JPS60157291A - Method of forming semiconductive circuit - Google Patents

Method of forming semiconductive circuit

Info

Publication number
JPS60157291A
JPS60157291A JP1293784A JP1293784A JPS60157291A JP S60157291 A JPS60157291 A JP S60157291A JP 1293784 A JP1293784 A JP 1293784A JP 1293784 A JP1293784 A JP 1293784A JP S60157291 A JPS60157291 A JP S60157291A
Authority
JP
Japan
Prior art keywords
circuit
ultraviolet
semiconductive
curing
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1293784A
Other languages
Japanese (ja)
Inventor
小島 慶一
佐藤 泰敏
片ノ坂 明郷
興一 伊藤
的場 典子
山本 厚子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1293784A priority Critical patent/JPS60157291A/en
Publication of JPS60157291A publication Critical patent/JPS60157291A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導電性を有する組成物してより所要配線図を
印刷して成る半導電性回路の形成方法シー関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a semiconductive circuit by printing a required wiring diagram using a semiconductive composition.

〔発明の背景〕[Background of the invention]

電子機器配線では、配線レイアウトのノ」)型軽量化、
単純化、或は回路特性や信頼性の17TJ上刃;可fJ
旨であることから、印刷配線板が多く使用されるように
なって来た。かかる印刷配線板して於νAてシよ、配線
回路の全部或は一部分を半導電性組成物シてより印刷し
て形成し、導電回路や抵抗回路となすことがしばしば行
なわれる。従来これらに用いられる塗料は、常温又は加
熱により硬化する化学反応型の樹脂をベースとするもの
が主であった。印刷回路を常温又は加熱下で硬化せしめ
る場合、硬化時間を数十分〜数時間必要とするため、塗
膜の迅速化並びに機器組立ラインの連続化や合理化がは
かりにくいことが問題であった。また、基板に耐熱性の
ない材料を用いたものでは、回路が変形するため塗膜の
硬化条件に制約を受けることが多かった。また、電子部
品の組立て後回路を形成する場合には、電子部品には高
温に加熱すると変質するものがあるため、この場合も塗
膜の硬化条件に制約を受けることがあった。
In electronic equipment wiring, the wiring layout is lighter and lighter.
17TJ upper blade for simplification or circuit characteristics and reliability; possible fJ
Because of this, printed wiring boards have come into widespread use. In such printed wiring boards, all or part of the wiring circuit is often printed with a semiconductive composition to form a conductive circuit or a resistive circuit. Conventionally, the paints used for these have mainly been based on chemically reactive resins that harden at room temperature or by heating. When a printed circuit is cured at room temperature or under heat, it takes several tens of minutes to several hours to cure, which makes it difficult to speed up the coating process and to make the equipment assembly line continuous and rational. Furthermore, in cases where the substrate is made of a material that is not heat resistant, the curing conditions for the coating film are often restricted because the circuit deforms. Further, when forming a circuit after assembling electronic components, some electronic components change in quality when heated to high temperatures, so in this case as well, there are restrictions on the curing conditions of the coating film.

最近、これらの諸問題を解決するために主剤と硬化剤と
の化学反応による従来からの半導電性塗料に替えて、電
子線や紫外線硬化型の塗料を用いて半導電性塗膜を形成
することが検討されはじめている。本発明者らも、電子
線や紫外線で硬化しうる半導電性塗料について検討を進
めた。電子線や紫外線硬化性の塗料は電子線や紫外線を
照射することによって迅速に硬化することができるので
製造工程の合理化をはかることが期待できる。
Recently, in order to solve these problems, instead of the conventional semiconductive paint that is based on a chemical reaction between a base agent and a curing agent, a semiconductive paint film has been formed using an electron beam or ultraviolet curable paint. This is starting to be considered. The present inventors have also proceeded with studies on semiconductive paints that can be cured by electron beams or ultraviolet rays. Electron beam or ultraviolet curable paints can be rapidly cured by irradiation with electron beams or ultraviolet rays, so they can be expected to streamline the manufacturing process.

さて、半導電性塗料は樹脂ベースにカーボンブラック等
の導電性粒子を分散きせたものである。従って通常これ
を紫外線で硬化させようとしても光が遮断されて内部迄
エネルギーが到達しないので硬化が不十分となり良好な
塗膜を形成することができないと考えられていた。電子
線硬化であれば硬化については問題はなく、硬化迅速化
や工程の合理化の効果は損なわれるものではないが、機
器組立ラインで利用するには高価な照射設備が必要であ
り、また紫外線照射設備と比べると保守、管理も煩雑で
ある。
Now, a semiconductive paint is a resin base in which conductive particles such as carbon black are dispersed. Therefore, it has been thought that even if an attempt is made to cure this with ultraviolet rays, the light is blocked and the energy does not reach the interior, resulting in insufficient curing and failure to form a good coating film. With electron beam curing, there is no problem with curing, and the effects of speeding up curing and streamlining the process are not impaired, but if it is used on a device assembly line, expensive irradiation equipment is required, and ultraviolet irradiation is Maintenance and management are also more complicated than equipment.

また、電子部品の組立て後回路を形成する場合には、電
子線によって電子部品が損傷きれる恐れもある。
Furthermore, when forming a circuit after assembling electronic components, there is a risk that the electronic components may be damaged by the electron beam.

の問題点を解決するために、特に印刷された回路を紫外
線を照射して硬化せしめる方法について鋭意研究を進め
た。その結果数多くの紫外線反応性樹脂の中で、特に紫
外線官能性ルイス酸塩とエポキシ樹脂とを主成分とする
樹脂ベースを塗料ベースとして用い、これにカーボンブ
ラックやグラファイトを添加して成る組成物により回路
を印刷しその回路に紫外線を照射することによって、カ
ーボンブラックやグラファイトが添加してあって塗膜内
部への紫外線の入射が遮られるのてはないかと予測され
たのにもかかわらず、不思議なことに回路が内部まで硬
化しうるという思いがけない現象を見出した。
In order to solve this problem, we conducted intensive research on a method of curing printed circuits by irradiating them with ultraviolet light. As a result, among a large number of UV-reactive resins, in particular, a composition consisting of a resin base containing a UV-functional Lewis acid salt and an epoxy resin as a main component, and adding carbon black or graphite to this resin base. Although it was predicted that by printing a circuit and irradiating the circuit with ultraviolet rays, the addition of carbon black or graphite would block the incidence of ultraviolet rays inside the coating, it was strange. In particular, we discovered an unexpected phenomenon in which circuits can harden to the inside.

〔発明の要約〕[Summary of the invention]

本発明は上記の知見に基づいて成されたものであって、
その要旨とするところは、エポキシ樹脂、紫外線官能性
ルイス塩酸及びカーボンブラック及び/又はグラファイ
トとを主成分として含む組成物により回路を印刷しその
回路を紫外線を照射して硬化せしめることを特徴とする
半導電性回路の形成方法にある。
The present invention was made based on the above findings, and
Its gist is that a circuit is printed using a composition containing as main components an epoxy resin, ultraviolet-functional Lewis hydrochloric acid, and carbon black and/or graphite, and the circuit is cured by irradiating ultraviolet light. A method for forming a semiconductive circuit.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明に於いて用いる塗料ベースとなる樹脂ベースはエ
ポキシ樹脂及び紫外線官能性ルイス酸塩を主成分として
構成される。ここで、紫外線官能性ルイス酸塩とは、紫
外線の照射によってエポキシ樹脂のカチオン重合を引き
起こすルイス酸を生成するものをいう。エポキシ樹脂と
ルイス酸塩とは塗料作成時点で調合されていても、或は
印刷直前に調合されても良い。
The resin base serving as the paint base used in the present invention is composed mainly of an epoxy resin and an ultraviolet-functional Lewis acid salt. Here, the ultraviolet-functional Lewis acid salt refers to one that generates a Lewis acid that causes cationic polymerization of an epoxy resin upon irradiation with ultraviolet light. The epoxy resin and Lewis acid salt may be mixed at the time of preparing the paint, or may be mixed immediately before printing.

エポキシ樹脂としては従来から知られているグリシジル
エーテル型や脂環式のエポキシ樹脂を用いる。ルイス酸
の例としては、PF5やBFs等がありその塩の例とじ
℃はルイス酸ジアゾニウム塩(例えばp−メトキシベン
ゼンジアゾニウムへキサフルオロホスフェ−1−)、ル
イス酸ヨウドニウム塩(例エバ、ジフェニルアイオドニ
ウムへキサフルオロホスフェ−1−)、ルイス酸スルホ
ニウム塩(例エバ、トリフェニルスルホニウムへキサフ
ルオロホスフェート)等がある。まり、塗料ヘースには
紫外線官能性を高めるためにカルボニル系や含窒素系の
一般に用いられる光増感剤が添加される。
As the epoxy resin, conventionally known glycidyl ether type or alicyclic epoxy resins are used. Examples of Lewis acids include PF5 and BFs, and examples of their salts include Lewis acid diazonium salts (e.g. p-methoxybenzenediazonium hexafluorophosphate-1-), Lewis acid iodonium salts (e.g. Eva, diphenyl Iodonium hexafluorophosphate-1-), Lewis acid sulfonium salts (eg, Eva, triphenylsulfonium hexafluorophosphate), and the like. In other words, commonly used photosensitizers such as carbonyl and nitrogen-containing types are added to the paint haze to enhance UV functionality.

本発明に於いては導電性粒子としてカーボンブラック又
はグラファイトを夫々単独で用いるか或いはカーボンブ
ラックをグラファイトとを併用する。カーボンブラック
としては通常半導電性塗料の製作に用いられるファーネ
スブラックやアーレチレンブラック等を用いる。またグ
ラファイトも通常半導電性塗料の製作に用いるものでよ
いが、好ましくは粒径が01〜50μm程度の鱗状黒鉛
が良い。
In the present invention, carbon black or graphite is used alone as the conductive particles, or carbon black and graphite are used in combination. As the carbon black, furnace black, aretylene black, etc., which are usually used in the production of semiconductive paints, are used. Graphite may also be one normally used in the production of semiconductive paints, but scaly graphite with a particle size of about 01 to 50 μm is preferable.

本発明に於いて用いる半導電性塗料は、塗料へ一スとな
るエポキシ樹脂及びルイス酸塩の合計:11:100重
量部に対してカーボンブラック及び/又はグラファイト
を10〜100重量部添加する。添加量が10重量部に
満たないと十分な半導電性を1!Iることかできない、
また添加量が1.00重量部を超えると半導電性につい
ては良好となるが、塗布作業性が低下して回路の仕上が
り状況が悪くなる傾111 向にある。特に好ましくは平均粒径が30〜50mff
1程度のアセチレンブラックの場合に於いては10〜4
0重量部、平均粒径が20−40μm 程度の導電性フ
ァーネスブラックの場合に於いては10〜30重量部、
平均粒径が1〜5μ程度の鱗状黒鉛の場合に於いては2
0〜60重量部、平均粒径が30〜50μm程度のアセ
チレンブラックと平均粒径が1〜5μ程度の鱗状黒鉛を
混合したものに於いては20〜50重量部である。
In the semiconductive paint used in the present invention, 10 to 100 parts by weight of carbon black and/or graphite are added to a total of 11:100 parts by weight of epoxy resin and Lewis acid salt. If the amount added is less than 10 parts by weight, sufficient semiconductivity can be achieved by 1! I can't do anything but
Furthermore, if the amount added exceeds 1.00 parts by weight, the semiconductivity will be good, but the coating workability will decrease and the finished state of the circuit will tend to deteriorate111. Particularly preferably, the average particle size is 30 to 50 mff.
In the case of acetylene black of about 10 to 4
0 parts by weight, 10 to 30 parts by weight in the case of conductive furnace black with an average particle size of about 20 to 40 μm,
In the case of scaly graphite with an average particle size of about 1 to 5μ, 2
0 to 60 parts by weight, and 20 to 50 parts by weight in the case of a mixture of acetylene black with an average particle size of about 30 to 50 μm and scale graphite with an average particle size of about 1 to 5 μm.

本発明にて於いては、塗料形態を整えるために他ニシリ
コーン系化合物、脂肪酸エステル類、アミン系化合物、
界面活性剤などの粘度調節材料などを添加することも可
能である。塗料ベースとなる樹脂にカーボンブラックや
グラファイトを添加して組成物を作るには、通常塗料を
調整する方法、例えばロール混合により、均一に十分混
練することによって得ることができる。半導電性塗料組
成物を塗布する方法としては、刷毛やローラーによる塗
布或はスクリーン印刷法等がある。
In the present invention, other silicone compounds, fatty acid esters, amine compounds,
It is also possible to add viscosity adjusting materials such as surfactants. A composition can be prepared by adding carbon black or graphite to a resin that serves as a paint base, by the usual method of preparing a paint, for example, by thoroughly and uniformly kneading it by roll mixing. Methods for applying the semiconductive coating composition include application using a brush or roller, screen printing, and the like.

印刷された回路は紫外線を照射して硬化せしめる。The printed circuit is cured by exposing it to ultraviolet light.

紫外線照射条件としては、50〜200 W/cm程度
の紫外線ランプを用いて、10〜60秒程度照射を行な
うことが望ましい。尚印刷回路を紫外線照射により硬化
せしめた後、硬化をより十分進行せしめるために基板や
電子部品等を損傷しない限りにおいて80〜200°C
の温度で5〜60分間加熱処理を行なってもよい。
As for the ultraviolet irradiation conditions, it is desirable to use an ultraviolet lamp with a power of about 50 to 200 W/cm and to perform the irradiation for about 10 to 60 seconds. After curing the printed circuit by irradiating it with ultraviolet rays, the temperature should be kept at 80 to 200°C as long as it does not damage the substrate or electronic parts, etc., in order to allow the curing to proceed more fully.
The heat treatment may be performed at a temperature of 5 to 60 minutes.

実施例1゜ アブカウルトラセラ1−AD7200 100重量1部
(エポキシ樹脂 旭電化工業(転)製品商品名)硬化触
媒 PP33 3重敗部 アセチレンブラック 15重量部 を三本ロールで混練して塗料を作成した。この塗料を厚
さ50μmのポリイミドフィルム上に30μmの厚さで
スクリーン印刷し、半導電性印刷回路となし、これにI
KWの紫外線ランプ2灯で30秒間紫外線を照射して硬
化せしめた。硬化後印刷配線板ヲメチルエチルケントの
中に5分間浸漬した。
Example 1 Abka Ultracera 1-AD7200 100 1 part by weight (epoxy resin product name of Asahi Denka Kogyo Co., Ltd.) Curing catalyst PP33 3-fold loss part Acetylene black 15 parts by weight were kneaded with three rolls to form a paint. Created. This paint was screen printed to a thickness of 30 μm on a 50 μm thick polyimide film to form a semiconductive printed circuit.
It was cured by irradiating it with ultraviolet light for 30 seconds using two KW ultraviolet lamps. After curing, the printed wiring board was immersed in methyl ethyl Kent for 5 minutes.

取出し後、塗膜を強くこすったが塗膜には何等異常は生
じず、塗膜の内部まで硬化が良く進んでいることか確認
された。回路の導電性を測定したところ103〜104
Ω程度の抵抗値を示すことがわかった。
After taking it out, the coating film was rubbed vigorously, but no abnormality occurred in the coating film, and it was confirmed that curing had progressed well to the inside of the coating film. When the conductivity of the circuit was measured, it was 103 to 104.
It was found that the resistance value was on the order of Ω.

実施例2゜ ガラスクロス/エポキシ樹脂積層板の表面に銅箔を貼り
付け、エツチング法によって回路を形成して、印刷配線
板の所要位置に実施例1で作成した塗料を用いて回路を
印刷し、実施例1と同じ条件で硬化せしめて所要抵抗回
路を形成した。
Example 2 A copper foil was pasted on the surface of a glass cloth/epoxy resin laminate, a circuit was formed by etching, and the circuit was printed at the desired position on the printed wiring board using the paint prepared in Example 1. , and was cured under the same conditions as in Example 1 to form a required resistance circuit.

比較例1 実施例1に於いて塗料の組成を アロエックスオリゴマ−80重量部 リポキン樹脂 VR−8020重量部 光増感剤 ベンジルジメチルケタール 5重量部アセチ
レンブラック 15fi量部 に替えて、他は実施例1と同じ′条件で半導電性回路を
作成した。塗膜表面はよく硬化していたが、メチルエチ
ルケントに浸漬した後、塗膜をこすると塗膜はベースフ
ィルムからずれ、内部まで十分硬化していないことがわ
かった。
Comparative Example 1 In Example 1, the composition of the paint was changed to 80 parts by weight of Aroex oligomer, 80 parts by weight of Lipokine resin, VR-8020 parts by weight, photosensitizer, 5 parts by weight of benzyl dimethyl ketal, and 15 parts by weight of acetylene black, and the other parts were the same as in Example. A semiconductive circuit was created under the same conditions as 1. The surface of the coating film was well cured, but when the coating film was rubbed after being immersed in methyl ethyl Kent, the coating shifted from the base film, indicating that the coating had not been sufficiently cured to the inside.

上述の如く、本発明にもとづく半導電性回路の形成方法
に於いては、ルイス酸反応型紫外線硬化型エポキシ樹脂
にカーボンブラックやグラファイトを添加して成る組成
物により回路を印刷し、その回路を紫外線を照射して硬
化せしめるので、回路形成工程は極めて簡便であり、回
路形成や機器組立ラインの連続化並びに合理化をはかる
ことができる。
As mentioned above, in the method for forming a semiconductive circuit according to the present invention, a circuit is printed using a composition made of a Lewis acid-reactive ultraviolet curable epoxy resin to which carbon black or graphite is added. Since it is cured by irradiation with ultraviolet rays, the circuit formation process is extremely simple, and the circuit formation and device assembly lines can be made continuous and rational.

第1頁の続き 0発 明 者 的 場 典 子 大阪市西淀用区千曲所
Continued from page 1 0 Inventor Noriko Matoba Chikuma-sho, Nishiyodoyo-ku, Osaka City

Claims (1)

【特許請求の範囲】[Claims] (1)エポキシ樹脂、紫外線官能性ルイス酸塩及びカー
ボンブラック及び/又はグラファイトとを主成分として
含む組成物により回路を印刷し、その回路を紫外線を照
射して硬化せしめることを特徴とする半導電性回路の形
成方法。
(1) A semiconducting device characterized by printing a circuit with a composition containing as main components an epoxy resin, an ultraviolet-functional Lewis acid salt, and carbon black and/or graphite, and curing the circuit by irradiating it with ultraviolet rays. How the sexual circuit is formed.
JP1293784A 1984-01-26 1984-01-26 Method of forming semiconductive circuit Pending JPS60157291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1293784A JPS60157291A (en) 1984-01-26 1984-01-26 Method of forming semiconductive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1293784A JPS60157291A (en) 1984-01-26 1984-01-26 Method of forming semiconductive circuit

Publications (1)

Publication Number Publication Date
JPS60157291A true JPS60157291A (en) 1985-08-17

Family

ID=11819193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1293784A Pending JPS60157291A (en) 1984-01-26 1984-01-26 Method of forming semiconductive circuit

Country Status (1)

Country Link
JP (1) JPS60157291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811879A1 (en) * 1996-06-07 1997-12-10 Nippon Telegraph And Telephone Corporation Resist material and fabrication method thereof
AU706060B2 (en) * 1994-12-15 1999-06-10 Cabot Corporation Carbon black reacted with diazonium salts and products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU706060B2 (en) * 1994-12-15 1999-06-10 Cabot Corporation Carbon black reacted with diazonium salts and products
EP0811879A1 (en) * 1996-06-07 1997-12-10 Nippon Telegraph And Telephone Corporation Resist material and fabrication method thereof
US6177231B1 (en) 1996-06-07 2001-01-23 Nippon Telegraph And Telephone Corporation Resist material and fabrication method thereof
US6395447B1 (en) 1996-06-07 2002-05-28 Nippon Telegraph And Telephone Corporation Resist material and fabrication method thereof

Similar Documents

Publication Publication Date Title
JP2544892B2 (en) Polymer thick film resistor composition
EP2843667A2 (en) Transparent conductive ink, and method for producing transparent conductive pattern
US9085705B2 (en) Photosensitive conductive paste and method of producing conductive pattern
US9869932B2 (en) Conductive pattern fabrication method
JP2008293821A (en) Conductive paste, circuit board using the same, and electronic/electric device
JPS60157291A (en) Method of forming semiconductive circuit
JP2016029638A (en) Conductive paste for laser machining
JP3736977B2 (en) Photosensitive resin composition for printed wiring board and method for producing printed wiring board using the same
JP5412357B2 (en) Membrane wiring board
JPS6122684A (en) Method of forming semiconductive circuit
JP2844074B2 (en) How to cure paint
JPS60226193A (en) Method of forming semiconductive circuit
JPS61148896A (en) Formation of conducting circuit
WO1990008809A1 (en) Conductive paste composition and curing thereof
JP2847563B2 (en) Electron beam-curable conductive paste composition
JP2967117B2 (en) Electron beam-curable conductive paste composition
JP3098638B2 (en) Resist film for electroless plating
JPS6036578A (en) Ultraviolet-curable electrically conductive coating composition
JP2758432B2 (en) Electron beam curable conductive paste
JPS60133069A (en) Ultraviolet curing semiconducting coating material composition
JPS60156735A (en) Production of semiconductive tape
JP2008184599A (en) Electroconductive ink, electroconductive circuit and noncontact type media
KR101404761B1 (en) Photosensitization epoxy resin compositions for forming via hole, and method for forming via hole on PCB using the same
JPS60227310A (en) Method of producing conductive tape
JPS605590A (en) Method of producing printed circuit board