JPS60158998A - Bonded flux for submerged arc welding - Google Patents

Bonded flux for submerged arc welding

Info

Publication number
JPS60158998A
JPS60158998A JP1182084A JP1182084A JPS60158998A JP S60158998 A JPS60158998 A JP S60158998A JP 1182084 A JP1182084 A JP 1182084A JP 1182084 A JP1182084 A JP 1182084A JP S60158998 A JPS60158998 A JP S60158998A
Authority
JP
Japan
Prior art keywords
flux
particles
smaller
bulk density
particle strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1182084A
Other languages
Japanese (ja)
Other versions
JPH0239358B2 (en
Inventor
Takashi Kato
隆司 加藤
Ryuichi Motomatsu
元松 隆一
Toshiya Mibu
壬生 敏也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1182084A priority Critical patent/JPS60158998A/en
Publication of JPS60158998A publication Critical patent/JPS60158998A/en
Publication of JPH0239358B2 publication Critical patent/JPH0239358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To provide a titled flux which is hardly pulvesizable and maintains good air permeability and welding operability for a long period by preparing a flux which has a specific grain size distribution and bulk density and of which the particle strength by a prescribed measuring method is a specific value or below. CONSTITUTION:A flux consisting of 30-60wt% particles larger than >=840mu grain size and <=20wt% particles smaller than 210mu grain size and having 1.1- 1.8g/cm<2> bulk density and <=10 particle strength C is prepd. The strength C is the value obtd. from C=B-A by putting 50g the flux of which the constituting ratio (wt%) smaller than 210mu is A together with 9 pieces of steel balls having 8mm. diameter into a cylindrical vessel sized 40mm. inside diameter and 300mm. length and rotating the vessel for 60min at a speed of 30 revolutions/min around the line centering at the point of 150mm. in the axial line direction from the centers at both ends of the vessel, running through said points and intersecting orthogonally with the axis of the cylinder, then measuring the constituting ratio (wt%) B of the particles smaller than 210mu.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はサブマージアーク溶接法に用いるポンドフラッ
クスに係り、特に繰り返し使用しても粉化を生じにくく
、かつ適正な通気性を有し、良好な溶接作業性を長く保
持出来るフラックスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to pound flux used in submerged arc welding, and in particular, it is resistant to pulverization even after repeated use, has appropriate air permeability, and produces good welding. This relates to a flux that can maintain its workability for a long time.

従来技術 一般にサブマージアーク溶接用フラックスはメルトフラ
ックスとポンドフラックスに分けられる。このうち、ポ
ンドフラックスは、配合した原材料を水ガラス等のバイ
ンダーを用い造粒し、300〜600°C程度の温度で
焼成、整粒し゛て用いられる。従ってフラックス中に鉄
粉、合金元素、脱酸剤あるいはガス発生剤等の添加が可
能であり、溶接金属の性能調整が比較的容易に出来る利
点がある。
Prior Art Submerged arc welding fluxes are generally divided into melt flux and pound flux. Among these, pound flux is used by granulating the blended raw materials using a binder such as water glass, firing at a temperature of about 300 to 600°C, and sizing. Therefore, it is possible to add iron powder, alloying elements, deoxidizing agents, gas generating agents, etc. to the flux, and there is an advantage that the performance of the weld metal can be adjusted relatively easily.

しかしながら、ポンドフラックスの個々の粒子は、配合
した原材料゛の各粒子がバインダーを介して物理的に結
合しているにすぎず、熱や衝撃に弱く粉化しやすい。こ
のため溶接終了後のフラックスを回収機によって吸引回
収し、繰り返し使用する場合には、−例を第1図に示す
ようにフラックスが粉化し、ダスト分が増加する。第1
図は、第2表の記号Iの組成、粒度12×100メツシ
ユの片面溶接に用いられる通常の鉄粉含有フラックスを
用いて、溶接とフラックス回収機による吸引回収のサイ
クルを 5回繰り返し行なった場合の粒度分布の変化を
示すもので、5サイクル実施後は出初フラックスに比較
し、840g11以上および840μm〜 210g1
lの粒径の構成割合が減少し、その分210pm以下の
構成割合が増加していることがわかる。このようにフ、
ラックスが粉化し、ダスト分が多くなるとフラックスの
通気性が損なわれビード表面にポックマークが発生する
However, the individual particles of Pond Flux are merely physically bonded to each particle of the blended raw materials via a binder, and are susceptible to heat and impact and easily pulverize. For this reason, when the flux after completion of welding is collected by suction by a collection machine and used repeatedly, the flux becomes powdered and the amount of dust increases, as shown in FIG. 1st
The figure shows a case in which the cycle of welding and suction recovery using a flux recovery machine was repeated five times using ordinary iron powder-containing flux used for single-sided welding with a composition of symbol I in Table 2 and a grain size of 12 x 100 mesh. It shows the change in particle size distribution of 840 g11 or more and 840 μm to 210 g1 after 5 cycles compared to the initial flux.
It can be seen that the composition ratio of particles with a particle diameter of 210 pm or less increases accordingly. In this way,
When the flux becomes powder and the dust content increases, the air permeability of the flux is impaired and pock marks occur on the bead surface.

従来から上記の欠陥を防止するために、フラックスの組
成を検討し、バインダーの濃度を高く、あるいは焼成温
度を高くする等の検討がなされてきた。
Conventionally, in order to prevent the above-mentioned defects, studies have been made on the composition of the flux, such as increasing the concentration of the binder or increasing the firing temperature.

たとえば、特開昭51−52!1153号公報には、フ
ラックス中に粘土質鉱物を含有させ、アルカリ水溶液で
造粒し、又炭酸ガスを含む雰囲気中で焼成を行う方法が
開示されている。
For example, JP-A-51-52!1153 discloses a method in which clay minerals are contained in flux, granulated with an alkaline aqueous solution, and fired in an atmosphere containing carbon dioxide gas.

又、特開昭58−1111491号では、フラックスの
耐崩壊性を改善するため、フラックス中に、ポルトラン
ドセメントを混合する方法が提案されている。
Furthermore, Japanese Patent Laid-Open No. 1111491/1983 proposes a method of mixing Portland cement into flux in order to improve the collapse resistance of flux.

発明の目的 本発明は、フラックスの物理的性質を最適に維持するこ
とによって、繰り返し使用しても粉化を生じにくく、か
つ良好な通気性と溶接作業性を長く保持出来るフラック
スを提供するものである。
Purpose of the Invention The present invention provides a flux that is less likely to powder even after repeated use and maintains good air permeability and welding workability over a long period of time by optimally maintaining the physical properties of the flux. be.

すなわち、フラックスの粒度構成において(1)粒径の
大なるものの割合を従来より多くすることによって、粒
子強度を増大し、同時にフラックスがある程度粉化した
としても適正な通気性が保持できること。
That is, in the particle size structure of the flux, (1) by increasing the proportion of particles with large diameters compared to conventional ones, particle strength can be increased, and at the same time, appropriate air permeability can be maintained even if the flux is powdered to some extent.

(2)かさ密度を適正範囲に保持することにより、粒子
の粉化度合が軽減されるとともに、良好なビード形状を
維持しながら適正な通気性が得られること、更に。
(2) By maintaining the bulk density within an appropriate range, the degree of pulverization of particles can be reduced, and appropriate air permeability can be obtained while maintaining a good bead shape.

(3)粒子強度を規制することによって、繰り返し使用
においても適正な通気性を有し、ポックマークを防止出
来ることを見出し本発明を完成するに至ったものである
(3) By regulating particle strength, the present invention was completed based on the discovery that proper air permeability can be achieved even during repeated use and pock marks can be prevented.

発明の構成・作用 すなわち1本発明は、840 # 11より粒径の大き
い粒子が30〜60重景%、かつ210ル脂より粒径の
小さい粒子が20重景%以下であり、更にかさ密度が1
.1−1.8g/ crri’であり、更に後述の測定
法による粒子強度Cが10以下であることを特徴とする
サブマージアーク溶接用ポンドフラックスにある。
Structure and operation of the invention, namely 1 The present invention is characterized in that particles having a larger particle size than 840 #11 account for 30 to 60 percent, and particles smaller than 210 lubricant account for 20 percent or less, and further have a bulk density. is 1
.. 1-1.8 g/crri', and further has a particle strength C of 10 or less as measured by the measurement method described below.

以下1本発明について詳述する。The present invention will be explained in detail below.

まずフラックスは840 p、 mより粒径の大きい粒
子が30〜80重量%を占め、かつ210Bmより粒径
の小さい粒子が20重量%以下であることが必要である
。これは、フラックス中通気性を適正にするためであり
、sao4mより粒径の大きい粒子の構成割合が30重
量%未満であると、繰り返し使用においぞ、適正な通気
性が保持出来ず、ポックマークが発生する。
First, it is necessary for the flux that particles with a particle size larger than 840 Pm account for 30 to 80% by weight, and particles with a particle size smaller than 210 Bm account for 20% by weight or less. This is to ensure proper air permeability in the flux. If the composition ratio of particles with a particle size larger than SAO4m is less than 30% by weight, it will not be possible to maintain proper air permeability during repeated use, causing pockmarks. occurs.

又、60重量%を超えると、フラックスの耐火性が過大
となリピートが不整となったり、アンダーカットが生じ
るようになる。又、210gmより粒径の小さい粒子が
20%を超えると、繰り返し使用において、通気性が悪
くなりポックマークが発生する。
If it exceeds 60% by weight, the fire resistance of the flux will be excessive, resulting in irregular repeats or undercuts. Furthermore, if the proportion of particles with a particle size smaller than 210 gm exceeds 20%, air permeability deteriorates and pock marks occur during repeated use.

更に、上記粒度構成のフラックスにおいてもかさ密度を
、 Cl−1,θg/ crrfにすることが必要であ
る。すなわち、かさ密度は、フラックスの粉化の軽減な
らびに通気性を適正にするために必要であり、1.1g
/ cm″未満になると繰り返し使用において粉化が激
しく通気性が悪くなり、又、 1.8g/crn’を超
えると、フラックスによるビードの押えが強すぎビード
が乱れると同時に、通気性が悪くなり、ポックマークが
発生する。
Furthermore, even in the flux having the above particle size structure, it is necessary to set the bulk density to Cl-1,θg/crrf. In other words, the bulk density is necessary to reduce powdering of the flux and to ensure proper air permeability, and is 1.1 g.
If it is less than 1.8g/cm'', it will become powdery after repeated use and the breathability will deteriorate, and if it exceeds 1.8g/cm', the bead will be pressed down too strongly by the flux and the bead will become disordered and the breathability will deteriorate. , pockmarks occur.

更に、後述の粒子強度測定法による粒子強度Cは10以
下であることが必要である。
Furthermore, it is necessary that the particle strength C measured by the particle strength measuring method described below is 10 or less.

すなわち、10を超えると、たとえ、°適正な粒度構成
およびかさ密度にしてもフラックスの粉化が大となり通
気性が悪くなリボ・ンクマークが発生する。
That is, if it exceeds 10, even if the particle size composition and bulk density are appropriate, the flux will become powdered to a large extent and ribbon marks with poor air permeability will occur.

本発明における粒子強度は、210 p−w、より小さ
い粒子の構成割合A重量%を予め測定したフラックス5
0gを直径8■の鉄球8個とともに内径40■、長さ3
00marの円筒型容器に入れ、容器の両端部中心から
軸線方向 150mmの点を中心としてその点を通り、
円筒軸に直交する線の周りに、30回転/分の回転数で
80分間回転させた後、 210pmより小さい粒子の
構成割合8重量%を測定し、C=B−Aでめた値Cを粒
子強度とする。
The particle strength in the present invention is 210 p-w, and the flux 5 which has been measured in advance with respect to the composition ratio A of smaller particles (wt%) is 210 p-w.
0g with 8 iron balls with a diameter of 8cm and an inner diameter of 40cm and a length of 3
Place it in a 00mar cylindrical container, pass through the center at a point 150mm in the axial direction from the center of both ends of the container,
After rotating for 80 minutes at a rotation speed of 30 rpm around a line perpendicular to the cylinder axis, the composition ratio of particles smaller than 210 pm was measured at 8% by weight, and the value C calculated by C = B - A was calculated. Let it be particle strength.

この測定法は、フラックスの粒子強度の評価を定量的に
めるに当り、より現実の粉化傾向に近づけることを考慮
し、実際溶接に使用する粒度構成のままのフラックスを
供試フラックスとしたものである。
In quantitatively evaluating the particle strength of flux, this measurement method uses a flux with the same particle size structure as that used for actual welding as a test flux, in order to be closer to the actual powdering tendency. It is something.

以下、実施例により、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 第2゛表に示す組成のフラックスを水ガラスで造粒し、
工の場合は380℃で 1時間、IIの場合は530℃
で1時間焼成し、第1表に示す11種類のフラックスを
作製した。第1表において、フラックスFl−F5が本
発明例に相当し、フラックスF6〜Filが比較例であ
る。すなわち、FB、FBおよびF’llは粒度構成が
適正範囲を外れた比較例、FBはかさ密度、FIOは粒
子強度、F7はかさ密度および粒子強度が、夫々適正範
囲を外れた比較例である。
Example 2 A flux having the composition shown in Table 2 was granulated with water glass,
380℃ for 1 hour in case of process, 530℃ in case of II.
The mixture was fired for 1 hour to produce 11 types of flux shown in Table 1. In Table 1, fluxes Fl-F5 correspond to examples of the present invention, and fluxes F6 to Fil are comparative examples. That is, FB, FB, and F'll are comparative examples in which the particle size structure is outside the appropriate range, FB is the bulk density, FIO is the particle strength, and F7 is the comparative example in which the bulk density and particle strength are respectively outside the appropriate range. .

以上のフラックスを用いて、まず溶接し、溶接作業性が
良好なフラックスについて1回収機で回収し、更に 4
回回収機により吸引回収を施こし、都合5回の回収を行
なった後に溶接を行なった。
Using the above flux, welding is first performed, and the flux with good welding workability is collected with a collection machine, and then 4
The material was collected by suction using a recovery machine, and welding was performed after recovery was performed five times in total.

この場合の溶接条件は第3表に示す通りで、 1.5%
Mn (JISZ33115AW31該当)ワイヤを用
いて、0.14%C10,28%Si、1.37%Mn
(NX規格に32[1相当)鋼板上に平板ビード置き溶
接を行なった。作業性の判定は、ポックマークの発生の
有無、アンダーカットの発生の有無、ビード表面外観な
どで行なった。
The welding conditions in this case are as shown in Table 3, 1.5%
Using Mn (JIS Z33115AW31 applicable) wire, 0.14% C10, 28% Si, 1.37% Mn
(Equivalent to 32 [1 in NX standard)] Flat plate bead welding was performed on a steel plate. Workability was evaluated based on the presence or absence of pockmarks, the presence or absence of undercuts, and the appearance of the bead surface.

第4表は、結果を示したものであり、本発明の場合はい
ずれも優れた溶接作業性が得られているのに対し、比較
例F6〜Filはいずれも欠点がある。すなわち、FB
およびFilは溶接−回収のサイクルを施さない新品フ
ラックスでの溶接において欠陥が発生し、FB、F7、
FBおよびFIOは5回回収後のフラックスでの溶接に
おいていずれもポックマークが発生し好ましいものでは
なかった。
Table 4 shows the results, and while excellent welding workability is obtained in all cases of the present invention, all of Comparative Examples F6 to Fil have drawbacks. That is, F.B.
and Fil, defects occurred during welding with new flux without a welding-recovery cycle,
In both FB and FIO, pock marks occurred during welding with flux after 5 times of collection, which was not preferable.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、通常の鉄粉含有フラックスを用い、溶接−フ
ラックス回収機による回収を5回繰り返し行なった場合
の粒度分布の変化の一例を示すグラフである。 特許出願人 薪日本製鐵株式會社 代理人 弁理士 井 上 雅 生 第1図 尺C゛)刺子 〜z1(4μ電 小さI)泡予手続補正
書 昭和59年 2月29日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和59年特許願第11820号 2、発明の名称 サブマージアーク溶接用ポンドフラックス3、補正をす
る者 事件との関係 特許出願人 住 所 東京都千代田区大手町二丁目6番3号名 称 
(665)新日本製鐵株式會社代表者 武 1) 豊 4、代理人 〒103 住 所 東京都中央区日本橋2丁目2番1号6、補正の
内容 (1)明細書第10頁第1表フラフクスNoF8のかさ
密度のr 1.83g/ cm″Jをrl、86g/ 
crn’Jと訂正する。 (2)同第11頁を別紙の通り補正する。 代理人 弁理士 井上雅生
FIG. 1 is a graph showing an example of a change in particle size distribution when a normal iron powder-containing flux is used and the welding-flux recovery process is repeated five times. Patent Applicant: Takigi Nippon Steel Co., Ltd. Agent, Patent Attorney: Masaru Inoue, First Diagram: C゛) Sashiko ~z1 (4μ Electric Small I) Foam Preliminary Procedures Amendment February 29, 1980, Commissioner of the Patent Office: Wakasugi Kazuo 1, Indication of the case Patent Application No. 11820 of 1982, 2 Name of the invention: Pond flux for submerged arc welding 3, Relationship with the person making the amendment Patent applicant address: 2-chome Otemachi, Chiyoda-ku, Tokyo No. 6 No. 3 Name
(665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 103 Address 2-2-1-6 Nihonbashi, Chuo-ku, Tokyo Contents of amendment (1) Specification page 10 Table 1 The bulk density of Fluffx NoF8 is r1.83g/cm''J, rl, 86g/
Correct it as crn'J. (2) Amend page 11 as shown in the attached sheet. Agent Patent Attorney Masao Inoue

Claims (1)

【特許請求の範囲】 840 g Inより粒径の大きい粒子が30〜60重
量%かつ、 2107zmより粒径の小さい粒子が20
重量%以下を占め、更にかさ密度が1.1〜1.8g/
 c m’であり、下記の方法で測定される粒子強度C
が10以下であることを特徴とするサブマージアーク溶
接用ポンドスラックス。 [粒子強度の測定法] 210ルmより小さい粒子の構成割合(重量%)がAで
あるフラックス50gを、直径8mmの鉄球8個ととも
に内径40mm、長さ300■の円筒型容器に入れ、容
器の両端部中心から軸線方向150+++mの点を中心
としてその点を通り、円筒軸に直交する線の周りに、3
0回転/分の回転数で60分間回転させた後、 210
ルmより小さい粒子の構成割合(重量%)Bを測定し、
次式によってめた値Cを粒子強度とする。 C=B−A
[Claims] 30 to 60% by weight of particles having a particle size larger than 840 g In and 20% by weight particles having a particle size smaller than 2107zm.
% by weight or less, and has a bulk density of 1.1 to 1.8 g/
cm' and the particle strength C measured by the following method:
Pound slacks for submerged arc welding, characterized in that: is 10 or less. [Measurement method of particle strength] 50 g of flux whose composition ratio (weight %) of particles smaller than 210 lm is A is placed in a cylindrical container with an inner diameter of 40 mm and a length of 300 mm, along with 8 iron balls with a diameter of 8 mm. Centering on a point 150 +++ m in the axial direction from the center of both ends of the container, passing through that point and perpendicular to the cylindrical axis, 3
After rotating for 60 minutes at a rotation speed of 0 revolutions/minute, 210
measuring the constituent proportion (wt%) B of particles smaller than m,
Let the value C calculated by the following formula be the particle strength. C=B-A
JP1182084A 1984-01-27 1984-01-27 Bonded flux for submerged arc welding Granted JPS60158998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182084A JPS60158998A (en) 1984-01-27 1984-01-27 Bonded flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182084A JPS60158998A (en) 1984-01-27 1984-01-27 Bonded flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS60158998A true JPS60158998A (en) 1985-08-20
JPH0239358B2 JPH0239358B2 (en) 1990-09-05

Family

ID=11788419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182084A Granted JPS60158998A (en) 1984-01-27 1984-01-27 Bonded flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS60158998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094359A (en) * 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Fired flux for submerged arc welding of high tensile steel
JP2018089698A (en) * 2016-12-05 2018-06-14 株式会社神戸製鋼所 Flux for submerged arc welding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119491A (en) * 1982-01-05 1983-07-15 Kawasaki Steel Corp Production of collapsing resistant calcined flux

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119491A (en) * 1982-01-05 1983-07-15 Kawasaki Steel Corp Production of collapsing resistant calcined flux

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094359A (en) * 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Fired flux for submerged arc welding of high tensile steel
JP2018089698A (en) * 2016-12-05 2018-06-14 株式会社神戸製鋼所 Flux for submerged arc welding

Also Published As

Publication number Publication date
JPH0239358B2 (en) 1990-09-05

Similar Documents

Publication Publication Date Title
CN108581270B (en) Sintered flux for welding LPG ship and preparation method and application thereof
CN106624460B (en) Marine low-temperature steel submerged-arc welding sintered flux
CN104096987B (en) High-basicity and high-tenacity submerged-arc welding flux for oceaneering and preparation method of high-basicity and high-tenacity submerged-arc welding flux
CN101412164A (en) Titanium type flux-cored wire with low total amount of fumes and preparation method thereof
JPS60158998A (en) Bonded flux for submerged arc welding
CN108723638B (en) Sintered flux for niobium-titanium-containing stainless steel welding wire and preparation method and application thereof
CN114850724B (en) High-alkalinity sintered flux for submerged arc welding of austenitic low-temperature steel and preparation method thereof
US3035154A (en) Protective gas mixture for arc welding with a fusible bare metal wire electrode
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
CN112475669B (en) Silicon-calcium type sintered flux and preparation method thereof
JPS62240195A (en) Low hydrogen type bond flux
JP2001038486A (en) Firing type flux for submerge arc welding with excellent moisture adsorption resistance and degradation resistance, and manufacturing method
JPH01100204A (en) Porous aluminum or aluminum alloy body
JPH02280995A (en) Bond flux for submerged arc welding
JP2907794B2 (en) Ceramic backing material for carbon dioxide arc welding
JPS6268695A (en) High temperature calcined flux for submerged arc welding
JPH0454558B2 (en)
JPH0999392A (en) Baked flux for submerged arc welding having excellent hygroscopic resistance
JPS5841694A (en) Calcined flux for submerged arc welding
JPS5843197B2 (en) taisuisokouenkiseisenkoyousetsuyouflux
JP2742958B2 (en) Manufacturing method of metal powder based flux cored wire
JPS6048280B2 (en) Manufacturing method of low hydrogen coated arc welding rod
JPH0455789B2 (en)
JPH0563277B2 (en)
JPS596755B2 (en) Flux for submerged mark welding