JPS6015712B2 - Cathode for producing caustic soda and its production method - Google Patents

Cathode for producing caustic soda and its production method

Info

Publication number
JPS6015712B2
JPS6015712B2 JP52134771A JP13477177A JPS6015712B2 JP S6015712 B2 JPS6015712 B2 JP S6015712B2 JP 52134771 A JP52134771 A JP 52134771A JP 13477177 A JP13477177 A JP 13477177A JP S6015712 B2 JPS6015712 B2 JP S6015712B2
Authority
JP
Japan
Prior art keywords
cathode
producing
caustic soda
nickel
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52134771A
Other languages
Japanese (ja)
Other versions
JPS5468795A (en
Inventor
計二 川崎
哲生 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP52134771A priority Critical patent/JPS6015712B2/en
Priority to US05/959,782 priority patent/US4170536A/en
Publication of JPS5468795A publication Critical patent/JPS5468795A/en
Publication of JPS6015712B2 publication Critical patent/JPS6015712B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 本発明はアルカリ金属ハロゲン化物水溶液の電解用の陰
極及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode for electrolyzing an aqueous alkali metal halide solution and a method for producing the same.

更に詳しくはこの電解において従来よりも水素過電圧を
著しく低くすることのできる新しい陰極及びその製造法
を提供するものである。
More specifically, the object of the present invention is to provide a new cathode that can significantly lower the hydrogen overvoltage in this electrolysis than conventional ones, and a method for manufacturing the cathode.

ここにいう新しい陰極とは基体金属にラネーニッケル成
分を含む粉末を含有するメッキ層を有する陰極を意味す
る。電解槽を用いて例えば水素、塩素、および苛性ソー
ダを製造するための食塩水溶液の電解を行う場合。
The new cathode referred to herein means a cathode having a plating layer containing a powder containing a Raney nickel component on a base metal. When an electrolytic cell is used to electrolyze a saline solution for producing hydrogen, chlorine, and caustic soda, for example.

陰極における水素過電圧により生ずる電力効率の損失は
重大な問題である。
Power efficiency loss caused by hydrogen overvoltage at the cathode is a serious problem.

この陰極における水素過電圧は、陰極の素地、表面材質
、あるいはその表面状態等により著しく異ることが知ら
れている。即ち素地としては、鉄、ステンレス鋼、ニッ
ケル、白金族金属等を用いると水素過電圧は低くなり、
また、表面状態は類である程、水素過電圧が低い事が知
られている。
It is known that the hydrogen overvoltage at the cathode varies significantly depending on the material, surface material, or surface condition of the cathode. In other words, if iron, stainless steel, nickel, platinum group metals, etc. are used as the substrate, the hydrogen overvoltage will be lower.
It is also known that the more similar the surface state is, the lower the hydrogen overvoltage will be.

これらの知見から水素過電圧の低い材料の粉末を陰極表
面に付着させる各種の方法が提案されている。例えば暁
給法によりニッケル粉末あるいはラネーニッケルの粉末
を被覆した陰極、溶射法によりニッケル、コバルト、白
金、鉄等の粉末状金属を基体金属の素地に密着させた陰
極(特関昭52一32832)、粒子状コバルトと粒子
状ジルコニアからなら溶融頃霧混合物の被覆を有するア
ルカリ金属ハロゲン化物水溶液電解用陰極(持開昭52
一36斑2)の他、粒子状ニッケル、コバルトもしくは
これらの両者と粒子状アルミニウムとからなる混合物の
溶融頃霧された被覆からアルミニウムを除去した被覆を
もつ電解用陰極(特開昭52−36斑3)等がそれであ
る。しかしこれらの陰極の製造法は、金網板状体あるい
は箱型に成形した金網等複雑な表面形状をもつ陰極基板
に対して均一な被覆が困難であり、且つ金属粉末の損失
も多く高価になる等の問題が多い。そこで我々は、各種
形状の陰極素地にも容易に適用できる水素過電圧低下に
有効な陰極について鋭意研究した結果、ラネーニッケル
粉末、もしくは少なくとも一部分は展開されたラネーニ
ッケル合金の粉末を含有する複合ニッケルメッキ層を有
する陰極及び更にこの表面に、これら粉末を含有しない
メッキ層を有する陰極が本目的に好適であること、陰極
基体金属は鉄、ステンレス鋼、またはニッケルを使用し
得ることを見出した。
Based on these findings, various methods have been proposed for attaching powder of materials with low hydrogen overvoltage to the cathode surface. For example, a cathode coated with nickel powder or Raney nickel powder by the Akatsuki method, a cathode in which a powdered metal such as nickel, cobalt, platinum, iron, etc. is adhered to the base metal by a thermal spraying method (Tokukan Sho 52-32832), A cathode for alkali metal halide aqueous solution electrolysis made of particulate cobalt and particulate zirconia is coated with a molten mist mixture.
In addition to 2), there is also an electrolytic cathode having a coating in which aluminum is removed from a coating that is sprayed during melting of particulate nickel, cobalt, or a mixture of both of these and particulate aluminum (Japanese Patent Laid-Open No. 52-36 This includes spots 3). However, with these cathode manufacturing methods, it is difficult to uniformly coat a cathode substrate with a complicated surface shape, such as a wire mesh plate or a box-shaped wire mesh, and there is also a large loss of metal powder, making it expensive. There are many problems such as. As a result of intensive research into a cathode that is effective in reducing hydrogen overvoltage and can be easily applied to cathode substrates of various shapes, we have developed a composite nickel plating layer containing Raney nickel powder or at least a partially expanded Raney nickel alloy powder. It has been found that a cathode having a plating layer on its surface which does not contain these powders is suitable for this purpose, and that iron, stainless steel, or nickel can be used as the cathode base metal.

更にこのような陰極の製造法として陰極基体金属の上に
ラネーニッケル粉末を含有する複合ニッケル〆ツキ浴を
用いて行う方法、前記メッキを行った後ラネーニツケル
粉末を含有しないメッキを重ねて行う方法、少なくとも
一部分未展開のラネーニッケル合金粉末を含有する複合
ニッケルメッキ格を用いてメッキを行って後含有アルミ
ニウムを除去する方法及び、前記アルミニウム除去後、
前記少なくとも一部分末展開のラネーニッケル合金粉末
を含有しないメッキ俗を用いてメッキを行う方法が有効
であること、上記含有アルミニウムはアルカリ性水溶液
を用いて除去しうろことを見出した。
Furthermore, methods for producing such a cathode include a method in which a composite nickel plating bath containing Raney nickel powder is used on the cathode base metal, a method in which after the plating is performed, plating not containing Raney nickel powder is overlaid, and at least A method of performing plating using a composite nickel plating grade containing partially unexpanded Raney nickel alloy powder to remove the contained aluminum, and after removing the aluminum,
It has been found that a method of plating using a plating material that does not contain the at least partially powdered Raney nickel alloy powder is effective, and that the aluminum contained can be removed using an alkaline aqueous solution.

次に本発明に係る陰極及びその製造法を詳細に説明する
。陰極基体は電気伝導性材料で、陰極として必要な機械
的性質と食塩電解俗における耐薬品性を有するものであ
ればよく、鉄、ステンレス鋼、ニッケル等はその好適な
素地である。
Next, the cathode and its manufacturing method according to the present invention will be explained in detail. The cathode substrate may be any electrically conductive material as long as it has the mechanical properties necessary for a cathode and the chemical resistance commonly used in salt electrolysis, and iron, stainless steel, nickel, etc. are suitable base materials.

メッキは電気メッキ法でも無電解〆ツキ法でもよいが電
気メッキ法が粉末をメッキ層に多量に且つ均一に含有さ
せ得る点でより秀れている。
Plating may be performed by electroplating or electroless plating, but electroplating is superior in that it allows a large amount of powder to be uniformly contained in the plating layer.

素地のメッキ処理の前処理は通常の慣用手段即ち脱脂、
エッチング、ブラスト処理等を適宜単独または組合わせ
て実施すれば充分である。メッキ裕中に懸濁されて用い
られる粉末としてはラネーニツケル粉末の他、少なくと
も一部禾展開のラネーニツケル合金粉末がある。ここに
用いられる粉末の大きさは細かい方が有効であり懸濁も
容易である。直径500山以上の粉末は懸濁状態の維持
が因簸であり実用的でない。好適には100山前後以下
である。メッキ格はニッケルメッキ格、鉄〆ツキ浴等の
通常の電気メッキまたは無電解〆ッキ俗に上記ラネーニ
ッケル粉末または少なくとも一部分は未展開のラネーニ
ッケル合金粉末を懸濁したものが使用できるが、当該粉
末含有量は、付着量、懸濁液の維持、付着の均一性、経
済性等の点から10500夕/そで、好ましくは10〜
200タノそである。
Pre-treatment of the substrate for plating is done by conventional means, such as degreasing,
It is sufficient to perform etching, blasting, etc. alone or in combination as appropriate. Powders used suspended in the plating solution include Raney nickel powder and at least partially expanded Raney nickel alloy powder. The smaller the size of the powder used here, the more effective it is and the easier it is to suspend. Powder with a diameter of 500 peaks or more requires elutriation and is not practical. It is preferably around 100 peaks or less. The plating grade can be nickel plating grade, ordinary electroplating such as iron plating bath, or electroless plating. Generally, the above-mentioned Raney nickel powder or a suspension of at least partially undeveloped Raney nickel alloy powder can be used. The content is 10,500 g/sleeve, preferably 10 to 10,000 g/sleeve from the viewpoints of adhesion amount, maintenance of suspension, uniformity of adhesion, economical efficiency, etc.
It has 200 long sleeves.

上記〆ッキ裕中ニッケルメッキ格としてはワット浴、ホ
ウフツ化ニッケルのメッキ格、スルフアミン酸ニッケル
のメッキ裕等が用いられうるが、ラネーニッケルの反応
性の面から浴pHは4以上、好ましくは5以上が好まれ
る。メッキ格には通常の電気メッキ、無電解〆ッキの場
合と同じく界面活性剤例えばポリオキシヱチレンアルキ
ルアミン、アルキルイミダゾリウムクロリド等の添加は
表面の平滑化に有効である。
As the above-mentioned final nickel plating grade, Watt bath, nickel borofluoride plating grade, nickel sulfamate plating grade, etc. can be used, but in view of the reactivity of Raney nickel, the bath pH is 4 or higher, preferably 5. The above is preferred. In the case of plating, addition of surfactants such as polyoxyethylene alkylamine, alkylimidazolium chloride, etc. is effective for smoothing the surface, as in the case of ordinary electroplating and electroless plating.

一方、メッキ量及び粉末付着量は電流密度により左右さ
れ、電流密度が大である程メッキ量及び粉末付着量は大
となる。実用的には弘/dのが好適である。メッキ格温
度は通常の場合のメッキ温度(400〜70午0)でよ
く、特に限定されるものではない。
On the other hand, the amount of plating and the amount of powder adhesion are influenced by the current density, and the higher the current density, the larger the amount of plating and the amount of powder adhesion. Practically speaking, Hiroshi/d is preferred. The plating temperature may be a normal plating temperature (400-70:00) and is not particularly limited.

フネーニツケル粉末又は少なくとも一部分禾展開のラネ
ーニッケル合金粉末等の粉末のメッキ俗への懸濁方法と
しては、機械的燈拝、ガス気泡燈拝、液循環縄洋等の方
方法が適用可能である。前記諸条件により複合メッキが
達成されているが前記粉末を有する陰極表面は、粉末濃
度の低いメッキ俗によるものはその高いものよりも付着
強度が大である。付着強度が低い場合には更に重ねて、
ラネーニッケル粉末等の粉末を懸濁せしめていない通常
のメッキ格にて好ましくは10仏(厚み)以下のニッケ
ルメッキ層を作ることにより付着強度を大にする事が可
能である。次に前記末展開ないし一部展開のラネーニッ
ケル合金粉末を含めて複合メッキされた陰極表面は、ア
ルミニウム成分がアルカリ性溶液により除去される。
As a method for suspending powder such as Funehnickel powder or at least partially expanded Raney nickel alloy powder in plating, methods such as mechanical lighting, gas bubble lighting, liquid circulation rope, etc. can be applied. Composite plating is achieved under the above conditions, but the adhesion strength of the cathode surface containing the powder is greater when the powder concentration is lower than when the powder concentration is high. If the adhesion strength is low, add more layers,
It is possible to increase the adhesion strength by forming a nickel plating layer of preferably 10 mm (thickness) or less using a normal plating method in which no powder such as Raney nickel powder is suspended. Next, the aluminum component of the cathode surface, which has been composite plated with the partially expanded or partially expanded Raney nickel alloy powder, is removed using an alkaline solution.

このアルカリ性溶液の種類、組成、濃度、温度及び浸債
時間等については特に制限は無いが通常代表的に用いら
れる水酸化ナトリウム又はカリウムの10〜25重量%
水溶液による温度25〜8000、浸出時間1時間以上
の条件で実用上適している。浸出時間は長くなればなる
ほど残存アルミニウムは少なくなり、電解操作時に電解
製品へのアルミニウムの混入が減少し好ましいことは勿
論である。実施例 1及び2、 第1表に示した条件で作成した陰極金網上にアスベスト
を沈着させてアスベスト隔膜法陰極とし、チタン坂上に
酸化ルテニウムを被覆した陽極と対置し、温度50午0
電流密度17Amp/dのにて飽和食塩水の電解を行っ
た結果、未メッキ処理陰極を使用した場合に比べ全槽電
圧は最高0.15V(実施例1)、0.12V(実施例
2)下ることがわかつた。
There are no particular restrictions on the type, composition, concentration, temperature, soaking time, etc. of this alkaline solution, but it is typically 10 to 25% by weight of sodium or potassium hydroxide.
Practically suitable conditions include an aqueous solution at a temperature of 25 to 8,000 ℃ and a leaching time of 1 hour or more. It goes without saying that the longer the leaching time is, the less residual aluminum is left, and the less aluminum is mixed into the electrolytic product during the electrolytic operation, which is preferable. Examples 1 and 2 Asbestos was deposited on a cathode wire mesh prepared under the conditions shown in Table 1 to form an asbestos diaphragm cathode, which was placed opposite to an anode coated with ruthenium oxide on a titanium slope at a temperature of 50:00.
As a result of electrolysis of saturated saline solution at a current density of 17 Amp/d, the maximum total cell voltage was 0.15 V (Example 1) and 0.12 V (Example 2) compared to when an unplated cathode was used. I knew I was going down.

船 糠 また前記禾メッキ陰極としては研磨紙#80にて研磨し
た軟鋼を用いた。
Mild steel polished with #80 abrasive paper was used as the funa bran or ferrite-plated cathode.

Claims (1)

【特許請求の範囲】 1 基体金属の素地の少なくとも一部分に、少なくとも
一部分展開されたラネーニツケル合金粉末を含有する複
合ニツケルメツキ層を有することを特徴とする苛性ソー
ダ製造用陰極。 2 基体金属が鉄、ステンレス鋼またはニツケルである
ことを特徴とする特許請求の範囲第1項記載の苛性ソー
ダ製造用陰極。 3 基体金属の素地の少なくとも一部分に、ラネーニツ
ケル粉末を含有した複合ニツケルメツキ浴を用いてメツ
キ処理をすることを特徴とする苛性ソーダ製造用陰極の
製造法。 4 基体金属に鉄、ステンレス鋼またはニツケルを用い
ることを特徴とする特許請求の範第3項記載の苛性ソー
ダ製造用陰極の製造法。 5 基体金属の素地の少なくとも一部分に、少なくとも
一部分未展開のラネーニツケル合金粉末を含有した複合
ニツケルメツキ浴を用いてメツキ処理をして後含有アル
ミニウムの少なくとも一部分を除去することを特徴とす
る苛性ソーダ製造用陰極の製造法。 6 基体金属に鉄、ステンレス鋼またはニツケルを用い
ることを特徴とする特許請求の範囲第5項記載の苛性ソ
ーダ製造用陰極の製造法。 7 アルミニウムの除去にアルカリ液を用いることを特
徴とする特許請求の範囲第5項もしくは第6項記載の苛
性ソーダ製造用陰極の製造法。
[Scope of Claims] 1. A cathode for producing caustic soda, characterized in that it has a composite nickel plating layer containing at least partially expanded Raney nickel alloy powder on at least a portion of a base metal. 2. The cathode for producing caustic soda according to claim 1, wherein the base metal is iron, stainless steel, or nickel. 3. A method for producing a cathode for producing caustic soda, which comprises plating at least a portion of the base metal using a composite nickel plating bath containing Raney nickel powder. 4. The method for producing a cathode for producing caustic soda according to claim 3, wherein iron, stainless steel, or nickel is used as the base metal. 5. A cathode for producing caustic soda, characterized in that at least a portion of the base metal is plated using a composite nickel plating bath containing at least partially undeveloped Raney nickel alloy powder, and then at least a portion of the aluminum contained therein is removed. manufacturing method. 6. The method for producing a cathode for producing caustic soda according to claim 5, wherein iron, stainless steel, or nickel is used as the base metal. 7. A method for producing a cathode for producing caustic soda according to claim 5 or 6, characterized in that an alkaline solution is used to remove aluminum.
JP52134771A 1977-11-11 1977-11-11 Cathode for producing caustic soda and its production method Expired JPS6015712B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52134771A JPS6015712B2 (en) 1977-11-11 1977-11-11 Cathode for producing caustic soda and its production method
US05/959,782 US4170536A (en) 1977-11-11 1978-11-13 Electrolytic cathode and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52134771A JPS6015712B2 (en) 1977-11-11 1977-11-11 Cathode for producing caustic soda and its production method

Publications (2)

Publication Number Publication Date
JPS5468795A JPS5468795A (en) 1979-06-02
JPS6015712B2 true JPS6015712B2 (en) 1985-04-20

Family

ID=15136169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52134771A Expired JPS6015712B2 (en) 1977-11-11 1977-11-11 Cathode for producing caustic soda and its production method

Country Status (1)

Country Link
JP (1) JPS6015712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104491A (en) * 1979-02-06 1980-08-09 Asahi Glass Co Ltd Preparation of electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1148865A (en) * 1965-05-07 1969-04-16 Ceskosloveska Akademie Ved A method of producing active electrodes with a low over-voltage for electrolysis
JPS5236583A (en) * 1975-09-15 1977-03-19 Diamond Shamrock Corp Electrolytic electrode coated with fuseesprayed and digestionntreated cobalt or nickel
JPS52113398A (en) * 1976-02-05 1977-09-22 Goodrich Co B F Method of producing chlorine by low voltage chlorralkali ion exchange method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1148865A (en) * 1965-05-07 1969-04-16 Ceskosloveska Akademie Ved A method of producing active electrodes with a low over-voltage for electrolysis
JPS5236583A (en) * 1975-09-15 1977-03-19 Diamond Shamrock Corp Electrolytic electrode coated with fuseesprayed and digestionntreated cobalt or nickel
JPS52113398A (en) * 1976-02-05 1977-09-22 Goodrich Co B F Method of producing chlorine by low voltage chlorralkali ion exchange method

Also Published As

Publication number Publication date
JPS5468795A (en) 1979-06-02

Similar Documents

Publication Publication Date Title
US4302322A (en) Low hydrogen overvoltage electrode
JPS636636B2 (en)
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
JPS5917197B2 (en) Electrolytic electrodes with melt-sprayed and leached nickel or corvat coatings
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
CN101922031B (en) Double-plating steel belt and plating process
US4250004A (en) Process for the preparation of low overvoltage electrodes
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
JPS6015712B2 (en) Cathode for producing caustic soda and its production method
CA1260427A (en) Low hydrogen overvoltage cathode and method for producing the same
JPH0257159B2 (en)
JPS6018758B2 (en) Manufacturing method of cathode for alkali metal halide aqueous solution electrolysis
JPS6015713B2 (en) water electrolysis method
JPS6018759B2 (en) Method for manufacturing a cathode for alkali metal halide aqueous solution electrolysis
KR940010101B1 (en) Process for the preparation of electrolytic cell cathodes
JP2540110B2 (en) Electro aluminum plating method
EP0100777A1 (en) Process for electroplating metal parts
JPS6029487A (en) Manufacture of cathode with low hydrogen overvoltage
US3373092A (en) Electrodeposition of platinum group metals on titanium
KR820000885B1 (en) Process for preparing electrode
JPS55122887A (en) Activated electrode
JPS5932549B2 (en) Cathode for chlorine-alkali electrolyzer
JPS6353273B2 (en)
JP3712220B2 (en) Ion exchange membrane electrolysis method
JPS6123278B2 (en)