JPH0239358B2 - - Google Patents

Info

Publication number
JPH0239358B2
JPH0239358B2 JP59011820A JP1182084A JPH0239358B2 JP H0239358 B2 JPH0239358 B2 JP H0239358B2 JP 59011820 A JP59011820 A JP 59011820A JP 1182084 A JP1182084 A JP 1182084A JP H0239358 B2 JPH0239358 B2 JP H0239358B2
Authority
JP
Japan
Prior art keywords
flux
particles
weight
particle size
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59011820A
Other languages
Japanese (ja)
Other versions
JPS60158998A (en
Inventor
Takashi Kato
Ryuichi Motomatsu
Tosha Mibu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1182084A priority Critical patent/JPS60158998A/en
Publication of JPS60158998A publication Critical patent/JPS60158998A/en
Publication of JPH0239358B2 publication Critical patent/JPH0239358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はサブマージアーク溶接法に用いるボン
ドフラツクスに係り、特に繰り返し使用しても粉
化を生じにくく、かつ適正な通気性を有し、良好
な溶接作業性を長く保持出来るフラツクスに関す
るものである。 従来技術 一般にサブマージアーク溶接用フラツクスはメ
ルトフラツクスとボンドフラツクスに分けられ
る。このうち、ボンドフラツクスは、配合した原
材料を水ガラス等のバインダーを用い造粒し、
300〜600℃程度の温度で焼成、整粒して用いられ
る。従つてフラツクス中に鉄粉、合金元素、脱酸
剤あるいはガス発生剤等の添加が可能であり、溶
接金属の性能調整が比較的容易に出来る利点があ
る。 しかしながら、ボンドフラツクスの個々の粒子
は、配合した原材料の各粒子がバインダーを介し
て物理的に結合しているにすぎず、熱や衝撃に弱
く粉化しやすい。このため溶接終了後のフラツク
スを回収機によつて吸引回収し、繰り返し使用す
る場合には、一例を第1図に示すようにフラツク
スが粉化し、ダスト分が増加する。第1図は、第
2表の記号の組成、粒度12×100メツシユの片
面溶接に用いられる通常の鉄粉含有フラツクスを
用いて、溶接とフラツクス回収機による吸引回収
のサイクルを5回繰り返し行なつた場合の粒度分
布の変化を示すもので、5サイクル実施後は当初
フラツクスに比較し、840μm以上および840μm
〜210μmの粒径の構成割合が減少し、その分
210μm以下の構成割合が増加していることがわ
かる。このようにフラツクスが粉化し、ダスト分
が多くなるとフラツクスの通気性が損なわれビー
ド表面にポツクマークが発生する。 従来から上記の欠陥を防止するために、フラツ
クスの組成を検討し、バインダーの濃度を高く、
あるいは焼成温度を高くする等の検討がなされて
きた。 たとえば、特開昭51−52953号公報には、フラ
ツクス中に粘土質鉱物を含有させ、アルカリ水溶
液で造粒し、又炭酸ガスを含む雰囲気中で焼成を
行う方法が開示されている。 又、特開昭58−119491号では、フラツクスの耐
崩壊性を改善するため、フラツクス中に、ポルト
ランドセメントを混合する方法が提案されてい
る。 発明の目的 本発明は、フラツクスの物理的性質を最適に維
持することによつて、繰り返し使用しても粉化を
生じにくく、かつ良好な通気性と溶接作業性を長
く保持出来るフラツクスを提供するものである。 すなわち、フラツクスの粒度構成において (1) 粒径の大なるものの割合を従来より多くする
ことによつて、粒子強度を増大し、同時にフラ
ツクスがある程度粉化したとしても適正な通気
性が保持できること、 (2) かさ密度を適正範囲に保持することにより、
粒子の粉化度合が軽減されるとともに、良好な
ビード形状を維持しながら適正な通気性が得ら
れること、更に、 (3) 粒子強度を規制することによつて、繰り返し
使用においても適正な通気性を有し、ポツクマ
ークを防止出来ることを見出し本発明を完成す
るに至つたものである。 発明の構成・作用 すなわち、本発明は、840μmより粒径の大き
い粒子が30〜60重量%、かつ210μmより粒径の
小さい粒子が20重量%以下であり、更にかさ密度
が1.1〜1.6g/cm3であり、更に後述の測定法によ
る粒子強度Cが10以下であることを特徴とするサ
ブマージアーク溶接用ボンドフラツクスにある。 以下、本発明について詳述する。 まずフラツクスは840μmより粒径の大きい粒
子が30〜60重量%を占め、かつ210μmより粒径
の小さい粒子が20重量%以下であることが必要で
ある。これは、フラツクスの通気性を適正にする
ためであり、840μmより粒径の大きい粒子の構
成割合が30重量%未満であること、繰り返し使用
において、適正な通気性が保持出来ず、ポツクマ
ークが発生する。 又、60重量%を超えると、フラツクスの耐火性
が過大となりビードが不整となつたり、アンダー
カツトが生じるようになる。又、210μmより粒
径の小さい粒子が20%を超えると、繰り返し使用
において、通気性が悪くなりポツクマークが発生
する。 更に、上記粒度構成のフラツクスにおいてもか
さ密度を、1.1〜1.6g/cm3にすることが必要であ
る。すなわち、かさ密度は、フラツクスの粉化の
軽減ならびに通気性を適正にするために必要であ
り、1.1g/cm3未満になると繰り返し使用におい
て粉化が激しく通気性が悪くなり、又、1.6g/
cm3を超えると、フラツクスによるビードの押えが
強すぎビードが乱れると同時に、通気性が悪くな
り、ポツクマークが発生する。 更に、後述の粒子強度測定法による粒子強度C
は10以下であることが必要である。 すなわち、10を超えると、たとえ、適正な粒度
構成およびかさ密度にしてもフラツクスの粉化が
大となり通気性が悪くなりポツクマークが発生す
る。 本発明における粒子強度は、210μmより小さ
い粒子の構成割合A重量%を予め測定したフラツ
クス50gを直径8mmの鉄球9個とともに内径40
mm、長さ300mmの円筒型容器に入れ、容器の両端
部中心から軸線方向150mmの点を中心としてその
点を通り、円筒軸に直交する線の周りに、30回
転/分の回転数で60分間回転させた後、210μm
より小さい粒子の構成割合B重量%を測定し、C
=B−Aで求めた値Cを粒子強度とする。 この測定法は、フラツクスの粒子強度の評価を
定量的に求めるに当り、より現実の粉化傾向に近
づけることを考慮し、実際溶接に使用する粒度構
成のままのフラツクスを供試フラツクスとしたも
のである。 以下、実施例により、本発明を具体的に説明す
る。 実施例 第2表に示す組成のフラツクスを水ガラスで造
粒し、の場合は380℃で1時間、の場合は530
℃で1時間焼成し、第1表に示す11種類のフラツ
クスを作製した。第1表において、フラツクス
F1〜F5が本発明例に相当し、フラツクスF6〜
F11が比較例である。すなわち、F6、F9および
F11は粒度構成が適正範囲を外れた比較例、F8は
かさ密度、F10は粒子強度、F7はかさ密度および
粒子強度が、夫々適正範囲を外れた比較例であ
る。 以上のフラツクスを用いて、まず溶接し、溶接
作業性が良好なフラツクスについて、回収機で回
収し、更に4回回収機により吸引回収を施こし、
都合5回の回収を行なつた後に溶接を行なつた。
この場合の溶接条件は第3表に示す通りで、1.5
%Mn(JISZ3311 SAW31該当)ワイヤを用いて、
0.14%C、0.29%Si、1.37%Mn(NK規格K32D相
当)鋼板上に平板ビード置き溶接を行なつた。作
業性の判定は、ポツクマークの発生の有無、アン
ダーカツトの発生の有無、ビード表面外観などで
行なつた。 第4表は、結果を示したものであり、本発明の
場合はいずれも優れた溶接作業性が得られている
のに対し、比較例F6〜F11はいずれも欠点があ
る。すなわち、F8およびF11は溶接−回収のサイ
クルを施さない新品フラツクスでの溶接において
欠陥が発生し、F6、F7、F9およびF10は5回回
収後のフラツクスでの溶接においていずれもポツ
クマークが発生し好ましいものではなかつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a bond flux used in submerged arc welding, which is particularly resistant to powdering even after repeated use, has appropriate air permeability, and can maintain good welding workability for a long time. It concerns flux. Prior Art Submerged arc welding fluxes are generally divided into melt fluxes and bond fluxes. Among these, bond flux is made by granulating the blended raw materials using a binder such as water glass.
It is used after being fired and sized at a temperature of about 300 to 600°C. Therefore, it is possible to add iron powder, alloying elements, deoxidizing agents, gas generating agents, etc. to the flux, and there is an advantage that the performance of the weld metal can be adjusted relatively easily. However, the individual particles of bond flux are merely physically bonded to each particle of the blended raw materials via a binder, and are susceptible to heat and shock and easily pulverize. For this reason, when the flux after welding is suctioned and collected by a collection machine and used repeatedly, the flux becomes powdered and the amount of dust increases, as shown in FIG. 1, for example. Figure 1 shows a cycle of welding and suction recovery using a flux recovery machine repeated five times using ordinary iron powder-containing flux used for single-sided welding with a particle size of 12 x 100 mesh and the composition indicated by the symbol in Table 2. This shows the change in particle size distribution when the flux is 840μm or more and 840μm after 5 cycles compared to the initial flux.
The composition ratio of particles with a diameter of ~210μm decreases, and
It can be seen that the composition ratio of 210 μm or less is increasing. When the flux becomes powdered and the dust content increases in this way, the air permeability of the flux is impaired and pockmarks occur on the bead surface. Conventionally, in order to prevent the above defects, the composition of flux has been studied, and the concentration of binder has been increased.
Alternatively, studies have been made to increase the firing temperature. For example, JP-A-51-52953 discloses a method in which clay minerals are contained in flux, granulated with an alkaline aqueous solution, and fired in an atmosphere containing carbon dioxide gas. Furthermore, Japanese Patent Laid-Open No. 119491/1983 proposes a method of mixing portland cement into flux in order to improve the collapse resistance of the flux. Purpose of the Invention The present invention provides a flux that is resistant to powdering even after repeated use and that maintains good air permeability and welding workability for a long time by optimally maintaining the physical properties of the flux. It is something. In other words, in the particle size composition of the flux, (1) particle strength can be increased by increasing the proportion of large particles compared to conventional ones, and at the same time, appropriate air permeability can be maintained even if the flux is powdered to some extent; (2) By keeping the bulk density within an appropriate range,
In addition to reducing the degree of particle pulverization, appropriate air permeability can be obtained while maintaining a good bead shape; and (3) by controlling the particle strength, appropriate air permeability can be achieved even after repeated use. The present invention was completed based on the discovery that it has the same properties and can prevent pockmarks. Structure and operation of the invention That is, the present invention is characterized in that particles having a particle size larger than 840 μm account for 30 to 60% by weight, particles smaller than 210 μm account for 20% by weight or less, and further have a bulk density of 1.1 to 1.6 g/ cm 3 and a particle strength C of 10 or less as determined by the measuring method described below. The present invention will be explained in detail below. First, it is necessary for the flux to contain 30 to 60% by weight of particles with a particle size larger than 840 μm, and 20% by weight or less of particles with a particle size smaller than 210 μm. This is to ensure proper air permeability of the flux, and the proportion of particles with a particle size larger than 840 μm must be less than 30% by weight, and after repeated use, proper air permeability cannot be maintained and pockmarks will occur. do. If it exceeds 60% by weight, the fire resistance of the flux will be too high, resulting in irregular beads and undercuts. Furthermore, if the proportion of particles with a particle size smaller than 210 μm exceeds 20%, air permeability deteriorates and pockmarks occur during repeated use. Furthermore, even in the flux having the above particle size structure, it is necessary to set the bulk density to 1.1 to 1.6 g/cm 3 . In other words, the bulk density is necessary to reduce powdering of the flux and to optimize air permeability.If it is less than 1.1 g/ cm3 , powdering will be severe during repeated use, and breathability will deteriorate; /
If it exceeds cm3 , the bead will be pressed down too strongly by the flux and the bead will become disordered, and at the same time, air permeability will deteriorate and pockmarks will occur. Furthermore, the particle strength C measured by the particle strength measurement method described below
must be 10 or less. That is, if it exceeds 10, even if the particle size structure and bulk density are appropriate, the flux becomes powdered to a large extent, resulting in poor air permeability and the formation of pockmarks. The particle strength in the present invention is determined by adding 50 g of flux, whose composition ratio A weight % of particles smaller than 210 μm has been measured in advance, together with 9 iron balls of 8 mm in diameter,
mm, length 300 mm, and rotated at a rotation speed of 30 revolutions per minute around a line passing through the center at a point 150 mm in the axial direction from the center of both ends of the container and perpendicular to the cylindrical axis. After rotating for a minute, 210μm
The composition ratio B weight % of smaller particles is measured, and C
The value C obtained from =B-A is taken as the particle strength. In order to quantitatively evaluate the particle strength of flux, this measurement method uses flux with the same particle size structure as that used in actual welding as the test flux, in order to approximate the actual powdering tendency. It is. Hereinafter, the present invention will be specifically explained with reference to Examples. Example: The flux having the composition shown in Table 2 was granulated with water glass.
The mixture was fired at ℃ for 1 hour to produce 11 types of fluxes shown in Table 1. In Table 1, flux
F1 to F5 correspond to the examples of the present invention, and fluxes F6 to F5 correspond to the examples of the present invention.
F11 is a comparative example. i.e. F6, F9 and
F11 is a comparative example in which the particle size structure is outside the appropriate range, F8 is the bulk density, F10 is the particle strength, and F7 is the comparative example in which the bulk density and particle strength are each out of the appropriate range. Using the above flux, welding was first performed, and the flux with good welding workability was collected with a recovery machine, and then suction and recovery was performed using the recovery machine four times.
Welding was performed after recovering the material five times in total.
The welding conditions in this case are as shown in Table 3, 1.5
Using %Mn (JISZ3311 SAW31 applicable) wire,
Flat plate bead welding was performed on a 0.14% C, 0.29% Si, 1.37% Mn (corresponding to NK standard K32D) steel plate. Workability was evaluated based on the presence or absence of pock marks, the presence or absence of undercuts, and the appearance of the bead surface. Table 4 shows the results, and in contrast to the cases of the present invention in which excellent welding workability is obtained, all of Comparative Examples F6 to F11 have drawbacks. In other words, defects occur in F8 and F11 when welding with a new flux that has not been subjected to a welding-recovery cycle, and in F6, F7, F9, and F10, pockmarks occur when welding with flux that has been recovered five times, which is preferable. It wasn't something.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、通常の鉄粉含有フラツクスを用い、
溶接−フラツクス回収機による回収を5回繰り返
し行なつた場合の粒度分布の変化の一例を示すグ
ラフである。
Figure 1 shows that using ordinary flux containing iron powder,
It is a graph showing an example of a change in particle size distribution when collection by a welding-flux collection machine is repeated five times.

Claims (1)

【特許請求の範囲】 1 840μmより粒径の大きい粒子が30〜60重量
%かつ、210μmより粒径の小さい粒子が20重量
%以下を占め、更にかさ密度が1.1〜1.6g/cm3
あり、下記の方法で測定される粒子強度Cが10以
下であることを特徴とするサブマージアーク溶接
用ボンドフラツクス。 [粒子強度の測定法] 210μmより小さい粒子の構成割合(重量%)
がAであるフラツクス50gを、直径8mmの鉄球9
個とともに内径40mm、長さ300mmの円筒型容器に
入れ、容器の両端部中心から軸線方向150mmの点
を中心としてその点を通り、円筒軸に直交する線
の周りに、30回転/分の回転数で60分間回転させ
た後、210μmより小さい粒子の構成割合(重量
%)Bを測定し、次式によつて求めた値Cを粒子
強度とする。 C=B−A
[Claims] 1. Particles with a particle size larger than 840 μm account for 30 to 60% by weight, particles with a particle size smaller than 210 μm account for 20% by weight or less, and further have a bulk density of 1.1 to 1.6 g/cm 3 A bond flux for submerged arc welding, characterized in that the particle strength C measured by the following method is 10 or less. [Method for measuring particle strength] Composition ratio of particles smaller than 210 μm (weight %)
50g of flux with A is 8mm in diameter iron ball 9
placed in a cylindrical container with an inner diameter of 40 mm and a length of 300 mm, and rotated at a rate of 30 revolutions per minute around a line perpendicular to the cylindrical axis, passing through the center at a point 150 mm in the axial direction from the center of both ends of the container. After rotating for 60 minutes, the composition ratio (weight %) B of particles smaller than 210 μm was measured, and the value C obtained from the following formula was taken as the particle strength. C=B-A
JP1182084A 1984-01-27 1984-01-27 Bonded flux for submerged arc welding Granted JPS60158998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182084A JPS60158998A (en) 1984-01-27 1984-01-27 Bonded flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182084A JPS60158998A (en) 1984-01-27 1984-01-27 Bonded flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS60158998A JPS60158998A (en) 1985-08-20
JPH0239358B2 true JPH0239358B2 (en) 1990-09-05

Family

ID=11788419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182084A Granted JPS60158998A (en) 1984-01-27 1984-01-27 Bonded flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS60158998A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437420B2 (en) * 2015-11-25 2018-12-12 日鐵住金溶接工業株式会社 Firing flux for submerged arc welding of high strength steel
CN108145343B (en) * 2016-12-05 2020-08-25 株式会社神户制钢所 Flux for submerged arc welding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119491A (en) * 1982-01-05 1983-07-15 Kawasaki Steel Corp Production of collapsing resistant calcined flux

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119491A (en) * 1982-01-05 1983-07-15 Kawasaki Steel Corp Production of collapsing resistant calcined flux

Also Published As

Publication number Publication date
JPS60158998A (en) 1985-08-20

Similar Documents

Publication Publication Date Title
US5300754A (en) Submerged arc flux and method of making same
US2474787A (en) Arc welding composition and method of making same
US2900490A (en) Coated electrode for welding cast iron
KR100322395B1 (en) Bonded flux for submerged arc welding and process for producing the same
JPH0239358B2 (en)
JPS564393A (en) Composite wire for stainless steel welding
JP2704673B2 (en) Method for producing semi-reduced sintered ore
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
KR960002116B1 (en) Submerged arc flux and the making method thereof
US3329798A (en) Welding flux and method of welding
JPS62240195A (en) Low hydrogen type bond flux
US3721797A (en) Welding process and plural layered backing material
JP2001038486A (en) Firing type flux for submerge arc welding with excellent moisture adsorption resistance and degradation resistance, and manufacturing method
JP2003245794A (en) Manufacturing method for sintered flux for submerged arc welding
JPS6268695A (en) High temperature calcined flux for submerged arc welding
US2951000A (en) Welding composition
JPH0455789B2 (en)
JPH0415278B2 (en)
JPH0454558B2 (en)
JPH01215495A (en) Flux cored wire for self-shielded arc welding
US3309435A (en) Process for the manufacture of rounded powdered magnetite particles
JPH04288992A (en) Wire with welding flux
JPH05277788A (en) Flux for submerged arc welding
JPS596755B2 (en) Flux for submerged mark welding
JP3243586B2 (en) Flux-cored wire for gas shielded arc welding