JPS60157717A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS60157717A
JPS60157717A JP1275584A JP1275584A JPS60157717A JP S60157717 A JPS60157717 A JP S60157717A JP 1275584 A JP1275584 A JP 1275584A JP 1275584 A JP1275584 A JP 1275584A JP S60157717 A JPS60157717 A JP S60157717A
Authority
JP
Japan
Prior art keywords
oxygen atoms
substrate
layer
oxygen
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1275584A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Noboru Isoe
磯江 昇
Kunio Wakai
若居 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1275584A priority Critical patent/JPS60157717A/en
Priority to DE8585100803T priority patent/DE3573672D1/en
Priority to EP85100803A priority patent/EP0151445B2/en
Publication of JPS60157717A publication Critical patent/JPS60157717A/en
Priority to US07/145,599 priority patent/US4855175A/en
Priority to US07/352,256 priority patent/US5000984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a magnetic recording medium having a very small magnetic domain, high coercive force and superior magnetic characteristics by forming a ferromagnetic metallic thin film contg. oxygen on a substrate by vapor deposition so as to make the amount of oxygen atoms contained in the surface layer and in the interfacial layer contacting with the substrate larger than that in the intermediate layer and the amount of oxygen atoms contained in the surface layer larger than that in the interfacial layer. CONSTITUTION:A substrate 4 such as a plastic film is fed from a feed roll 5 through a guide roll 6, and it is moved along the outside of a cylindrical can 3 in a vacuum vessel 1. A ferromagnetic material 10 in an evaporating source 9 placed at the lower part of the vessel 1 is evaporated by heating, and generated vapor is diagonally deposited on the substrate 4 by the action of a deposition preventing plate 11. At the same time, gaseous oxygen is blown from a pipe 12 set between the can 3 and the plate 11 so that the oxygen hits directly on the part A of the substrate 4 having the minimum incident angle. Oxygen atoms are contained in the resulting ferromagnetic metallic thin film in an ideal state, so a magnetic recording medium having superior magnetic characteristics is obtd. The amount of oxygen atoms is largest in the surface layer and small in the intermediate layer, and the amount of oxygen atoms contained in the interfacial layer contacting with the substrate is smaller than that in the surface layer and larger than that in the intermediate layer.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は蒸着により形成された強磁性金属を含む強磁
性金属薄膜層を記録層とする磁気記録媒体に関し、さら
に詳しくは強磁性金属薄膜層中に酸素原子を含む磁気特
性に優れた前記の磁気記録媒体に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to a magnetic recording medium having a ferromagnetic metal thin film layer containing a ferromagnetic metal formed by vapor deposition as a recording layer. The present invention relates to the above-mentioned magnetic recording medium containing atoms and having excellent magnetic properties.

〔背景技術〕[Background technology]

強磁性金属薄膜層を記録jiとする磁気記録媒体は、通
常、プラスチックフィルムなどの基体を真空蒸着装置内
に取りつけた円筒状キャンの周側面に沿って移動させ、
この基体に強磁性金属もしくはそれらを含む合金等を真
空蒸着することによってつくられており、磁気特性に優
れた前記の磁気記録媒体を製造することを目的として、
斜め入射蒸着を行うとともに蒸気流の最高入射角部近傍
から蒸気流に向かって酸素ガスを導入したり (特開昭
58−83328号、特開昭58−41442号)ある
いは最低入射角部近傍から蒸気流に向かって酸素ガスを
導入したり (特開昭58−83327号、特開昭58
−41443号)したものが提示されている。
Magnetic recording media with a ferromagnetic metal thin film layer as the recording medium are usually produced by moving a base such as a plastic film along the circumferential side of a cylindrical can installed in a vacuum deposition apparatus.
It is made by vacuum-depositing ferromagnetic metals or alloys containing them on this substrate, with the aim of manufacturing the above-mentioned magnetic recording medium with excellent magnetic properties.
Oblique incidence evaporation is performed and oxygen gas is introduced toward the vapor stream from near the highest incident angle of the vapor stream (JP-A-58-83328, JP-A-58-41442), or from near the lowest incident angle. Introducing oxygen gas toward the steam flow (JP-A-58-83327, JP-A-58
-41443) is presented.

ところが、斜め入射蒸着を行うとともに蒸気流の最高入
射角近傍から蒸気流に向かって酸素ガスを導入する方法
では、磁気特性を未だ充分に向上することができず、特
に、この方法で得られる磁気記録媒体は、酸素原子導入
による保磁力の向上効果が蒸着速度に大きく依存し、蒸
着速度が大きくなると、強磁性金属薄膜層中に含有され
る酸素原子濃度が基体との界面で急激に高くなりまた基
体から遠ざかるにつれて急激に低くなって、酸素原子を
含有させた効果があまり発揮されず、量産に適した比較
的高速度の蒸着条件下では、磁気特性に優れた磁気記録
媒体を得ることが難しい。また、斜め入射蒸着を行うと
ともに蒸気流の最低入射角部近傍から蒸気流に向かって
酸素ガスを導入する方法では、前記の特開昭58−83
327号公報によると、強磁性金属薄膜層中における酸
素原子が基体から遠ざかるにつれて漸増するように含有
された磁気記録媒体が得られると記載されているが、こ
の発明の発明者らが検討したところでは、特開昭58−
83327号公報による方法では、記載されたような結
果は得られずに、強磁性金属薄膜層中における酸素原子
が基体から遠ざかるにつれて漸減するように含有された
磁気記録媒体が得られ、この漸減する度合が前記の最高
入射角部近傍から蒸気流に向かって酸素ガスを導入する
方法に比して少ないため、酸素原子を含有させた効果は
前記の場合はど減殺されることはないものの、充分には
発揮されず、従って、磁気特性の向上は未だ満足できる
ものではなく、特に量産に適した蒸着条件下では、前記
の最高入射角部近傍から蒸気流に向かって酸素ガスを導
入する場合と同様に、磁気特性に優れた磁気記録媒体を
得ることが難しい。
However, the method of performing oblique incidence evaporation and introducing oxygen gas toward the vapor flow from near the highest incident angle of the vapor flow has not yet been able to sufficiently improve the magnetic properties. In recording media, the effect of improving coercive force due to the introduction of oxygen atoms greatly depends on the deposition rate, and as the deposition rate increases, the concentration of oxygen atoms contained in the ferromagnetic metal thin film layer rapidly increases at the interface with the substrate. In addition, the value decreases rapidly as the distance from the substrate increases, and the effect of containing oxygen atoms is not very effective. Under relatively high-speed deposition conditions suitable for mass production, it is difficult to obtain a magnetic recording medium with excellent magnetic properties. difficult. Furthermore, in the method of performing oblique incidence evaporation and introducing oxygen gas toward the vapor flow from the vicinity of the lowest incident angle of the vapor flow,
According to Publication No. 327, it is stated that a magnetic recording medium can be obtained in which the oxygen atoms contained in the ferromagnetic metal thin film layer gradually increase as the distance from the substrate increases. is published in Japanese Unexamined Patent Application Publication No. 1983-
The method disclosed in Japanese Patent Publication No. 83327 does not produce the results described, but instead produces a magnetic recording medium in which oxygen atoms in the ferromagnetic metal thin film layer gradually decrease as the distance from the substrate increases. Since the degree of oxygen gas is smaller than that of the above-mentioned method of introducing oxygen gas toward the vapor flow from near the highest incident angle, the effect of containing oxygen atoms is not diminished in the above case, but it is sufficient. Therefore, the improvement in magnetic properties is still not satisfactory, especially under vapor deposition conditions suitable for mass production. Similarly, it is difficult to obtain a magnetic recording medium with excellent magnetic properties.

〔発明の目的〕[Purpose of the invention]

この発明ばかがる現状に鑑み、強磁性金属薄膜層中に含
有される酸素原子の分布状態を改善し、磁区が極めて小
さくて、高保磁力を有する磁気特性に優れた磁気記録媒
体を提供することを目的としてなされたものである。
In view of the current situation where this invention is difficult to achieve, it is an object of the present invention to provide a magnetic recording medium which improves the distribution of oxygen atoms contained in a ferromagnetic metal thin film layer, has extremely small magnetic domains, has high coercive force, and has excellent magnetic properties. It was made for the purpose of

〔発明の概要〕[Summary of the invention]

この発明は、強磁性金属薄膜層の磁気特性と強磁性金属
薄膜層中における酸素原子の深さ方向の分布について検
討した結果なされたもので、従来のように強磁性金属薄
膜層中における酸素原子が基体から遠ざかるにつれて漸
減するように含有されたものでは、斜め入射蒸着の陰影
すJ果によって生しる粒子間隔が広くて磁気的な相互作
用が弱いところ、即ち基体との界面近傍に酸素原子が多
量含有されるとはいえ、その後粒子が成長して粒子間隔
が極めて狭くなる磁気的な相互作用の強いところ、即ち
表面近傍に酸素原子が少量しか含有されないため、酸素
原子を含有させた効果があまり発揮されず、その結果、
高い保磁力が得られず、良好な磁気特性が得られないが
、最高入射角部で粒子の核が形成される際、充分な酸素
を供給して、形成される強磁性金属薄膜層の基体との界
面層における酸素原子の含有量を適当に調整すれは、強
磁性金属薄膜層を構成する斜めに湾曲した柱状粒子の粒
子サイズを小さくすることかできて、磁区を小さくする
ことができ、さらに、その後粒子が成長して粒子間隔が
極めて狭くなる磁気的な相互作用の強いところ、即ち表
面近傍部に、多量の酸素を供給して強磁性金属薄膜層の
表面層における酸素原子の含有量を中間層部での含有量
に比してできるだけ多くすれば、表面層に非磁性酸化物
が形成されて磁気的な相互作用が抑制され、酸素原子を
導入した効果が充分に発揮されて、磁区がさらに微細化
され、また保磁力を一段と向上することができることを
見いだしてなされたものである。
This invention was made as a result of studying the magnetic properties of a ferromagnetic metal thin film layer and the distribution of oxygen atoms in the depth direction in the ferromagnetic metal thin film layer. In the case where oxygen atoms are contained so as to gradually decrease as they move away from the substrate, oxygen atoms are present in areas where the magnetic interaction is weak due to wide particle spacing caused by the shadow effect of obliquely incident evaporation, that is, near the interface with the substrate. Although a large amount of oxygen atoms are contained, only a small amount of oxygen atoms are contained in areas where the magnetic interaction is strong, where the particles subsequently grow and the particle spacing becomes extremely narrow, that is, near the surface. is not fully demonstrated, and as a result,
Although a high coercive force cannot be obtained and good magnetic properties cannot be obtained, the substrate of the ferromagnetic metal thin film layer that is formed by supplying sufficient oxygen when particle nuclei are formed at the highest incident angle. By appropriately adjusting the content of oxygen atoms in the interface layer with the ferromagnetic metal thin film layer, it is possible to reduce the grain size of the obliquely curved columnar grains that make up the ferromagnetic metal thin film layer, and the magnetic domain can be made smaller. Furthermore, the content of oxygen atoms in the surface layer of the ferromagnetic metal thin film layer is increased by supplying a large amount of oxygen to areas where the magnetic interaction is strong, where the particles subsequently grow and the particle spacing becomes extremely narrow, that is, near the surface. If the content is as large as possible compared to the content in the intermediate layer, a nonmagnetic oxide is formed in the surface layer, suppressing magnetic interaction, and the effect of introducing oxygen atoms is fully exhibited. This was done based on the discovery that the magnetic domains could be further refined and the coercive force could be further improved.

この発明は、かかる知見に基づくものであり、基体上に
苺着により形成された強磁性金属を含む強磁性金m薄膜
層の、表面層および基体との界面層に中間層よりも多い
酸素原子を含有させ、かつ表面層に含有する酸素原子を
基体との界面層に含有される酸素原子よりも多くしたこ
とを特徴とするもので、このような分布で強磁性金属薄
膜層中に酸素原子含有させることによって、磁区を極め
て小さくするとともに保磁力を一段と向上させたもので
ある。なお、ここでいう強磁性金属薄膜層の表面層は、
有機物系の酸素や空気中の酸素等が結合または付着した
ごく表面の汚染層を除いて、酸素ガスの供給によって強
磁性金属と結合した酸素原子が存在する表面の部分をい
い、この明細書中における強磁性金属薄膜層の表面層は
全てこの強磁性金属と結合した酸素原子か存在する表面
層を意味する。
This invention is based on this knowledge, and the surface layer and the interface layer with the substrate of a ferromagnetic gold thin film layer containing a ferromagnetic metal formed on a substrate by strawberry adhesion have more oxygen atoms than the intermediate layer. It is characterized by containing more oxygen atoms in the surface layer than in the interface layer with the substrate, and with this distribution, the oxygen atoms in the ferromagnetic metal thin film layer are By including it, the magnetic domain can be made extremely small and the coercive force can be further improved. Note that the surface layer of the ferromagnetic metal thin film layer here is
In this specification, it refers to the surface area where oxygen atoms bonded to ferromagnetic metals are present due to the supply of oxygen gas, excluding the very surface contamination layer where organic oxygen or oxygen in the air is bonded or attached. The surface layer of the ferromagnetic metal thin film layer in the above refers to a surface layer in which all oxygen atoms bonded to the ferromagnetic metal are present.

強磁性金属薄膜層中に含有される酸素原子は、その中間
層で最も少なく、表面層で中間層に含有される酸素原子
の1.5〜6.0倍量、基体との界面層で中間層に含有
される酸素原子の1.2〜3.0倍量であって、中間層
部の酸素原子は該中間層部の全構成物質の原子に対し5
〜15%の範囲内であり、強磁性金属薄膜層全体平均で
の酸素原子は強磁性金属薄膜層の全体の構成物質の10
〜30%の範囲内であることが好ましく、酸素原子の含
有量がこの範囲内にあると、保磁力が800工ルステツ
ド以上で、磁区サイズが0.3μ以下の高保磁力で磁区
が極めて小さいものが容易に得られる。
The amount of oxygen atoms contained in a ferromagnetic metal thin film layer is the lowest in the intermediate layer, 1.5 to 6.0 times the amount of oxygen atoms contained in the intermediate layer in the surface layer, and the lowest in the intermediate layer in the interface layer with the substrate. The amount of oxygen atoms in the intermediate layer is 1.2 to 3.0 times that of the oxygen atoms contained in the layer, and the oxygen atoms in the intermediate layer are 5 times the amount of oxygen atoms contained in the intermediate layer.
~15%, and the average oxygen atoms in the entire ferromagnetic metal thin film layer account for 10% of the total constituent materials of the ferromagnetic metal thin film layer.
The content of oxygen atoms is preferably within the range of ~30%, and when the content of oxygen atoms is within this range, the coercive force is 800 F or more, and the magnetic domain size is 0.3 μ or less, a high coercive force and an extremely small magnetic domain. can be easily obtained.

これに対して基体との界面層に含有される酸素原子の含
有量が少な過ぎると、核となる強磁性金属粒子のサイズ
が充分に小さくならず、表面層に含有される酸素原子が
少なずぎると、粒子間隙に酸素原子が良好に含有されな
いため高い保磁力が得られず、磁区も小さくならない。
On the other hand, if the content of oxygen atoms in the interface layer with the substrate is too small, the size of the core ferromagnetic metal particles will not be sufficiently small, and the amount of oxygen atoms in the surface layer will be too small. If it is too high, oxygen atoms will not be well contained in the interparticle gaps, so a high coercive force will not be obtained and the magnetic domain will not become small.

また酸素原子含有量が多すきると非磁性になるおそれが
あるため好ましくない。なお、ここでいう強磁性金属薄
膜層の全体とは、有機物系の酸素や空気中の酸素等が結
合または付着したごく表面の汚染層を除いて、酸素ガス
の供給によって強磁性金属と結合した酸素原子が存在す
る強磁性金属薄膜層の全体をいい、この明細書中におけ
る強磁性金属薄膜層の全体とは全てこの強磁性金属と結
合した酸素原子が存在する強磁性金属薄膜層の全体を意
味する。
Further, if the oxygen atom content is too high, it is not preferable because it may become non-magnetic. Note that the entire ferromagnetic metal thin film layer here refers to the entire ferromagnetic metal thin film layer, excluding the very surface contamination layer where organic oxygen or oxygen in the air has bonded or adhered. It refers to the entire ferromagnetic metal thin film layer in which oxygen atoms exist, and in this specification, the entire ferromagnetic metal thin film layer refers to the entire ferromagnetic metal thin film layer in which oxygen atoms bonded to the ferromagnetic metal exist. means.

第1図は少なくとも最低入射角部の基体に直射するよう
に酸素ガスを吹きつけてこの発明の強磁性金属薄膜層を
形成する際に使用する真空蒸着装置の断面図を示したも
のであり、■は真空槽でこの真空槽1の内部は排気系2
により真空に保持される。3は真空槽1の中央部に配設
された円筒状キ中ンであり、プラスチックフィルム等の
基体4は原反ロール5よりガイドロール6を介してこの
円筒状キャン3の周側面に沿って移動し、ガイトロ−ル
アを介して巻き取りロール8に巻き取られる。この間円
筒状キャン3の周側面に沿って移動する基体4に対向し
て真空槽1の下部に配設された強磁性材蒸発源9で強磁
性材10が加熱蒸発され、この蒸気が円筒状キャン3の
下方に配置された防着板11の作用で基体4に斜め入射
蒸着されるが、このとき同時に円筒状キャン3と防着板
11との間に配設されたガス導入管12から、酸素ガス
が少なくとも最低入射角部Aの基体4に直射するように
吹きつけられる。このように少なくとも最低入射角部A
の基体4に直射するように酸素ガスを吹きつけるガス導
入管12は、第2図に示すように、ガス導入管12のガ
ス吹き出し口12aから基体4の最低入射角部へまでの
距離りが15cm以内で、最低入射角θで差し向けられ
る蒸気流Bとのなす角度αが30度以内となる位置に配
設し、ガス吹き出し口12aから少なくとも最低入射角
部へに直射するように吹きつけられる酸素ガスが、最低
入射角部Aから高入射角の方向に円筒状キャン3の中心
0を基点とした角度βで10度を越えない範囲E内に直
射して吹きつけられるようにするのが好ましく、このよ
うな条件下で酸素ガスか少なくとも最低入射角部Aの基
体4に直射するように吹きつけられると、基体4の最低
入射角部Aの近傍で酸素ガスが最も多くなり、同時に基
体4の最高入射角部Cの近傍では析出速度が遅いため真
空槽1内に充満した酸素ガスが多量にとりこまれ易くな
る。その結果、最高入射角部C近傍の基体4上で強磁性
材粒子の核が生成される際、酸素原子を比較的多量に含
有したサイズが充分に小さい粒子が生成され、また基体
4の最低入射角部A近傍の多量の酸素ガスによって粒子
が良好に成長し、粒子の成長とともに磁気的な相互作用
が強くなる部分でも粒子間隙に酸素原子が良好に含有さ
れて、保磁力が一段と高く、磁区が極めて小さい強磁性
金属薄膜層が形成される。またこのようにして形成され
る強磁性金属薄膜層は、表面層および基体との界面層に
多量の酸素原子が含有されるため、これら表面層と界面
層間での酸素原子の含有量が多いほど垂直方向に向き易
い磁化のバランスも良好に保たれ、酸素原子が表面層で
最も多く、中間層で少な(、基体との界面層で表面層よ
り少なく中間層より多いという最も理想的な形で強磁性
金属薄膜層内に含有されて磁気特性に優れた磁気記録媒
体が得られる。特にこの製造方法では少なくとも基体4
の最低入射角部Aに直射するように多量の酸素ガスを吹
きつけているため、多量の酸素原子が高収量で強磁性金
属薄膜層内にとりこまれ、蒸着速度が速くなるほど保磁
力が高くなり、蒸気流の最低入射角度が60度以下で、
蒸着速度が1000人/sec以上の量産に適した蒸着
条件下で、充分に磁気特性に優れた磁気記録媒体が得ら
れ、磁区サイズが0.3 μ以下のものが容易に得られ
る。なお、強磁性金属もしくはそれらを含む合金等を斜
め入射蒸着する際の入射角θは、60度より大きくする
と、蒸着効率が悪くなり、量産に適さないため、60度
以下にするのが好ましい。
FIG. 1 shows a cross-sectional view of a vacuum evaporation apparatus used to form the ferromagnetic metal thin film layer of the present invention by blowing oxygen gas directly onto the substrate at least at the lowest incident angle. ■ is a vacuum chamber, and inside this vacuum chamber 1 is an exhaust system 2.
The vacuum is maintained by 3 is a cylindrical can disposed in the center of the vacuum chamber 1, and a base material 4 such as a plastic film is passed from a raw roll 5 through a guide roll 6 along the circumferential side of the cylindrical can 3. It moves and is wound up onto a winding roll 8 via a guide lure. During this time, the ferromagnetic material 10 is heated and evaporated in the ferromagnetic material evaporation source 9 disposed at the bottom of the vacuum chamber 1, facing the base 4 moving along the circumferential side of the cylindrical can 3, and this vapor is evaporated into the cylindrical shape. Due to the action of the deposition prevention plate 11 disposed below the can 3, oblique incidence evaporation is performed on the substrate 4, and at the same time, from the gas introduction pipe 12 disposed between the cylindrical can 3 and the deposition prevention plate 11, , oxygen gas is blown directly onto the base 4 at least at the lowest incident angle portion A. In this way, at least the lowest incident angle part A
As shown in FIG. 2, the gas introduction tube 12 that blows oxygen gas directly onto the substrate 4 has a distance from the gas outlet 12a of the gas introduction tube 12 to the lowest incident angle of the substrate 4. Within 15 cm, it is arranged at a position where the angle α with the vapor flow B directed at the lowest incident angle θ is within 30 degrees, and the gas is blown directly from the gas outlet 12a to at least the lowest incident angle part. The oxygen gas is directly blown from the lowest incident angle part A in the direction of the highest incident angle within a range E not exceeding 10 degrees at an angle β based on the center 0 of the cylindrical can 3. is preferable, and under such conditions, when oxygen gas is blown directly onto the substrate 4 at least at the lowest angle of incidence A, the oxygen gas becomes the largest near the lowest angle of incidence A of the base 4, and at the same time Since the deposition rate is slow in the vicinity of the highest incident angle portion C of the substrate 4, a large amount of oxygen gas filling the vacuum chamber 1 is likely to be taken in in large quantities. As a result, when nuclei of ferromagnetic material particles are generated on the substrate 4 in the vicinity of the highest incident angle part C, particles containing a relatively large amount of oxygen atoms and sufficiently small in size are generated; The particles grow well due to the large amount of oxygen gas near the incident angle part A, and even in the area where the magnetic interaction becomes stronger as the particles grow, oxygen atoms are well contained in the interparticle gaps, resulting in a higher coercive force. A ferromagnetic metal thin film layer with extremely small magnetic domains is formed. In addition, the ferromagnetic metal thin film layer formed in this way contains a large amount of oxygen atoms in the surface layer and the interface layer with the substrate. The balance of magnetization, which tends to be oriented in the perpendicular direction, is also maintained well, with the most oxygen atoms in the surface layer and the least in the intermediate layer (in the most ideal form, the interface layer with the substrate is less than the surface layer and more than the intermediate layer). A magnetic recording medium containing the ferromagnetic metal in the thin film layer and having excellent magnetic properties can be obtained.In particular, in this manufacturing method, at least the base 4
Since a large amount of oxygen gas is blown directly onto the lowest incident angle A of , the minimum angle of incidence of the vapor flow is 60 degrees or less,
Under deposition conditions suitable for mass production at a deposition rate of 1000 people/sec or more, a magnetic recording medium with sufficiently excellent magnetic properties can be obtained, and one with a magnetic domain size of 0.3 μm or less can be easily obtained. The incident angle θ when evaporating ferromagnetic metals or alloys containing them at oblique incidence is preferably set to 60 degrees or less because if it is larger than 60 degrees, the deposition efficiency will deteriorate and it will not be suitable for mass production.

基体としては、ポリエステル、ポリイミド、ポリアミド
等一般に使用されている高分子成形物からなるプラスチ
ックフィルムおよび銅などの非磁性金属からなる金属フ
ィルムが使用され、また、強磁性金属薄膜層を形成する
強磁性材としてば、C01Ni、Feなどの強磁性金属
単体、これら強磁性金属単体を少なくとも1種含む合金
あるいは酸化物、およびCo−P、Co−N1−Pの如
き強磁性金属との化合物など一般に真空蒸着に使用され
るものがいずれも使用される。
As the substrate, a plastic film made of commonly used polymer moldings such as polyester, polyimide, polyamide, etc. and a metal film made of non-magnetic metal such as copper are used. Examples of materials include ferromagnetic metals such as C01Ni and Fe, alloys or oxides containing at least one of these ferromagnetic metals, and compounds with ferromagnetic metals such as Co-P and Co-N1-P. Anything used for vapor deposition can be used.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 第1図に示す真空蒸着装置を使用し、約10μ厚のポリ
エステルベースフィルム4を、原反ロール5よりガイド
ロール6を介して直径60cmの円筒状回転キャン3の
周側面に沿って移動させ、ガイドロール7を介して巻き
取りロール8に巻き取るようにセントするとともに、蒸
発源9内にコバルト−ニッケル合金(重量比8:2)1
0をセントした。次いで排気系2で真空槽1内を約5×
10−Bトールにまで真空排気し、コバルト−二・7ケ
ル合金10を加熱蒸発させて最低入射角50度、蒸着速
度800人/secで斜め入射蒸着を開始すると同時に
、ガス導入管12から最低入射角部Aのポリエステルベ
ースフィルム4に酸素ガスをガス圧を種々に変えて吹き
つけ、ポリエステルベースフィルム4上にコバルト−ニ
ッケル合金からなる強磁性金属M−膜層を形成した′。
Example 1 Using the vacuum evaporation apparatus shown in FIG. 1, a polyester base film 4 with a thickness of about 10 μm was deposited from a raw roll 5 through a guide roll 6 along the circumferential side of a cylindrical rotating can 3 with a diameter of 60 cm. Cobalt-nickel alloy (weight ratio 8:2)
I made 0 cents. Next, the inside of the vacuum chamber 1 is pumped approximately 5× using the exhaust system 2.
The vacuum was evacuated to 10-B Torr, and the cobalt-2.7 Kel alloy 10 was heated and evaporated to start oblique incidence deposition at a minimum incidence angle of 50 degrees and a deposition rate of 800 people/sec. Oxygen gas was blown onto the polyester base film 4 at the incident angle portion A at various gas pressures to form a ferromagnetic metal M-film layer made of a cobalt-nickel alloy on the polyester base film 4'.

しかる後、所定の幅に裁断して多数の磁気テープをつく
った。なお、ガス導入管12はそのガス吹き出し口12
aの先端から円筒状回転キャン3の周側面にセントした
ポリエステルベースフィルム4の最低入射角部Aまでの
距離が5cmとなるようにし、かつ最低入射角で差し向
けられる蒸気流とのなす角度αが20度となるように配
置した。またガス導入管12のガス吹き出し口12aか
ら吹き出される酸素ガスは、最低入射角部Aがら高入射
角の方向に円筒状回転キャンの中心0を基点とした角度
βが10度で直射されるようにして用いた。
After that, it was cut into a predetermined width to make a large number of magnetic tapes. Note that the gas introduction pipe 12 has its gas outlet 12
The distance from the tip of a to the lowest incident angle part A of the polyester base film 4 centered on the circumferential side of the cylindrical rotating can 3 is 5 cm, and the angle α formed with the vapor flow directed at the lowest incident angle is 5 cm. It was arranged so that the angle was 20 degrees. Further, the oxygen gas blown out from the gas outlet 12a of the gas introduction pipe 12 is directly irradiated from the lowest incident angle part A in the direction of the highest incident angle at an angle β of 10 degrees with respect to the center 0 of the cylindrical rotating can. It was used in this way.

比較例1 第1図に示す真空蒸着装置に代えて、第3図に示すよう
に、ガス導入管13をガス吹き出し口が強磁性材の蒸気
流Bに向くように防着板11と円筒状回転キャン3との
間に取りつげて、酸素ガスが基体4上に直接には吹きつ
けられないようにし、他は第1図に示す装置と同様にし
た真空蒸着装置を使用して、酸素ガスを矢印で示すよう
に強磁性材の蒸気流Bに向かって実施例1と同様にガス
圧を種々に変えて吹きつけた以外は実施例1と同様にし
て強磁性金属薄膜層を形成し、多数の磁気テープをつく
った。
Comparative Example 1 Instead of using the vacuum evaporation apparatus shown in FIG. 1, as shown in FIG. Using a vacuum evaporation device installed between the rotary can 3 and the substrate 4 so that the oxygen gas is not blown directly onto the substrate 4, and which is otherwise similar to the device shown in FIG. A ferromagnetic metal thin film layer was formed in the same manner as in Example 1 except that the gas was blown toward the vapor flow B of the ferromagnetic material at various pressures as in Example 1 as shown by the arrows, He made a large number of magnetic tapes.

比較例2 第1図に示す真空蒸着装置に代えて、第4図に示すよう
に、酸素ガス導入管14をガス吹き出し口が強磁性材の
蒸気流Bに向くように、最高入射角部の近くに配置して
、酸素ガスが基体4上に直接には吹きつけられないよう
にし、他は第1図に示す装置と同様にした真空蒸着装置
を使用して、酸素ガスを矢印で示すように強磁性材の茎
気流Bに向かって実施例1と同様にガス圧を種々に変え
て吹きつけた以外は、実施例1と同様にして強磁性金属
薄膜層を形成し、多数の磁気テープをつくった。
Comparative Example 2 Instead of using the vacuum evaporation apparatus shown in FIG. 1, as shown in FIG. Using a vacuum evaporation apparatus similar to the apparatus shown in FIG. 1, which was placed nearby so that the oxygen gas was not blown directly onto the substrate 4, the oxygen gas was applied as shown by the arrow. A ferromagnetic metal thin film layer was formed in the same manner as in Example 1, except that the gas pressure was blown toward the stem air stream B of the ferromagnetic material at various pressures as in Example 1, and a large number of magnetic tapes were I made it.

実施例および各比較例において、酸素ガスのガス圧を2
X10−’トールと一定にして得られた磁気テープにつ
いて、強磁性金属薄膜層中における酸素原子の濃度分布
をオージェ電子分光計によって調べた。第5図はその結
果をグラフで表したもので、グラフAは実施例1で得ら
れた磁気テープ、グラフBは比較例1で得られた磁気テ
ープ、グラフCは比較例2で得られた磁気テープの強磁
性金属薄膜層中における酸素原子の濃度分布を示したも
のである。これらのグラフから明らかなように、比較例
1および2で得られた磁気テープの強磁性金属薄膜層中
における酸素原子の濃度分布は基体から遠ざかるにつれ
て漸減するように含有されているのに対し、この発明で
得られた磁気テープの強磁性金属薄膜層中における酸素
原子の濃度分布は、表面層で最も多く、中間層で最も少
なく、基体との界面層で中間層より多く表面層より少な
く含有されていることがわかる。
In the examples and comparative examples, the gas pressure of oxygen gas was set to 2.
The concentration distribution of oxygen atoms in the ferromagnetic metal thin film layer was examined using an Auger electron spectrometer for the magnetic tape obtained by keeping X10-'Torr constant. Figure 5 shows the results in a graph. Graph A is the magnetic tape obtained in Example 1, graph B is the magnetic tape obtained in Comparative Example 1, and graph C is the magnetic tape obtained in Comparative Example 2. This figure shows the concentration distribution of oxygen atoms in the ferromagnetic metal thin film layer of the magnetic tape. As is clear from these graphs, the concentration distribution of oxygen atoms in the ferromagnetic metal thin film layer of the magnetic tapes obtained in Comparative Examples 1 and 2 gradually decreases as the distance from the substrate increases. The concentration distribution of oxygen atoms in the ferromagnetic metal thin film layer of the magnetic tape obtained by this invention is the highest in the surface layer, the lowest in the intermediate layer, and the interface layer with the substrate contains more oxygen atoms than the intermediate layer and less than the surface layer. I can see that it is being done.

また、実施例および各比較例で得られた多数の磁気テー
プについて、保磁力および磁区サイズを測定した。第6
図はこのようにして測定して得られた保磁力と強磁性金
属薄膜層全体の平均酸素含有量との関係をグラフで表し
たものであり、グラフAば実施例1で得られた磁気テー
プ、グラフBは比較例1で得られた磁気テープ、グラフ
Cは比較例2で得られた磁気テープを示す。また第7図
は磁区サイズと強磁性金属薄膜層全体の平均酸素含有量
との関係をグラフで表したものであり、グラフAは実施
例1で得られた磁気テープ、グラフBば比較例1で得ら
れた磁気テープ、グラフCは比較例2で得られた磁気テ
ープを示す。
In addition, coercive force and magnetic domain size were measured for a large number of magnetic tapes obtained in Examples and Comparative Examples. 6th
The figure is a graph showing the relationship between the coercive force measured in this way and the average oxygen content of the entire ferromagnetic metal thin film layer. , graph B shows the magnetic tape obtained in Comparative Example 1, and graph C shows the magnetic tape obtained in Comparative Example 2. Further, FIG. 7 is a graph showing the relationship between the magnetic domain size and the average oxygen content of the entire ferromagnetic metal thin film layer, where graph A is the magnetic tape obtained in Example 1, and graph B is the magnetic tape obtained in Comparative Example 1. Graph C shows the magnetic tape obtained in Comparative Example 2.

〔発明の効果〕〔Effect of the invention〕

第6図および第7図のグラフから明らかなように、この
発明で得られた磁気テープ(グラフA)は、いずれも従
来の磁気テープ(グラフBおよびC)に比し、保磁力が
高くて磁区サイズが小さく、このことからこの発明で得
られた磁気記録媒体は、磁気特性に優れていることがわ
かる。また、従来の磁気テープでは保磁力が高くても7
00エルステツド以下であり、磁区サイズは小さくても
0.5μ以上であるが、この発明の磁気テープでは保磁
力が800エルステンドを超えloo’0エルステッド
にまで達するものが得られ、磁区サイズが0.3μ以下
のものが容易に得られることがわかる。
As is clear from the graphs in FIGS. 6 and 7, the magnetic tape obtained by this invention (graph A) has a higher coercive force than the conventional magnetic tape (graphs B and C). The magnetic domain size is small, which indicates that the magnetic recording medium obtained by the present invention has excellent magnetic properties. In addition, with conventional magnetic tape, even if the coercive force is high, 7
00 oersted or less, and the magnetic domain size is at least 0.5μ at the smallest. However, in the magnetic tape of the present invention, the coercive force exceeds 800 oersted and reaches loo'0 oersted, and the magnetic domain size is 0.5μ or more. It can be seen that one with a diameter of .3μ or less can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法を実施するために使用する
真空蒸着装置の概略断面図、第2図は同要部拡大断面図
、第3図は従来の製造方法を実施するために使用する真
空蒸着装置の概略断面図、第4図は同地の真空蒸着装置
の概略断面図、第5図はこの発明および比較例1および
2で得られた磁気テープの強磁性金属薄膜層中における
酸素原子の分布を示す説明図、第6図はこの発明および
比較例1および2で得られた磁気テープの保磁力と平均
酸素含有量との関係図、第7図はこの発明および比較例
1および2で得られた磁気テープの磁区サイズと平均酸
素含有量との関係図である。 第1図 第2図 第3図 第4図 第5図 第6図 0 −10 20 30 平均酸素含有量(原子%) 特許庁長官 若 杉 和 夫 )股 1.事件の表示 昭和59年1月26日出願の特許願(5)2、発明の名
称 f7− IL75f’磁気記録媒体 3、補正をする者 事件との関係 特許出願人 住 所 大阪府茨木市丑寅−丁目1番88号名 称 (
581)日立マクセル株式会社代表者 永 井 厚 4、代理人 住 所 大阪市東区博労町2丁目41番地明細書の「特
許請求の範囲」の欄、明細書の[6、補正の内容 (1) 明細書第1ページから第2ページにかけての特
許請求の範囲を別紙のとおり補正する。 (2)明細書第5ページ、第2行目の「含有される酸素
原子の分布状態」を「おける酸素原子の濃度分布」と補
正する。 (3)明細書第5ページ、第9行目の、1分、布」を「
濃度分布」と補正する。 (4)明細書第6ページ、第3行目の「酸素原子の含有
量」を1酸素原子の濃度」と補正する。 (5)明細書第6ページ、第10行目から第11行目に
かけての「酸素原子の含有量を中間層部での含有量に比
してできるだけ多くすれば、」を「酸素原子の濃度を中
間層部での濃度に比してできるだけ高(すれば、」と補
正する。 (6)明細書第6ページ、下から第2行目から、明細書
第7ページ、第4行目にかけての「表面層および基体・
・・・・・・・・・・・・・・・・・含有させることに
よりて、」を[表面層および基体との界面層の酸素原子
濃度を中間層よりも高くし、かつ表面層の酸素原子濃度
を基体との界面層の酸素原子濃度よりも高くしたことを
特徴とするもので、このような濃度分布で強磁性金属薄
ji!iii層中に酸素原子を含有させることによって
、」と補正する。 (7)明細書7ページ、下から第7行目から、明細書第
8ページ、第3行目にかけての1強磁性金属薄膜層中に
・・・・・・・・・・・・・・・・・・この範囲内にあ
ると、」を「強磁性金属薄膜層中の酸素原子濃度は、そ
の中間層で最も低く、表面層で中間層の酸素原子濃度の
1.5〜6.0倍量、基体との界面層で中間層の酸素原
子濃度の1.2〜3,0倍量であって、中間j製部の酸
素原子濃度は該中間層部の全構成原子数の和に対し5〜
15%の範囲内であり、強磁性金属薄膜層の全体での酸
素原子濃度は強磁性金属薄膜層全体の全構成原子数の和
に対し10〜30%の範囲内であることが好ましく、酸
素原子濃度がこの範囲内にあると、」と補正する。 (8)明細書第8ページ、第6行目から第12行目にか
げての「これに対して・・・・・・・・・・・・・・・
多ずぎると非磁性になる」を「これに対して基体との界
面層の酸素原子濃度が低すぎると、核となる強磁性金属
粒子のサイズが充分に小さくならず、表面層の酸素原子
濃度が低すぎると、粒子間隙に酸素原子が良好に含有さ
れないため高い保磁力が得られず、磁区も小さくならな
い。また酸素原子濃度が高すぎると非磁性になる」と補
正する。 (9) 明細書第11ページ、第6行目から第12行目
にかけての「表面層および基体・・・・旧・・・・・・
・・中間層より多いという」を[表面層および基体との
界面層の酸素原子濃度が高いため、これら表面層と界面
層間での酸素原子濃度が商いほど垂直方向に向き易い磁
化めバランスも良好に保たれ、酸素原子濃度が表面層で
最も高く、中間層で低く、基体との界面層で表面層より
低く中間層より高いという」と補正する。 00)明細書第16ページ、第4行目から第5行目にか
けての1漸減するように含有されている」を「漸減する
」と補正する。 (11)明細書第16ペー ジ、第9行目の「含有され
ていることがわかる。」を1なっていることがわかる。 」と補正する。 (12)明細書第16ページ、第13行目から第14行
目にかけての「平均酸素含有量jおよび第18行目から
第19行目にかけての「平均酸素含有量」を[−平均酸
素濃度」と補正する。 (13)明細1第18ページ、第7行目および第9行目
の「平均酸素含有量」を「平均酸素濃度」と補正する。 (14)図面の第6図および第7図を別紙の通り補正す
る。 7、添付書類の目録 (1)特許請求の範囲を記載した書面 1 通(2)図
面の第6図および第7図 1 通特許請求の範囲 1、基体上に蒸着により形成された強磁性金属薄膜層の
、表面層および基体との界面層勿做束凰了AO【を中間
層m13、 P門よ −′−<シたことを特徴とする磁
気記録媒体 2、強磁性金属薄膜層の表面N■酸素原子直変を基体と
の界面層生酸素原子差度より紅した特許請求の範囲第1
項記載の磁気記録媒体3、強磁性金属薄膜層の表面層少
酸素原子1度が、中間腓■酸素原子A度の1.5〜6.
0倍量であり、基体との界面層少酸素原子撮一度2が、
中間雁夏酸素原子差度の1.2〜3.0倍量である特許
請求の範囲第2項記載の磁気記録媒体 4、強磁性金属薄II層の中間層夏酸素原子1111L
が当該中間層部の全U原子数−〇程に対し、5〜15%
で1磁性金属薄膜層の全体皇全盪爪原子斂夏租に対しX
ユ」ゴ1Q酸素原子差度が、10〜30%である特許請
求の範囲第1項ないし第3項記載の磁気記録媒体 第6図 0 10 20 30 平均酸素濃4度(原子%) 第7図 0 10 20 30 平均酸素濃度(原子%)
Fig. 1 is a schematic sectional view of a vacuum evaporation apparatus used to carry out the manufacturing method of the present invention, Fig. 2 is an enlarged sectional view of the same main part, and Fig. 3 is a schematic sectional view of a vacuum evaporation apparatus used to carry out the conventional manufacturing method. FIG. 4 is a schematic cross-sectional view of a vacuum evaporation device in the same place, and FIG. An explanatory diagram showing the distribution of atoms, FIG. 6 is a diagram showing the relationship between the coercive force and the average oxygen content of the magnetic tapes obtained in this invention and Comparative Examples 1 and 2, and FIG. 2 is a relationship diagram between the magnetic domain size and average oxygen content of the magnetic tape obtained in Example 2. FIG. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 0 -10 20 30 Average oxygen content (atomic %) Commissioner of the Japan Patent Office Kazuo Wakasugi) Crotch 1. Display of case Patent application (5) 2 filed on January 26, 1980, title of invention f7- IL75f' magnetic recording medium 3, person making amendment Relationship to case Patent applicant address Ushitora, Ibaraki City, Osaka Prefecture - 1-88 Chome Name (
581) Hitachi Maxell Co., Ltd. Representative Atsushi Nagai 4 Address of agent 2-41 Bakoro-cho, Higashi-ku, Osaka "Claims" column of the specification, [6, Contents of amendment (1) Specification The scope of claims from page 1 to page 2 of the book is amended as shown in the attached sheet. (2) "Distribution state of oxygen atoms contained" in the second line of page 5 of the specification is corrected to "concentration distribution of oxygen atoms in". (3) On page 5, line 9 of the specification, change ``1 minute, cloth'' to ``
"concentration distribution". (4) "Content of oxygen atoms" on page 6, line 3 of the specification is corrected to "concentration of 1 oxygen atom." (5) On page 6 of the specification, from line 10 to line 11, "If the content of oxygen atoms is increased as much as possible compared to the content in the intermediate layer" is changed to "concentration of oxygen atoms." (6) From page 6 of the specification, second line from the bottom to page 7 of the specification, line 4 from the bottom. ``Surface layer and substrate・
By containing ``, the oxygen atom concentration in the surface layer and the interface layer with the substrate is made higher than that in the intermediate layer, and the concentration of oxygen atoms in the surface layer is increased. It is characterized by having an oxygen atom concentration higher than that of the interface layer with the substrate, and with such a concentration distribution, the ferromagnetic metal thin ji! By containing oxygen atoms in layer iii, the correction is made as follows. (7) In one ferromagnetic metal thin film layer from page 7 of the specification, line 7 from the bottom to page 8 of the specification, line 3... ...If it is within this range, the oxygen atom concentration in the ferromagnetic metal thin film layer is the lowest in the intermediate layer, and the surface layer is 1.5 to 6.0 of the oxygen atom concentration in the intermediate layer. The amount is 1.2 to 3.0 times the oxygen atom concentration in the intermediate layer at the interface layer with the substrate, and the oxygen atom concentration in the intermediate J-made part is the sum of the total number of atoms constituting the intermediate layer. Against 5~
The oxygen atom concentration in the entire ferromagnetic metal thin film layer is preferably within the range of 10 to 30% of the total number of constituent atoms in the entire ferromagnetic metal thin film layer. If the atomic concentration is within this range, it is corrected as follows. (8) On page 8 of the specification, from line 6 to line 12, it says “In response to this...
If the concentration of oxygen atoms in the interface layer with the substrate is too low, the size of the ferromagnetic metal particles that form the nucleus will not become sufficiently small, and the concentration of oxygen atoms in the surface layer will decrease. If the concentration of oxygen atoms is too low, oxygen atoms will not be properly contained in the interparticle gaps, so a high coercive force will not be obtained and the magnetic domain will not become small.Furthermore, if the oxygen atom concentration is too high, the material will become non-magnetic. (9) “Surface layer and substrate... old...” from line 6 to line 12 on page 11 of the specification
・The higher the oxygen atom concentration in the surface layer and the interface layer with the substrate, the higher the oxygen atom concentration between the surface layer and the interface layer, the better the magnetization balance is. The oxygen atom concentration is highest in the surface layer, lower in the intermediate layer, and lower in the interface layer with the substrate than the surface layer and higher than the intermediate layer.'' 00) On page 16 of the specification, from the 4th line to the 5th line, "contained so as to gradually decrease by 1" is corrected to "gradually decrease". (11) It can be seen that on page 16 of the specification, line 9, "It is found that it is contained." is set to 1. ” he corrected. (12) "Average oxygen content j" from line 13 to line 14 on page 16 of the specification and "average oxygen content" from line 18 to line 19 [-average oxygen concentration ” he corrected. (13) "Average oxygen content" in the 7th and 9th lines of Specification 1, page 18, is corrected to "average oxygen concentration." (14) Figures 6 and 7 of the drawings will be corrected as shown in the attached sheet. 7. List of attached documents (1) Document stating the claims 1 copy (2) Figures 6 and 7 of the drawings 1 Claim 1: Ferromagnetic metal formed on a substrate by vapor deposition A magnetic recording medium 2 characterized in that the surface layer and the interface layer between the thin film layer and the substrate are the intermediate layer m13, Claim 1, which emphasizes the direct change of N■ oxygen atoms from the degree of difference between oxygen atoms in the interfacial layer with the substrate.
In the magnetic recording medium 3 described in Section 3, the surface layer of the ferromagnetic metal thin film layer has a low oxygen atom degree of 1 degree and an intermediate oxygen atom degree of 1.5 to 6 degrees.
0 times the amount, and the interfacial layer with the substrate has low oxygen atomic imaging once 2,
The magnetic recording medium 4 according to claim 2, the amount of which is 1.2 to 3.0 times the intermediate oxygen atom difference degree, the intermediate layer oxygen atoms 1111L of the ferromagnetic metal thin II layer.
is 5 to 15% of the total number of U atoms in the intermediate layer - about
In one magnetic metal thin film layer, the total thickness of the magnetic metal thin film layer is
The magnetic recording medium according to Claims 1 to 3, wherein the oxygen atomic difference in U'go 1Q is 10 to 30%. Figure 0 10 20 30 Average oxygen concentration (atomic%)

Claims (1)

【特許請求の範囲】 1、基体上に蒸着により形成された強磁性金属薄膜層の
、表面層および基体との界面層に中間層よりも多い酸素
原子を含有させたことを特徴とする磁気記録媒体 2、強磁性金属薄膜層の表面層に含有される酸素原子を
基体との界面層に含有される酸素原子より多くした特許
請求の範囲第1項記載の磁気記録媒体 3、強磁性金属薄膜層の表面層に含有される酸素原子が
、中間層に含有される酸素原子の1.5〜6.0倍量で
あり、基体との界面層に含有される酸素原子が、中間層
に含有される酸素原子の1.2〜3.0倍量である特許
請求の範囲第2項記載の磁気記録媒体 4、強磁性金属薄115ti層の中間層に含有される酸
素原子が当該中間層部の全原子に対し、5〜15%で、
かつ強磁性金属薄膜層の全体に含まれる酸素原子が全体
の原子に対し、10〜30%である特許請求の範囲第1
項ないし第3項記載の磁気記録媒体
[Claims] 1. Magnetic recording characterized in that the surface layer and the interface layer with the substrate of a ferromagnetic metal thin film layer formed by vapor deposition on the substrate contain more oxygen atoms than the intermediate layer. Medium 2: Magnetic recording medium 3 according to claim 1, in which the surface layer of the ferromagnetic metal thin film layer contains more oxygen atoms than the interface layer with the substrate. The amount of oxygen atoms contained in the surface layer of the layer is 1.5 to 6.0 times that of the oxygen atoms contained in the intermediate layer, and the amount of oxygen atoms contained in the interface layer with the substrate is 1.5 to 6.0 times that of the oxygen atoms contained in the intermediate layer. In the magnetic recording medium 4 according to claim 2, the amount of oxygen atoms contained in the intermediate layer of the ferromagnetic metal thin 115ti layer is 1.2 to 3.0 times the amount of oxygen atoms contained in the intermediate layer portion. 5 to 15% of all atoms of
and the oxygen atoms contained in the entire ferromagnetic metal thin film layer account for 10 to 30% of the total atoms.
Magnetic recording medium according to items 1 to 3
JP1275584A 1984-01-26 1984-01-26 Magnetic recording medium Pending JPS60157717A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1275584A JPS60157717A (en) 1984-01-26 1984-01-26 Magnetic recording medium
DE8585100803T DE3573672D1 (en) 1984-01-26 1985-01-26 Magnetic recording medium and production thereof
EP85100803A EP0151445B2 (en) 1984-01-26 1985-01-26 Production of magnetic recording medium
US07/145,599 US4855175A (en) 1984-01-26 1988-01-19 Magnetic recording medium and production thereof
US07/352,256 US5000984A (en) 1984-01-26 1989-05-16 Method of making a magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275584A JPS60157717A (en) 1984-01-26 1984-01-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60157717A true JPS60157717A (en) 1985-08-19

Family

ID=11814220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275584A Pending JPS60157717A (en) 1984-01-26 1984-01-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60157717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285220A (en) * 1986-06-04 1987-12-11 Fuji Photo Film Co Ltd Magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798133A (en) * 1980-12-05 1982-06-18 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS5958804A (en) * 1982-09-28 1984-04-04 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS59185024A (en) * 1983-04-04 1984-10-20 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798133A (en) * 1980-12-05 1982-06-18 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS5958804A (en) * 1982-09-28 1984-04-04 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS59185024A (en) * 1983-04-04 1984-10-20 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285220A (en) * 1986-06-04 1987-12-11 Fuji Photo Film Co Ltd Magnetic recording medium

Similar Documents

Publication Publication Date Title
US4495242A (en) Magnetic recording medium
JPS6154022A (en) Magnetic recording medium
JP2761859B2 (en) Magnetic recording media
JPS60157717A (en) Magnetic recording medium
JPS5841443A (en) Manufacture of magnetic recording medium
JPS60157728A (en) Production of magnetic recording medium
JP2605803B2 (en) Magnetic recording media
JPH0896339A (en) Magnetic recording medium
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JP3665906B2 (en) Magnetic recording medium
JPH11102518A (en) Production method of magnetic recording medium
JPS61273738A (en) Production of magnetic recording medium
JPS58222439A (en) Magnetic recording medium and its manufacture
JPS5974606A (en) Magnetic recording medium
JPS5963027A (en) Magnetic recording medium and its manufacture
JPH07254127A (en) Magnetic recording medium and its production
JPS592232A (en) Production of magnetic recording medium
JPH0636272A (en) Magnetic recording medium and manufacture thereof
JPS60185224A (en) Magnetic recording medium
JPH09128751A (en) Production of magnetic recording medium
JPH1049867A (en) Magnetic recording medium and its manufacture
JPH08325718A (en) Film formation
JPS6154027A (en) Magnetic recording medium
JPS6174133A (en) Magnetic recording medium
JPS6154024A (en) Magnetic recording medium