JPS60157269A - Gaas solar cell and manufacture thereof - Google Patents

Gaas solar cell and manufacture thereof

Info

Publication number
JPS60157269A
JPS60157269A JP59012557A JP1255784A JPS60157269A JP S60157269 A JPS60157269 A JP S60157269A JP 59012557 A JP59012557 A JP 59012557A JP 1255784 A JP1255784 A JP 1255784A JP S60157269 A JPS60157269 A JP S60157269A
Authority
JP
Japan
Prior art keywords
layer
gaas
conductivity type
nitride
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59012557A
Other languages
Japanese (ja)
Other versions
JPH0434834B2 (en
Inventor
Sumio Matsuda
純夫 松田
Kotaro Mitsui
三井 興太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Mitsubishi Electric Corp
Original Assignee
National Space Development Agency of Japan
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Mitsubishi Electric Corp filed Critical National Space Development Agency of Japan
Priority to JP59012557A priority Critical patent/JPS60157269A/en
Publication of JPS60157269A publication Critical patent/JPS60157269A/en
Publication of JPH0434834B2 publication Critical patent/JPH0434834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the titled device of high conversion efficiency and excellent moisture resistance by a method wherein an AlxGa1-xAs nitride layer is formed on an AlxGa1-xAs layer by treatment with nitrogen plasma, and thereafter a tantalum nitride-oxide film is formed as a reflection-preventing film by the sputtering method with tantalum oxide in an atmosphere containing nitrogen ions. CONSTITUTION:A p type AlGaAs layer 4 and a p type GaAs layer 2 are formed by the liquid phase epitaxial method. This wafer is loaded in a chamber equipped with Ta2O5 as a target electrode. Next, the epitaxial wafer is sputter- etched by impressig a high frequency high voltage after passage of Ar gas. Then, N2 or NH3 gas and a high frequency high voltage are passed, and ionized nitrogen atoms are made incident to the surface of the AlGaAs layer 4, thus obtaining an AlGaAs nitride 8. When a high frequency high voltage is impressed on the Ta2O5 target electrode while the pressures of Ar gas and N2 or NH3 gas are controlled, TaON9 is formed and deposits on the AlGaAs nitride layer. Thereafter, a p type electrode 6 and an n type electrode 5 are formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 j(7)発qiA/GaAsの窓層を持つヘテロフェイ
ス形GaAs太陽電池およびその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heteroface type GaAs solar cell having a window layer of j(7) qiA/GaAs and a method for manufacturing the same.

〔従来技術〕[Prior art]

従来、この種のGaAs太陽電池(11)は第1図に示
すような断面構成であった。第1図傾おいて、(1)は
n形GaAs基板、(2)はこのn形GaAs基板(1
)上に形成されたP形GaAe層でこれらKよりpn接
合(3)が形成される。(4)はp形GaAs層(2)
上に形成されたp形AjxGal−xAs層て表面での
少数キャリヤの再結合損失を低減するために形成されて
いる。
Conventionally, this type of GaAs solar cell (11) has had a cross-sectional configuration as shown in FIG. In Figure 1, (1) is an n-type GaAs substrate, (2) is this n-type GaAs substrate (1).
) A pn junction (3) is formed from these K in the P-type GaAe layer formed on the top. (4) is a p-type GaAs layer (2)
The p-type AjxGal-xAs layer formed thereon is formed to reduce recombination loss of minority carriers at the surface.

また(7) I−i反射防止膜で、p形A/xGax−
xA8層(4)の表面に形成されている。さらに外部に
電気的出力を取シ出すためKp形電極(6)およびn形
電極(5)が形成されている。このような構造のGaA
s太陽電池(11)においては、光キャリヤを発生する
ことのできる有効受光領域は主としてp形GaAs層(
2)である。P形GaAs層(2)に入射する光の量を
多くするために、すなわちp形A/xGal−XAB層
(4)内での光吸収損失を少なくするために、p形A1
.xGal−xAB層(4)のAI濃度Xは0.8以上
と高く設定される。このようにAI濃度Xが高くなると
、AlcGal−xAe層(4) Fi化学的に活性と
なる。一方反射防止膜(7)の材料としては、屈折率が
1.9@度の810やstsm4および屈折率が2.1
程度のTa205などがある。太陽電池を表面コーテイ
ング材を用いないで使用する場合は、SiOやSi3N
4など屈折率が1.9程度の反射防止膜材料を用いた方
が太陽光の変換効率は高くなる。しかしながら、実用的
には太陽電池表面には屈折率が1.4〜1.5程度の樹
脂またはガラスなどてコーティングされるのが通常であ
る。この場合には、理論的には2.3〜2.4程度の高
い屈折率の反射防止膜材料を用いると変換効率は最大と
なる。
In addition, (7) I-i anti-reflection film, p-type A/xGax-
It is formed on the surface of the xA8 layer (4). Furthermore, a Kp type electrode (6) and an n type electrode (5) are formed to extract electrical output to the outside. GaA with this structure
In the solar cell (11), the effective light-receiving area that can generate optical carriers is mainly the p-type GaAs layer (
2). In order to increase the amount of light incident on the p-type GaAs layer (2), that is, to reduce the light absorption loss within the p-type A/xGal-XAB layer (4), the p-type A1
.. The AI concentration X of the xGal-xAB layer (4) is set as high as 0.8 or more. When the AI concentration X increases in this way, the AlcGal-xAe layer (4) becomes chemically active. On the other hand, materials for the anti-reflection film (7) include 810 and stsm4 with a refractive index of 1.9@degrees, and materials with a refractive index of 2.1 degrees.
There are Ta205 and the like. When using solar cells without surface coating materials, SiO or Si3N
Using an antireflection film material such as No. 4 with a refractive index of about 1.9 will increase the conversion efficiency of sunlight. However, in practice, the surface of the solar cell is usually coated with a resin or glass having a refractive index of about 1.4 to 1.5. In this case, the conversion efficiency is theoretically maximized by using an antireflection film material with a high refractive index of about 2.3 to 2.4.

したがって810やSi3N4より屈折率が高いTa2
05を用いた方が実用構造の太陽電池で高い変換効率が
得られる。
Therefore, Ta2 has a higher refractive index than 810 or Si3N4.
By using 05, higher conversion efficiency can be obtained in a solar cell with a practical structure.

太陽電池として妄求される事柄は、高変換効率 “であ
ると七に加えて、長年使用されるため高信頼性を有する
仁とである。したがって種々の耐環境性試験が実施され
るが、上述の如き従来のGaA3太陽、電池では耐湿性
試験において不具合が見られることかあった。すなわち
、温度65℃、相対温度90チ以上の雰囲気で500時
間程度保存することにより表面変質が観察され、変換効
率が初期値に比して減少してしまった。この表面変換は
、化学的に活性なAjGaAa 層に起因している。さ
らに反射防止膜材料のTa206膜中に残留酸素分子が
存在しており、これがAfGaAs 層の変質を加速し
ているものと推定される。
In addition to high conversion efficiency, solar cells are required to have high reliability because they can be used for many years.Therefore, various environmental resistance tests are conducted, but the above-mentioned In conventional GaA3 solar cells and batteries, defects were sometimes observed in moisture resistance tests.In other words, surface deterioration was observed when stored for about 500 hours in an atmosphere with a temperature of 65 degrees Celsius and a relative temperature of 90 degrees Celsius or more. The efficiency has decreased compared to the initial value. This surface transformation is due to the chemically active AjGaAa layer. Furthermore, residual oxygen molecules are present in the Ta206 film of the antireflection coating material. It is presumed that this accelerates the deterioration of the AfGaAs layer.

〔発明の概要〕[Summary of the invention]

この発明はこのような点に鑑みてなされたもので、高い
変換効率を有し、しかも耐湿性に優れたGaAs太陽電
池およびその製造方法を提供するものである。
The present invention has been made in view of these points, and it is an object of the present invention to provide a GaAs solar cell having high conversion efficiency and excellent moisture resistance, and a method for manufacturing the same.

[発明の実施例〕 第2図はこの発明の一実施例を示すGaAs太陽電池の
断面であ、D 、(1)〜(6)は上記従来の太陽電池
と同一のものである。
[Embodiment of the Invention] FIG. 2 is a cross section of a GaAs solar cell showing an embodiment of the present invention, and D and (1) to (6) are the same as those of the conventional solar cell described above.

(8)はAfGaAs の窒化物層であり、p形AlG
aAs層(4)上に設けている。このAfGaAs の
窒化物層(8)の厚みは、太陽光の有効受光波長領域の
光に対して多重反射を生じさせない程度に薄く、例えば
100λ程度に設定されている。さら忙前記A/GaA
s の窒化物層(8)の表面には反射防止膜(9)が設
けられる。
(8) is a nitride layer of AfGaAs, p-type AlG
It is provided on the aAs layer (4). The thickness of this AfGaAs nitride layer (8) is set to be as thin as, for example, about 100λ, so as not to cause multiple reflections of light in the effective reception wavelength range of sunlight. A/GaA
An anti-reflection coating (9) is provided on the surface of the nitride layer (8).

この友射防止膜(9)の材料として窒化酸化タンタルを
用いる。窒化酸化タンタルの屈折率は2.35であり、
樹脂やガラスでコーティングする場合の理想的な反射防
止膜材料であると言える。
Tantalum nitride oxide is used as the material for this anti-fraction film (9). The refractive index of tantalum nitride oxide is 2.35,
It can be said that it is an ideal anti-reflection coating material when coating with resin or glass.

次に第2図に示すような構造のGaAs太陽電池の製造
方法について説明する。まず、通常の液相エピタキシャ
ル法によってp形AlGaAs層(4)およびp形Ga
As層(2)が形成する。この形成されたウェハをター
ゲット電極としてTa205を備ズーた室内に装填し、
この室内をlXl0 ’torr 程度に排気する。
Next, a method for manufacturing a GaAs solar cell having the structure shown in FIG. 2 will be explained. First, a p-type AlGaAs layer (4) and a p-type Ga
An As layer (2) is formed. This formed wafer was loaded into a chamber equipped with Ta205 as a target electrode,
This chamber is evacuated to about 1X10'torr.

次にこの室内にアルゴン(Ar)ガスを流して圧力を3
0mtorr fj度に保ちながら、エピタキシャルウ
ェハに高周波高電圧を印加して、エピタキシャルクモハ
のスパッタエッチを行なう。このスパッタエッチはAf
GaAs 層(4)の表面の酸化物などを除去するのに
有効である。次忙スパッタエッチを停止して、室内のア
ルゴン(Ar)ガスを充分拮゛気した後今度は窒素(N
2)ガスもしくはアンモニア(NH3)ガスを流し、室
内の圧力を10mtorr程度に保ち、上記エピタキシ
ャルウェハに高周波高電圧を印加する。
Next, flow argon (Ar) gas into this chamber to reduce the pressure to 3.
Sputter etching of the epitaxial wafer is performed by applying high frequency and high voltage to the epitaxial wafer while maintaining the temperature at 0 mtorr fj degrees. This sputter etch is Af
This is effective for removing oxides and the like on the surface of the GaAs layer (4). After stopping the busy sputter etching process and fully depleting the argon (Ar) gas in the room, it was time to remove the nitrogen (N) gas.
2) Flow gas or ammonia (NH3) gas, maintain the pressure in the chamber at about 10 mtorr, and apply high frequency and high voltage to the epitaxial wafer.

こうして放電を生ぜしめ、イオン化した窒素原子をAj
GaAs 層(4)の表面に入射する。化学的に活性な
AjGaAs 層(4)と大きな運動エネルギを持つ窒
素原子が反応することにより、極めて化学的に安定なA
 /GaAs の窒化物が得られる。この窒化物層の厚
みが1001程度になったところで、放電を停止し、室
内の窒素(N2)ガスもしくはアンモニア(NH3)ガ
スを排気する。次に室内のアルゴン(Ar)ガス圧を1
.5 mtorr 、窒素(N2)もしくはアンモニア
(NH3)ガス圧を0.5mtorrに制御しながら、
Ta 205ターゲツト電極に高周波高電圧を印加する
。スパッタされた酸化タンタル粒子が、イオン化した窒
素原子を含むプラズマ中を通過する間に、窒化酸化タン
タル(TaON)が形成され、上記A/GaAs の窒
化物層上に堆積する。この窒化酸化タンタル層の厚みが
650人になったところで、スパッタリングを停止する
。この後通常の工程によりp形電極(6)n形電極(5
)を形成する。
In this way, a discharge is generated and the ionized nitrogen atoms are Aj
The light is incident on the surface of the GaAs layer (4). The reaction between the chemically active AjGaAs layer (4) and nitrogen atoms with large kinetic energy results in extremely chemically stable A
/GaAs nitride is obtained. When the thickness of this nitride layer reaches about 100 mm, the discharge is stopped and the nitrogen (N2) gas or ammonia (NH3) gas in the room is exhausted. Next, reduce the argon (Ar) gas pressure in the room to 1
.. 5 mtorr, while controlling the nitrogen (N2) or ammonia (NH3) gas pressure to 0.5 mtorr.
A high frequency high voltage is applied to the Ta 205 target electrode. While the sputtered tantalum oxide particles pass through a plasma containing ionized nitrogen atoms, tantalum nitride oxide (TaON) is formed and deposited on the A/GaAs nitride layer. Sputtering is stopped when the thickness of this tantalum nitride oxide layer reaches 650 mm. After this, the p-type electrode (6) and the n-type electrode (5
) to form.

このようにして得られたGaAs太陽電池では、樹脂な
どでコーティングした場合の変換効率が地上での太陽光
垂直入射下すなわちAM工の条件で20チ以上、また大
気圏外太陽光入射下すなわちAMOの条件で18%以上
という高い値が再現性良く得られた。以上のように上記
実施例における反射防止膜が光学的に優れていることが
実証された。
In the GaAs solar cell obtained in this way, the conversion efficiency when coated with resin etc. is 20 cm or more under vertical sunlight incidence on the ground, that is, under AM conditions, and under extraatmospheric sunlight incidence, that is, under AMO conditions. A high value of 18% or more was obtained with good reproducibility under the conditions. As described above, it was demonstrated that the antireflection film in the above example was optically excellent.

さらに、上記実施例によるGaA3太陽電池は、温度が
65℃相対湿度が90%以上の雰囲気で1000時間保
存しても表面での変質は全く観察されず、変換効率の変
化もほとんどなく、極めて耐湿性にも優れていることも
確められた。これは反射防止膜材料として安定な窒化酸
化タンタルを用いているのに加えて、ArGaAs 層
表面には、極めて化学的に安定なAjGaAs 層の窒
化物層を設けることによシ、高温水蒸気とAlGaAs
 層との反応を阻止できたことに起因する。
Furthermore, the GaA3 solar cell according to the above example shows no deterioration at all on the surface even when stored for 1000 hours in an atmosphere with a temperature of 65°C and a relative humidity of 90% or more, and there is almost no change in conversion efficiency, making it extremely moisture resistant. It was also confirmed that they have excellent sex. In addition to using stable tantalum nitride oxide as the anti-reflection coating material, by providing an extremely chemically stable nitride layer of AjGaAs on the surface of the ArGaAs layer, high-temperature water vapor and AlGaAs
This is due to the fact that the reaction with the layer could be prevented.

〔発明の効果〕〔Effect of the invention〕

この発8AFi以上説男したとおシ、第1導電形のGa
As層に対し第2の導電形のGaA21層上のArxG
al−xAs層と反射防止膜との間にA4xGal−x
Asの窒化物層を形成したので、上記A/xGa 1−
x As層の変質を防止することができる。
This emission is more than 8 AFi, and Ga of the first conductivity type is
ArxG on the GaA21 layer of the second conductivity type with respect to the As layer
A4xGal-x between the al-xAs layer and the anti-reflection film
Since the As nitride layer was formed, the above A/xGa 1-
x Deterioration of the As layer can be prevented.

さらに、この発明の方法は上記A/xGal−xAs層
上に窒素7リズマ処理によってArxGal−xAsの
窒 □化物層を形成し、その後窒素イオンを含む雰囲気
で酸化タンタルのスパッタ法により、反射防止膜として
窒化酸化タンタルを形成したので、高変換効率でかつ耐
湿性の優れたGaAs太陽電池を製造することができる
Furthermore, the method of the present invention is to form a nitride layer of ArxGal-xAs on the A/xGal-xAs layer by nitrogen 7 rhythm treatment, and then to form an anti-reflection film by sputtering tantalum oxide in an atmosphere containing nitrogen ions. Since tantalum nitride oxide is formed as the material, a GaAs solar cell with high conversion efficiency and excellent moisture resistance can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の構造のGaAs太陽電池の断面図であり
、第2図はこの発明によるGaAs太陽電池の一実施例
の断面図である。 図中(2)はp形GaAs層、(4)はp形A/GaA
s層、(7)は反射防止膜、(8)けAjGaAs の
窒化物層、(9)は窒化酸化タンタル膜である。 なお図中同一符号は、それぞれ同一または相当部分を示
す。 代理人大岩 増雄 第1図 第2図 手続補正書(自発) ↑゛y許庁長宮殿 1、事r’1″の表示 特願昭59−12557号2、
発明の名称 GaAs太陽電池および(の製造方法 ;3.補正をする者 5、 補正の対象 明細書の特許請求の範囲の欄および発明の詳細な説明の
欄 6、補正の内容 (1)特許請求の範囲を別紙のとおり補正する。 (2)明細書中筒8頁第15行目に” TO205ヨと
あるのを’Ta205.に補正する・ (3)明細書中筒4頁第15行目に「表面変換ヨとある
のを「表面変質ヨに補正する。 (4)明細書中部7頁第15行目に’AMIJとあるの
を’ AMI Jに補正する。 以 上 特許請求の範囲 (1)第1導電形のGaAs層、このGaAs層上に形
成さね?、:第2導電形のGaAs層、この第2導電形
のGaAs層上に形成さ釘た第2導電形のAlxGa1
−xAs層、このAlxGa 1−xfi、5 層上に
形成さまたA(lxGa 1−xAsの窒化物層、及び
このAlxGa 、−xAs の窒化物層上に形成され
た反射防止膜を備えたことを特徴とするGaAs太陽電
池。 (2)上記反射防止膜は窒化酸化タンタルで構成したこ
とを特徴とする特許請求の範囲第1項目e載のGaAs
太陽電池。 (3)上記A6xGa 1−xAs層のAI濃度Xが、
0.8≦x<1であることを特徴とする特許請求の範囲
第1項記載のGaAs太陽電池。 (4)第1導電形のGaAs層上に第2導電形のGaA
s層を形成し、この第2導電形のGaA s層上に第2
導電形のAlxGa1−xAs 層を形成した後、窒素
プラズマ中で上記AlxGa1−xAs 層の表面にA
lxGa I −xAsの窒化物層を形成し、しかる後
酸化タンタルをターゲット電極として、少な(とも窒素
もしくはアンモニアガスを含む雰囲気において、上記A
lxGa 1−xAsの窒化物層表面に、反応性スパッ
タ法により窒化酸化タンタル薄膜を形成【7て反射防止
膜となしたことを特徴とするGaAs 太陽電池の製造
方法。
FIG. 1 is a sectional view of a GaAs solar cell having a conventional structure, and FIG. 2 is a sectional view of an embodiment of a GaAs solar cell according to the present invention. In the figure, (2) is a p-type GaAs layer, and (4) is a p-type A/GaA layer.
s layer, (7) is an antireflection film, (8) is an AjGaAs nitride layer, and (9) is a tantalum nitride oxide film. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 Procedural amendment (voluntary) ↑ Indication of ``Y Office Director's Palace 1, fact r'1'' Patent Application No. 12557-1982 2,
Title of the invention GaAs solar cell and its manufacturing method; 3. Person making the amendment 5. Claims column of the specification to be amended and Detailed Description of the Invention column 6. Contents of the amendment (1) Patent claims The range of is corrected as shown in the attached sheet. (2) "TO205 yo" on page 8, line 15 of the middle cylinder of the specification is corrected to 'Ta205. (3) Line 15 of page 4 of the middle cylinder of the specification ``Surface transformation yo'' is corrected to ``Surface alteration yo.'' (4) In the middle part of the specification, page 7, line 15, ``AMIJ'' is amended to ``AMI J.'' The above claims ( 1) A GaAs layer of a first conductivity type is formed on this GaAs layer.A GaAs layer of a second conductivity type is formed on this GaAs layer of a second conductivity type.A GaAs layer of a second conductivity type is formed on this GaAs layer.
-xAs layer, formed on this AlxGa 1-xfi, 5 layer, and A(lxGa 1-xAs nitride layer, and an antireflection film formed on this AlxGa, -xAs nitride layer). (2) The GaAs solar cell according to claim 1, item e, wherein the antireflection film is made of tantalum nitride oxide.
solar cells. (3) The AI concentration X of the A6xGa 1-xAs layer is
The GaAs solar cell according to claim 1, characterized in that 0.8≦x<1. (4) GaA of the second conductivity type on the GaAs layer of the first conductivity type
A second conductivity type GaAs s layer is formed, and a second conductivity type GaAs s layer is formed.
After forming a conductive type AlxGa1-xAs layer, A is applied to the surface of the AlxGa1-xAs layer in nitrogen plasma.
A nitride layer of lxGaI-xAs is formed, and then tantalum oxide is used as a target electrode, and the above A
A method for manufacturing a GaAs solar cell, characterized in that a tantalum nitride oxide thin film is formed on the surface of an lxGa 1-xAs nitride layer by reactive sputtering to form an antireflection film.

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電形のGaAs層、このGaAs層上に形
成された第2導電形のGaAs層、この第2導電形のG
aAs層上に形成された第2導電形のAjxGal−x
AeJi!、このAjxGal−xAs 層上に形成さ
れたA/xGa−XA8の窒化物層、及びこのAlxG
a1−xAtsの窒化物層上に形成された反射防止膜を
備えたことを特徴とするGaAs太陽電池。
(1) A first conductivity type GaAs layer, a second conductivity type GaAs layer formed on this GaAs layer, and a second conductivity type GaAs layer formed on this GaAs layer.
AjxGal-x of the second conductivity type formed on the aAs layer
AeJi! , a nitride layer of A/xGa-XA8 formed on this AjxGal-xAs layer, and this AlxG
A GaAs solar cell characterized by comprising an antireflection film formed on a nitride layer of a1-xAts.
(2)上記反射防止膜は電化酸゛化タンタルで構成した
ことを特徴とする特許請求の範囲第1項記載のGaAs
太陽電池
(2) The GaAs according to claim 1, wherein the antireflection film is made of electrified tantalum oxide.
solar cells
(3)上記A/xGal−xAs層のAI濃度Xが、0
.8≦x<1であることを特徴とする特許請求の範囲第
1項記載のGaAs太陽電池。
(3) The AI concentration X of the A/xGal-xAs layer is 0
.. The GaAs solar cell according to claim 1, characterized in that 8≦x<1.
(4)第1導電形のGaAs層上に第2導電形のGaA
s層を形成し、この第2導電形のGaAs層上に第2導
電形のAlxGa1−XAR層を形成した後、窒素プラ
ズマ中で上記AlxGa1−xAs層の表面にAZXG
al−XA8の窒化物層を形成し、しかる後酸化タンタ
ルをターゲット電極として、少なくとも窒素もしくはア
ンモニアガスを含む雰囲気において、上記AlxGa1
−XA8の窒化物層表面に、反応性スパッタ法により窒
化酸化タンタル薄膜を形成して反射防止膜となしたこと
を特徴とするGaAs太陽電池の製造方法。
(4) GaA of the second conductivity type on the GaAs layer of the first conductivity type
After forming an AlxGa1-XAR layer of the second conductivity type on the GaAs layer of the second conductivity type, an AZXG layer is formed on the surface of the AlxGa1-xAs layer in nitrogen plasma.
A nitride layer of al-XA8 is formed, and then the above AlxGa1 is formed in an atmosphere containing at least nitrogen or ammonia gas using tantalum oxide as a target electrode.
- A method for producing a GaAs solar cell, characterized in that a tantalum nitride oxide thin film is formed on the surface of the nitride layer of XA8 by a reactive sputtering method to serve as an antireflection film.
JP59012557A 1984-01-26 1984-01-26 Gaas solar cell and manufacture thereof Granted JPS60157269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012557A JPS60157269A (en) 1984-01-26 1984-01-26 Gaas solar cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012557A JPS60157269A (en) 1984-01-26 1984-01-26 Gaas solar cell and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60157269A true JPS60157269A (en) 1985-08-17
JPH0434834B2 JPH0434834B2 (en) 1992-06-09

Family

ID=11808639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012557A Granted JPS60157269A (en) 1984-01-26 1984-01-26 Gaas solar cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60157269A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694115A (en) * 1986-11-04 1987-09-15 Spectrolab, Inc. Solar cell having improved front surface metallization
US4698455A (en) * 1986-11-04 1987-10-06 Spectrolab, Inc. Solar cell with improved electrical contacts
JPH0410577A (en) * 1990-04-27 1992-01-14 Hitachi Cable Ltd Manufacture of gaas solar cell
RU2607734C1 (en) * 2015-10-27 2017-01-10 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Method of making gaas-based photocell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694115A (en) * 1986-11-04 1987-09-15 Spectrolab, Inc. Solar cell having improved front surface metallization
US4698455A (en) * 1986-11-04 1987-10-06 Spectrolab, Inc. Solar cell with improved electrical contacts
JPH0410577A (en) * 1990-04-27 1992-01-14 Hitachi Cable Ltd Manufacture of gaas solar cell
RU2607734C1 (en) * 2015-10-27 2017-01-10 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Method of making gaas-based photocell

Also Published As

Publication number Publication date
JPH0434834B2 (en) 1992-06-09

Similar Documents

Publication Publication Date Title
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
US5907766A (en) Method of making a solar cell having improved anti-reflection passivation layer
US8247022B2 (en) Silicon nitride passivation for a solar cell
EP0673550B2 (en) Method for the manufacture of improved efficiency tandem photovoltaic device and device manufactured thereby
EP0179547B1 (en) Thin film solar cell with free tin on transparent conductor
US5418019A (en) Method for low temperature plasma enhanced chemical vapor deposition (PECVD) of an oxide and nitride antireflection coating on silicon
US6307146B1 (en) Amorphous silicon solar cell
JPS60208813A (en) Photoelectric converting device and manufacture therefor
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
CA1217847A (en) Photovoltaic cell
KR20050087248A (en) Solar cell using double anti-reflection coatings and fabrication method thereof
JPH04296063A (en) Solar cell element
US20080210300A1 (en) Method of Producing Substrate for Thin Film Photoelectric Conversion Device, and Thin Film Photoelectric Conversion Device
US4799968A (en) Photovoltaic device
JPS60157269A (en) Gaas solar cell and manufacture thereof
US5064477A (en) Radiant energy sensitive device and method
JP2003152205A (en) Photoelectric conversion element and its manufacturing method
Ruby et al. Recent progress on the self-aligned, selective-emitter silicon solar cell
JPH05166733A (en) Method and apparatus for forming non-single crystal silicon film
JPH10226598A (en) Transparent conductive titanium oxide film and its production
JP2757896B2 (en) Photovoltaic device
CN114284374B (en) Application of zinc titanate in crystalline silicon solar cell
JP2785885B2 (en) Photovoltaic element
JPH06291342A (en) Photovoltaic device
JPH0258876A (en) Manufacture of substrate for solar cell and solar cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370