キバリアゲート電極の形成において、半導体基板直上部
(半導体基板とり膜との界面近傍)で大きな蒸着速度か
らなる含有不純物量の少ないす膜を形成する事による性
能改善と、そこから所定の膜厚迄は蒸着速度を負の変化
率で連続的或いは段階的に変化、つまり減少させてU膜
中の含有不純物量を除々に増加させる事による信頼度゛
゛要因改善とを同時に達成しようというものである。し
かし、M蒸着速度の制御方法及び蒸着炉内の残留酸素量
・基板のチャージ量による条件の変化等に伴なって再現
性・制御性良いMショットキバリアゲート電極の形成は
困難であった。
Thus, both of these factors affect the impurities contained in the M film (
Special KOs amount). From this point of view □, conventionally, this type of glue Schottky barrier electrode structure
Depending on the purpose of use, sacrifices are often made to one of the two factors.The method of satisfying both factors almost simultaneously or forming a Schottky barrier gate electrode is to continuously or continuously change the deposition rate at a negative rate of change. In other words, in forming an M Schottky barrier gate electrode on a semiconductor substrate, a method of changing the amount of impurities in stages has been proposed. Improve performance by forming a U film with less impurities, and gradually reduce the amount of impurities in the U film by changing the deposition rate continuously or stepwise at a negative rate of change until a predetermined film thickness is reached. The aim is to simultaneously improve the reliability factor by increasing the reliability factor. However, it has been difficult to form an M Schottky barrier gate electrode with good reproducibility and controllability due to changes in conditions such as the method of controlling the M vapor deposition rate, the amount of residual oxygen in the vapor deposition furnace, and the amount of charge on the substrate.

〔発明の開示〕[Disclosure of the invention]

この発明は、上記の欠点を除去するためになされたもの
で、半導体基板に対するリショットキバリアゲート電極
の形成において、大きな蒸着速度からなる含有不純物量
の少な&% A−e31[を形成する事による性能改善
と、蒸着後含有不純物となる元素を制御性の良いイオン
注入によりす膜中の表面近傍に打ち込む事による信頼度
要因の改善とを達成することのできるMショットキバリ
ア電極を有する電界効果トランジスタ及びその製法を提
供するものである。
This invention was made in order to eliminate the above-mentioned drawbacks, and it is possible to form a Lyschottky barrier gate electrode on a semiconductor substrate by forming a . A field effect transistor with an M Schottky barrier electrode that can improve performance and improve reliability by implanting elements that become impurities after vapor deposition near the surface of the film through well-controlled ion implantation. and its manufacturing method.

以下、実施例を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using Examples.

第1図(a)〜(e)は、GaAs 、 MES FE
T の本発明による製造方法の一実施例の主要工程を示
す断面図である。
Figures 1(a) to (e) show GaAs, MES FE
FIG. 3 is a cross-sectional view showing the main steps of an embodiment of the method for manufacturing T according to the present invention.

嬶、まず、第1図(a)に示すように、半絶縁性基板l
上に周知の気相エピタキシャル成長法などによって動作
層としてGaAs半導体層2を生成させ、その表面に例
えばAuGe−Ni−Auからなるソース電極3および
ドレイン電極4を選択的に形成し、不要なGaAs半導
体層2を選択的に除去(図中では省略)して同図(a)
に示す試料を用意する。この後筒1w1(b)に示すよ
うにソース電極8とドレイン電極4の間のGaAs半導
体層2の表面に所望の部分を露出させ、他を被覆するレ
ジスト層5を形成する。その後、第1図(C)に示すよ
うに周知の蒸着法によりゲー、ト電極としてのM層6を
形成する、このゲート電極としてのAフ層6は本発明の
目的を達成するための主要な構成要素で、前述したよう
に蒸着速度はプロセスの作業性に支障をきたさない範囲
でなるべく大きい値とする。この値は、2u膜の抵抗率
がFET特性の劣化もたらさぬ値とすべきで、−例とし
て1O−5〜10’Torrの真空度の下では、数百X
/secが考えられる。この後第1図(d)に示すよう
にA!模膜中おいて含有不純物となる酸素をイオン注入
する。ウェハ表面は、所望の部分はA!層6で、それ以
外の部分はレジ曳スト層5上に形成されたす層6で、お
おわれているkめ、酸素のイオン注入はGaAs半導体
層2にはなされない。又、イオン注入のエネルギーは含
有不純物となる酸素がM層表面近傍に存在し、かつ、M
層を劣化させない低い値とし、かつ、注入量はり!Iの
平均抵抗率に鑑みて決定され、平均抵抗率を大幅に上昇
させ、FET特性を劣化の傾向に導く程大量であっては
ならない。この後、周知のリフトオフ技術により不要な
M層を除去する事により、第1図(e)に示すようなソ
ース3、ドレイン4、ゲート6の各電極が配置されたF
ET構造を得る。
First, as shown in FIG. 1(a), a semi-insulating substrate l
A GaAs semiconductor layer 2 is formed thereon as an active layer by a well-known vapor phase epitaxial growth method, and a source electrode 3 and a drain electrode 4 made of, for example, AuGe-Ni-Au are selectively formed on the surface of the GaAs semiconductor layer 2 to remove unnecessary GaAs semiconductor. The same figure (a) is obtained by selectively removing layer 2 (omitted in the figure).
Prepare the sample shown in . After this, as shown in the cylinder 1w1(b), a desired portion of the surface of the GaAs semiconductor layer 2 between the source electrode 8 and the drain electrode 4 is exposed, and a resist layer 5 is formed to cover the rest. Thereafter, as shown in FIG. 1(C), an M layer 6 as a gate electrode is formed by a well-known vapor deposition method. As described above, the vapor deposition rate is set to a value as high as possible within a range that does not impede the workability of the process. This value should be such that the resistivity of the 2u film does not cause deterioration of the FET characteristics.
/sec is considered. After this, as shown in FIG. 1(d), A! Oxygen, which becomes an impurity contained in the simulated film, is ion-implanted. The desired part of the wafer surface is A! Oxygen ions are not implanted into the GaAs semiconductor layer 2 because the rest of the layer 6 is covered with a layer 6 formed on the resist layer 5 . In addition, the energy of ion implantation is such that oxygen as a contained impurity exists near the surface of the M layer, and
A low value that does not deteriorate the layer, and a high injection amount! It is determined in consideration of the average resistivity of I, and must not be so large as to significantly increase the average resistivity and tend to deteriorate the FET characteristics. After that, by removing the unnecessary M layer using a well-known lift-off technique, the F layer with the source 3, drain 4, and gate 6 electrodes as shown in FIG. 1(e) is created.
Obtain the ET structure.

このようにAJI?ゲート電極6形成の際、半導体7、
層2の直上部では、蒸着速度音大きくする事により、形
成される4す膜中の含有不純物量(特に02の吸着、吸
蔵)が少なくなり、ショットキバリア効果の改善が図れ
る。又、酸素のイオン注入によりA1膜中表面近傍の含
有不純物を大きくでき、性能改善並びに信頼度改善の両
要求が同時に満足できる。
AJI like this? When forming the gate electrode 6, the semiconductor 7,
Immediately above layer 2, by increasing the deposition rate, the amount of impurities (particularly adsorption and occlusion of 02) in the formed four-layer film is reduced, and the Schottky barrier effect can be improved. In addition, by implanting oxygen ions, it is possible to increase the amount of impurities contained in the A1 film near the surface, thereby satisfying both requirements for performance improvement and reliability improvement at the same time.

尚、上記実施例ではGaAs MES FET の場合
について説明したが、他の半導体基板に対応する半導体
層からなるFETに対しても適用できることは言うまで
もない。
In the above embodiment, the case of a GaAs MES FET was explained, but it goes without saying that the present invention can also be applied to FETs made of semiconductor layers corresponding to other semiconductor substrates.

又、上記実施例では、平坦なゲート構造の場合について
示したが、掘込み(リセス)ゲート構造としても何ら支
障はない。
Further, in the above embodiment, a case of a flat gate structure is shown, but there is no problem in using a recessed gate structure.

更に、上記実施例では、動作層である半導体層2を全面
に形成してから所望部分を除いて取り除くメサ構造の場
合について示したが、所望の動作層、あるいは/又は、
それ以外の部分をイオン注入等の方法により形成するブ
レーナ構造としても何ら支障はない。
Further, in the above embodiment, a mesa structure is shown in which the semiconductor layer 2, which is an active layer, is formed over the entire surface and then removed except for a desired portion.
There is no problem in forming the other parts of the brainer structure by a method such as ion implantation.

〔産業上の利用可能性〕[Industrial applicability]

以上説明したように本発明によれば、半導体基板上に蒸
着法により人eショットキバリアゲート電極を形成する
際、蒸着速度を大きくして膜中の含有不純物量の低減化
を図り、しかる後AJ膜の表面近傍に含有不純物となる
酸素をイオン注入する事により、高性能化(ショットキ
バリア効果の改善)と高信頼度化(熱的、電気的安定性
の向上)を同時に達成する事ができる。
As explained above, according to the present invention, when forming a Schottky barrier gate electrode by vapor deposition on a semiconductor substrate, the vapor deposition rate is increased to reduce the amount of impurities contained in the film, and then the AJ By ion-implanting oxygen as a contained impurity near the surface of the film, it is possible to simultaneously achieve higher performance (improved Schottky barrier effect) and higher reliability (improved thermal and electrical stability). .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b) (C)(d)及び(e)は本発
明の一実施例を示す主要工程図である。 図中、■は半絶縁性GaAs 基板、 2はGaAs 半導体層、 3はソース電極、 4はドレイン電極、 5はレジスト層、 6はゲート電極、 7は注入される酸素 である。尚、図中同一符号は同一または相当部分方旧
1(a), (b), (C), (d) and (e) are main process diagrams showing one embodiment of the present invention. In the figure, ■ is a semi-insulating GaAs substrate, 2 is a GaAs semiconductor layer, 3 is a source electrode, 4 is a drain electrode, 5 is a resist layer, 6 is a gate electrode, and 7 is oxygen to be implanted. In addition, the same symbols in the figures are the same or corresponding parts are older.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に形成されたソース及びドレインの
両電極間に、半導体基板の直上から所定の膜厚に至る迄
ゲート金属を連続して蒸着した後、該金属の含有不純物
となる元素をイオン注入して形成したAlショットキー
バリアゲート電極を有することを特徴とする電界効果ト
ランジスタ(2)半導体基板上にソース電極およびドレ
イン電極を形成する工程と上記ソース電極とドレイン電
極間の半導体基板表面上に所望の部分を露出させ他を被
覆するレジスト層を形成する工程と、このレジスト層が
形成された半導体基板上の全面に所定の膜厚に至るまで
連続的蒸着してA4層を形成する工程と、このAt層に
含有不純物となる元素をイオン注入する工程と、上記半
導体基板上に直接形成されたAj’層からなるAl シ
ョットキバリアゲート電極のみを残してそれ以外のA1
層および上記レジスト層を除く工程とからなることを特
徴とする電界効果トランジスタの製造方法。
(1) After successively depositing gate metal between the source and drain electrodes formed on the semiconductor substrate from just above the semiconductor substrate to a predetermined film thickness, the elements that become impurities contained in the metal are Field effect transistor characterized by having an Al Schottky barrier gate electrode formed by ion implantation (2) Step of forming a source electrode and a drain electrode on a semiconductor substrate and a surface of the semiconductor substrate between the source electrode and the drain electrode A step of forming a resist layer that exposes a desired portion and covers the rest, and forming an A4 layer by continuously depositing the resist layer over the entire surface of the semiconductor substrate to a predetermined thickness. A step of ion-implanting an element to be a contained impurity into this At layer, and an Al Schottky barrier gate electrode formed directly on the semiconductor substrate except for the Al Schottky barrier gate electrode.
A method for manufacturing a field effect transistor, comprising the steps of removing the resist layer and the resist layer.
JP1684084A 1984-01-30 1984-01-30 Field effect transistor and manufacture thereof Pending JPS60160178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1684084A JPS60160178A (en) 1984-01-30 1984-01-30 Field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1684084A JPS60160178A (en) 1984-01-30 1984-01-30 Field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60160178A true JPS60160178A (en) 1985-08-21

Family

ID=11927398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1684084A Pending JPS60160178A (en) 1984-01-30 1984-01-30 Field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60160178A (en)

Similar Documents

Publication Publication Date Title
EP0064370B1 (en) High electron mobility semiconductor device
EP0592064B1 (en) Method of producing a field effect transistor
US5538910A (en) Method of making a narrow gate electrode for a field effect transistor
JPH05326561A (en) Manufacture of field effect transistor
JPH0620081B2 (en) Method of manufacturing self-aligned MESFET having T-shaped gate shape
JPH0324060B2 (en)
JPS60160178A (en) Field effect transistor and manufacture thereof
JPH07105473B2 (en) Method for manufacturing MES FET
US5698871A (en) Heterojunction bipolar transistor
JPH0472384B2 (en)
JP2682032B2 (en) Method for manufacturing semiconductor device
JP2541230B2 (en) Method for manufacturing field effect transistor
JPH0439772B2 (en)
JPH024137B2 (en)
JPS58166775A (en) Field-effect transistor and manufacture thereof
JPH0216008B2 (en)
JPS6190470A (en) Manufacture of compound semiconductor device
JP2568680B2 (en) Method for manufacturing compound semiconductor device
JPH0147023B2 (en)
JPS63232373A (en) Semiconductor device and manufacture thereof
JPH03231424A (en) Manufacture of compound semiconductor device
JPH05217937A (en) Manufacture of semiconductor device
JPH0697430A (en) Insulated gate type field effect transistor
JPS6331114A (en) Manufacture of compound semiconductor device
JPH0563946B2 (en)