JPS60158602A - Voltage nonlinear resistor - Google Patents
Voltage nonlinear resistorInfo
- Publication number
- JPS60158602A JPS60158602A JP1399284A JP1399284A JPS60158602A JP S60158602 A JPS60158602 A JP S60158602A JP 1399284 A JP1399284 A JP 1399284A JP 1399284 A JP1399284 A JP 1399284A JP S60158602 A JPS60158602 A JP S60158602A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- view
- electrode
- voltage
- voltage nonlinear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
この発明は、最近の電子回路の集積化に対応するチップ
化された電圧非直線抵抗体の構造に関する。この種の電
圧非直線抵抗体は、一般には大きな車圧非直線係数を有
することと同時に大きな衝撃放電耐量が請求される。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a structure of a voltage nonlinear resistor formed into a chip, which corresponds to the integration of recent electronic circuits. This type of voltage nonlinear resistor is generally required to have a large vehicle pressure nonlinearity coefficient and at the same time a large impact discharge resistance.
ある一定の値以下の1圧に対−しては抵抗値が非常に高
く電流はほとんど流れないが、電圧が一定の値を越える
と急激に抵抗値が減少して大きな電流を自動的に流すと
いう特性を有する電圧非直線抵抗体としては、金属酸化
物たとえばZnO(fa化亜鉛)を主成分とし、これに
微量の不純物を添加したφ給体が主体となりつつある。When the voltage is below a certain value, the resistance value is very high and almost no current flows, but when the voltage exceeds a certain value, the resistance value decreases rapidly and a large current automatically flows. As a voltage non-linear resistor having the above characteristics, a φ feed body whose main component is a metal oxide such as ZnO (zinc oxide) to which a small amount of impurity is added is becoming mainstream.
これは通常のセラミックと同様の工程により製造さ第1
る。まず主成分としてのZnOに微量の添加物を数種加
え、充分に混合したのち造粉機により粒子を均一化する
。この粉を成形し、これを1,000″0以上の高温で
焼成する。こうしてできた焼結体を研摩し、′rに極付
けなどの表面処理を行なってからリード線をはんだ付け
する。このようなZnO%粘体はZnO粒子の周囲に別
の層、すなわち境界層を介して互いに接続している。電
圧非直線性はこの境界1脅の性質に起因する。この粒子
の比抵抗は境界層のそれにくらべてはるかに小さいので
、高1に圧が印加されると、そのほとんどはこの境界層
に加わり、ツェナーダイオードと同様の電流増加現象が
発生する。This is manufactured using the same process as ordinary ceramics.
Ru. First, several trace amounts of additives are added to ZnO as the main component, thoroughly mixed, and then the particles are made uniform using a powder mill. This powder is molded and fired at a high temperature of 1,000"0 or higher. The sintered body thus formed is polished and subjected to surface treatment such as electrode attachment, and then lead wires are soldered to it. Such ZnO% viscosity is connected to each other through another layer around the ZnO particles, namely the boundary layer.The voltage nonlinearity is due to the nature of this boundary.The specific resistance of this particle is Since it is much smaller than that of the layer, when pressure is applied to the high 1, most of it is added to this boundary layer, causing a current increase phenomenon similar to that of a Zener diode.
さらにこの種のZnOを主成分とする電圧非直線抵抗体
は、従来の樹脂モールドディスク形から最近の集積化に
呼応してチップ化の傾向がある。本発明もまたこのチッ
プ形の゛電圧非直線抵抗体に関するものである。チップ
形の酸化亜鉛抵抗体としては第1図〜第3図に示される
ように1個体中に1個の電圧非直線抵抗性を有する構造
のものと、第4図〜第6図に示さ才するように1個体中
に2個の電圧非直線抵抗性を有する構造のものとがある
。Furthermore, this type of voltage nonlinear resistor mainly composed of ZnO has a tendency to be changed from the conventional resin-molded disk type to the chip type in response to recent integration. The present invention also relates to this chip-type voltage nonlinear resistor. Chip-type zinc oxide resistors include those with a structure in which one piece has voltage non-linear resistance as shown in Figs. As shown in FIG.
第1図は1個体中に1個の電圧非直線抵抗性を有する抵
抗体の横断面図、第2図は同上抵抗体を斜め上から見た
外観斜視図、第3図は同上抵抗体を斜め下から見た斜視
図である。図においてlはZnoを主原料として焼結し
て成形されたエレメント、2はエレメント1の2つの電
極のうちの一方の電極であって、エレメント1の一方の
表面から他方の表面に側面を経て榎うように形成されて
いる。Figure 1 is a cross-sectional view of a resistor having one voltage non-linear resistance in one individual, Figure 2 is an external perspective view of the same resistor as seen diagonally from above, and Figure 3 is the same resistor as above. It is a perspective view seen diagonally from below. In the figure, l is an element formed by sintering using Zno as the main raw material, and 2 is one of the two electrodes of element 1, which is connected from one surface of element 1 to the other surface through the side surface. It is shaped like an encyclopedia.
3は他方の電極であり、電極2と電極3は少なくともエ
レメント1の厚さ以上の間隔をもって、一方の同一表面
上において対向しているので、通常はエレメント1の厚
さ方向における放電より先に、一方の同一表面上の対向
電極間で放・凰が起きることはない。第4図は1個体中
に2個の電圧非直線抵抗性を有する抵抗体の横断面図、
第5図は第4図に示す抵抗体を斜め上から見た斜視図、
第6図は同上抵抗体を斜め下より見た斜視図で、11は
エレメント、12.12はそれぞれエレメント11の2
個の抵抗体の一方の電極を示し、13は同他方の電極で
ある。第1図で示したように、第4図においてもそれぞ
れの電極12 、12’、 33は少なくともエレメン
ト11の厚さ以上の間隔をもって対向している。3 is the other electrode, and since electrodes 2 and 3 face each other on the same surface with an interval at least equal to or greater than the thickness of element 1, usually the discharge occurs before the discharge in the thickness direction of element 1. , no radiation occurs between opposing electrodes on one and the same surface. Figure 4 is a cross-sectional view of a resistor with two voltage non-linear resistances in one individual.
FIG. 5 is a perspective view of the resistor shown in FIG. 4, viewed diagonally from above;
Figure 6 is a perspective view of the same resistor as seen diagonally from below, where 11 is an element, and 12 and 12 are two parts of element 11, respectively.
One electrode of each resistor is shown, and 13 is the other electrode. As shown in FIG. 1, also in FIG. 4, the respective electrodes 12, 12', 33 face each other with an interval at least equal to the thickness of the element 11.
ところが上述した第1図ないし第6図に示す従来の抵抗
体では原料粉末を加圧成形するため、その端部は第1図
ではP1第2図ではQに示すように直角のエツジを持つ
ようになり、従ってこのエツジを秒うように金属電極2
,12.12’を有機質バインダーを含む金属ペースト
の塗布、焼成により形成するとき、塗布時のペーストの
チキントロピー(揺変性)及び焼成時のバインダー飛散
による収縮現象などによって、特に直角のエツジ部分で
金属電極が薄くなったり、切れ目が生じやすいという欠
点があった。・
さらに、この電極切れ現象は僅かに切れた状態でも、g
N繋電流が抵抗体に流れるとき、第1図において1流は
゛電極3と同一面にある電極2の部分より入力し、エレ
メント1の側面を経て電極2の、電極3とエレメント1
をはさんで対向する部分よりエレメント1内部を通って
電極3へと抜けるので、角部のエツジ部の電極において
、電流密度が増加する趙釆、発熱などにより電極金属が
変質して電極切れが促進されて大きくなりやすい。また
さらに電極切れが大きくなるにつれ、一方の同一表面上
にある電極2と電極3の間でも放電が起きるようになり
、その結果抵抗体の衝撃放電耐量が低下したり、ついに
はエツジにて電極2が完全に切れて、分離することもあ
る。この場合は電極2と電極3の間が知略状態になる危
険性もある。However, in the conventional resistor shown in FIGS. 1 to 6 described above, the raw material powder is press-molded, so the ends have right-angled edges as shown at P in FIG. 1 and Q in FIG. 2. Therefore, the metal electrode 2 should be moved around this edge.
, 12.12' is formed by coating and baking a metal paste containing an organic binder, the thixotropy (thixotropy) of the paste during coating and the shrinkage phenomenon caused by the binder scattering during baking may cause problems, especially at right-angled edges. The drawbacks were that the metal electrodes were thinner and were more prone to cuts.・Furthermore, this electrode breakage phenomenon occurs even when the electrode is slightly broken.
When an N-connection current flows through a resistor, in FIG.
Since the current flows through the inside of the element 1 from the opposite part to the electrode 3, the current density increases at the edge of the corner electrode, and the electrode metal changes due to heat generation, causing electrode breakage. It is easy to be promoted and become large. Furthermore, as the electrode breakage becomes larger, discharge also occurs between electrodes 2 and 3, which are on the same surface.As a result, the impact discharge resistance of the resistor decreases, and the electrode ends up at the edge. 2 may break completely and separate. In this case, there is a risk that the gap between the electrodes 2 and 3 will be in a state of inadequacy.
この発明は上述した欠点を除去し、エツジにも均一な厚
さの電極を被検させ、エツジにおいて電極金属が切れ難
くすることにより衝撃放電耐量の低下がない電圧非直線
抵抗体を提供することを目的とする。The present invention eliminates the above-mentioned drawbacks and provides a voltage nonlinear resistor in which the impact discharge resistance does not deteriorate by testing electrodes with uniform thickness even at the edges and making the electrode metal difficult to break at the edges. With the goal.
板状磁器1体の角のあるエツジの形状を曲面にすること
により、そこに被接される金属電極の厚さを均一にした
砿圧非直線抵抗器を得ること。To obtain a nonlinear resistor in which the thickness of a metal electrode in contact with the angular edge of a plate-shaped porcelain body is made uniform by making the shape of the angular edge into a curved surface.
この発明の実施例を図面に基づいて説明する。 Embodiments of the invention will be described based on the drawings.
47図は、この発明の一実/AIi+lJである′電圧
非直線抵抗体の横断面図で、第1図と同様に1個体中に
1個の礪圧非直廚抵抗性を有するものであるが、角部の
エツジをRで示すように曲面形状とした点において異な
る。第8図は同上抵抗体を上から見た外観斜視図、第9
図は同様に下から見た外観斜視図である。また第10図
は、この発明の他の失Mへ例である電圧非直線抵抗体の
横断面図で、第4図と同様に1個体中に2個の′亀圧非
ぽ線抵抗性を有するものであるが、エツジをSで示すよ
うに曲面形状とした点においてやはり異なる。第11図
は同上抵抗体を上から見た外観斜視図、第12図は同様
に下から見た外観斜視図である。すなわちZnOに微量
の添加物を加え通常の窯業手法により製造された粉末を
焼成後、第7図および第10図の横断面図に示すごとき
角部R,Sが曲面であるようなニレメンl−21,31
に成形した。例えばこのような曲面形状を得るには公知
のラクピング、サンドブラスト、フォーニングなどの技
術を利用できる。そしてこのニレメン) 21.31の
外周に表面処理する金属電極22 、32 、32の角
部の形状も、エレメントの角部R2Sに倣って曲面を形
成することができ、またこうすることにより全体に均一
な厚さの電極とすることができる。Figure 47 is a cross-sectional view of a voltage non-linear resistor which is a part of this invention/AIi+lJ, and similarly to Figure 1, it has one non-linear resistor in each individual. However, the difference is that the edges of the corners are curved as shown by R. Figure 8 is an external perspective view of the same resistor as seen from above;
The figure is a perspective view of the exterior as seen from below. Furthermore, FIG. 10 is a cross-sectional view of a voltage nonlinear resistor which is an example of another example of the present invention, and similarly to FIG. However, the difference is that the edges are curved as shown by S. FIG. 11 is a perspective view of the resistor as seen from above, and FIG. 12 is a perspective view of the resistor as seen from below. That is, after baking a powder produced by adding a small amount of additives to ZnO and using a normal ceramic method, a niremen l- 21, 31
It was molded into. For example, to obtain such a curved surface shape, known techniques such as lapping, sandblasting, and forning can be used. The shapes of the corners of the metal electrodes 22, 32, 32 to be surface-treated on the outer periphery of the element 21.31 can also be curved to follow the corner R2S of the element, and by doing so, the entire The electrode can have a uniform thickness.
この発明によれば前述のようなチップ形の電圧非直線抵
抗磁器において、エレメントの外周面に表面処理する電
極のエツジ部を曲面として均一厚さに配設する構造にし
たので、電極切れがなくなり、衝撃放電耐量の低下もな
くなった。According to this invention, in the chip-shaped voltage non-linear resistance ceramic as described above, the edge part of the electrode to be surface-treated on the outer peripheral surface of the element is arranged as a curved surface with a uniform thickness, so that the electrode does not break. , there was no decrease in impact discharge resistance.
第1図は従来構造の電圧非直線抵抗体の横断面図、第2
図は同上抵抗体の上方外観斜視図、第3図は同上抵抗体
の下方外観斜視図、第4図は従来構造の異なる電圧非直
線抵抗体の横断面図、第5図は同上抵抗体の上方外観斜
視図、第6図は同上抵抗体の下方外観斜視図、第7図は
この発明の一実施例である電圧非直線抵抗体の横断面図
、第8図は同上抵抗体の上方外観斜視図、第9図は同上
抵抗体の下方外観斜視図、第10図はこの発明の他の実
施例である電圧非直線抵抗体の横断面図で、第11図は
同上抵抗体の上方外観斜視図、第12図は同上抵抗体の
下方外観斜視図である。
21.31 :エレメント、22,23,32,32,
33 :金属イ゛極、才3図
、26図
才9図1
才12圓Figure 1 is a cross-sectional view of a voltage nonlinear resistor with a conventional structure.
The figure is an upper external perspective view of the above resistor, Figure 3 is a lower external perspective view of the same resistor, Figure 4 is a cross-sectional view of a voltage non-linear resistor with a different conventional structure, and Figure 5 is the same as the above resistor. FIG. 6 is a perspective view of the upper appearance of the resistor, FIG. 7 is a cross-sectional view of a voltage nonlinear resistor according to an embodiment of the present invention, and FIG. 8 is an upper appearance of the resistor. FIG. 9 is a perspective view of the lower external appearance of the above resistor, FIG. 10 is a cross-sectional view of a voltage non-linear resistor according to another embodiment of the present invention, and FIG. 11 is an upper external view of the same resistor. A perspective view, FIG. 12 is a lower external perspective view of the same resistor. 21.31: Element, 22, 23, 32, 32,
33: Metallic pole, 3 figures, 26 figures, 9 figures 1, 12 circles
Claims (1)
れ、該電極のうち少なくとも一つは、前記素体の側面を
経て他方の表面にまで延在しているものにおいて、側面
を経て延在する電極に覆われる板状磁器素体の角部形状
を曲面としたことを特徴とする電圧非直線抵抗体。1) A plurality of electrodes are provided on one surface of the plate-shaped porcelain element, and at least one of the electrodes extends to the other surface through the side surface of the element, A voltage nonlinear resistor characterized in that the corners of a plate-shaped porcelain body covered with an electrode extending through the porcelain body are curved.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1399284A JPS60158602A (en) | 1984-01-27 | 1984-01-27 | Voltage nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1399284A JPS60158602A (en) | 1984-01-27 | 1984-01-27 | Voltage nonlinear resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60158602A true JPS60158602A (en) | 1985-08-20 |
Family
ID=11848724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1399284A Pending JPS60158602A (en) | 1984-01-27 | 1984-01-27 | Voltage nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60158602A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6656304B2 (en) | 2000-01-14 | 2003-12-02 | Sony Chemicals Corp. | Method for manufacturing a PTC element |
-
1984
- 1984-01-27 JP JP1399284A patent/JPS60158602A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6656304B2 (en) | 2000-01-14 | 2003-12-02 | Sony Chemicals Corp. | Method for manufacturing a PTC element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4103274A (en) | Reconstituted metal oxide varistor | |
JPS5928962B2 (en) | Manufacturing method of thick film varistor | |
JPH0316251Y2 (en) | ||
JPH03173402A (en) | Chip varistor | |
JPS60158602A (en) | Voltage nonlinear resistor | |
JPH06124807A (en) | Laminated chip component | |
US3274467A (en) | Ceramic capacitor | |
JP2985527B2 (en) | Method of manufacturing voltage non-linear resistor | |
JPH0322883Y2 (en) | ||
JPS62282411A (en) | Voltage-dependent nonlinear resistor | |
JPH01183803A (en) | Composite electronic part | |
JP3246229B2 (en) | Chip electronic component and method of manufacturing the same | |
JPS60144903A (en) | Varistor | |
JPS5885501A (en) | Square varistor | |
EP3317888B1 (en) | Method of producing an electric component | |
JP2883387B2 (en) | Zinc oxide arrester element | |
JPS63285906A (en) | Laminated ceramic varistor | |
JPS63194310A (en) | Glass sealed thermistor | |
JPS59189604A (en) | Method of producing nonlinear resistor | |
JPS6138603B2 (en) | ||
JPS60170902A (en) | Chip type varistor | |
JPS6116502A (en) | Chip varistor | |
JPS63143801A (en) | Voltage nonlinear resistance element | |
JPH0322886Y2 (en) | ||
JPS59218703A (en) | Voltage nonlinear resistor |