JPS60156952A - Air-fuel ratio controller - Google Patents

Air-fuel ratio controller

Info

Publication number
JPS60156952A
JPS60156952A JP59011419A JP1141984A JPS60156952A JP S60156952 A JPS60156952 A JP S60156952A JP 59011419 A JP59011419 A JP 59011419A JP 1141984 A JP1141984 A JP 1141984A JP S60156952 A JPS60156952 A JP S60156952A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ignition timing
fuel
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59011419A
Other languages
Japanese (ja)
Inventor
Tadashi Nagai
永井 規
Kozaburo Okawa
大川 晃三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59011419A priority Critical patent/JPS60156952A/en
Publication of JPS60156952A publication Critical patent/JPS60156952A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/1455Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To improve the running property of an engine, by delaying or advancing the ignition timing with regard to an optimal ignition timing corresponding to an aimed air-fuel ratio, depending on the increasing or decreasing control of the air-fuel ratio of the engine, to reduce the torque fluctuation thereof. CONSTITUTION:A comparison circuit 25 receives the output of an oxygen sensor 11 through an amplifier 23 and a reference voltage Vo from a reference power source 24 to judge whether the current ratio of fuel to air is higher or lower than an aimed value. The comparison circuit 25 sends out a signal R/L to an integration circuit 26, which calculates a compensation coefficient alpha for compensating the current air-fuel ratio to be equal to the aimed value, and sends out the compensation coefficient to a compensation circuit 27, which calculates a final injection quantity Tt so that a corresponding injection signal St is sent out to an injector 5 by a drive circuit 28 to inject the quantity Tt of fuel. The compensation coefficient alpha is also applied to an ignition timing control means 29 so that a comparison circuit 35 acts to increase the angle of ignition timing delay when the compensation coefficient alpha indicates a fuel increasing timing.

Description

【発明の詳細な説明】 (技術分野) 本発明は、エンジンの空燃比制御装置、詳しくは、酸素
センサを用いた空燃比のフィードバック制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an air-fuel ratio control device for an engine, and more particularly to an air-fuel ratio feedback control device using an oxygen sensor.

(従来技術) 近時、エンジンの吸入混合気の空燃比を精度よく目標値
に制御するために、排気系に酸素センサを設けて、空燃
比と相関関係をもつ排気中の酸素濃度に応じて燃料供給
量をフィードパンク制御している。また、最近では省エ
ネルギーの観点からエンジンを稀薄混合気燃焼させて燃
費の向上を図るように空燃比のフィードパ・ツク制御を
行うことが試みられている。
(Prior art) Recently, in order to accurately control the air-fuel ratio of the engine intake air-fuel mixture to a target value, an oxygen sensor has been installed in the exhaust system to control the air-fuel ratio in the exhaust gas, which has a correlation with the air-fuel ratio. The fuel supply amount is controlled by feed puncture. Furthermore, from the viewpoint of energy conservation, attempts have recently been made to perform feedpatch control of the air-fuel ratio so as to cause the engine to burn a lean mixture to improve fuel efficiency.

従来のこの種の空燃比制御装置としては、例えば第1図
に示すものが知られている(「口座の53年排出ガス対
策」自動車技術会誌、1977年2月号)。第1図にお
いて、1は直列4気筒のエンジンであり、吸入空気はエ
アフローメータ2から吸気管3を通して各気筒に供給さ
れ、燃料は燃料配管4を通して導かれフュエルインジェ
クタ5により、例えば各気筒の吸気ボート近傍に噴射さ
れる。また、各気筒には点火プラグ6が配設されており
、点火プラグ6にはディストリビュータ7を介して点火
コイル8から所定の点火タイミングに点火2次信号(高
電圧)S’l)2が供給される。そして、噴射燃料は点
火2次信号Sp2によって着火、爆発し、排気となって
排気管9を通して触媒コンバーク10に導入され、触媒
コンバータ】0内で排気中のを害成分(Go、HC,N
0x)を三元触媒により清浄化して排出される。吸入空
気の流量Qaはエアフローメータ2により検出され、エ
ンジン1の回転数Nはクランク角センサ内蔵のディスト
リビュータ7により検出される。一方、排気管9には酸
素センサ11が設けられており、酸素センサ11は各気
筒から排出される排気の酸素濃度を一括して検出してい
る。前記エアフローメータ2、ディストリビュータ7お
よび酸素センサ11からの各信号はコントロールユニッ
ト12に入力すしており、コントロールユニ7+−12
はこれらの信号に基づいてフュエルインジェクタ5の噴
射量を制御して空燃比をフィートバンク制御している。
As a conventional air-fuel ratio control device of this type, the one shown in FIG. 1 is known, for example (``Account's 1953 Exhaust Gas Countermeasures'' Journal of the Society of Automotive Engineers, February 1977 issue). In FIG. 1, reference numeral 1 denotes an in-line four-cylinder engine. Intake air is supplied from an air flow meter 2 to each cylinder through an intake pipe 3, and fuel is introduced through a fuel pipe 4 and is injected into each cylinder by a fuel injector 5. Sprayed near the boat. Further, each cylinder is provided with an ignition plug 6, and a secondary ignition signal (high voltage) S'l) 2 is supplied to the ignition plug 6 from an ignition coil 8 at a predetermined ignition timing via a distributor 7. be done. Then, the injected fuel is ignited and exploded by the ignition secondary signal Sp2, becomes exhaust gas, and is introduced into the catalytic converter 10 through the exhaust pipe 9.
0x) is purified by a three-way catalyst and discharged. The intake air flow rate Qa is detected by an air flow meter 2, and the rotation speed N of the engine 1 is detected by a distributor 7 having a built-in crank angle sensor. On the other hand, an oxygen sensor 11 is provided in the exhaust pipe 9, and the oxygen sensor 11 collectively detects the oxygen concentration of exhaust gas discharged from each cylinder. Each signal from the air flow meter 2, distributor 7 and oxygen sensor 11 is inputted to a control unit 12, and the control unit 7+-12
controls the injection amount of the fuel injector 5 based on these signals to perform footbank control of the air-fuel ratio.

すなわち、コントロールユニット】2ば供給量演算回路
13および空燃比補正回路14により構成されており、
供給量演算回路13は吸入空気量Qaおよび回転数Nに
基づいて基本噴射量Tpを演算するとともに、この基本
噴射WTpを各種増量補正しく例えば、冷却水温に基づ
く増量補正等)補正噴射量Tsとして空燃比補正回路1
4に出力する。空燃比補正回路14は運転条件に応じて
目標空燃比を設定するとともに、酸素センサ9の出力S
Oに基づいて現空燃比を目標空燃比に補正する補正係数
αを演算する。そして、この補正係数αを上記補正噴射
量Tsに乗して制御J11目標である目標空燃比に対応
する最終噴射量−r tを算出し、噴射信号Stをイン
ジェクタ5に出力する。この場合、補正係数αにより補
正噴射Jjl T sが一定割合で増量あるいは減量補
正されて、常に目標空燃比に対応した燃料量となるよう
に制御される。インジェクタ5は噴射信号3tに基づい
て最終噴射MTtだけ燃料を噴射する。
That is, the control unit 2 is composed of a supply amount calculation circuit 13 and an air-fuel ratio correction circuit 14,
The supply amount calculation circuit 13 calculates the basic injection amount Tp based on the intake air amount Qa and the rotation speed N, and also performs various increase corrections (for example, increase correction based on the cooling water temperature) on this basic injection amount WTp as the corrected injection amount Ts. Air-fuel ratio correction circuit 1
Output to 4. The air-fuel ratio correction circuit 14 sets a target air-fuel ratio according to operating conditions, and also adjusts the output S of the oxygen sensor 9.
A correction coefficient α for correcting the current air-fuel ratio to the target air-fuel ratio is calculated based on O. Then, the corrected injection amount Ts is multiplied by this correction coefficient α to calculate the final injection amount −rt corresponding to the target air-fuel ratio which is the control J11 target, and the injection signal St is output to the injector 5. In this case, the corrected injection Jjl T s is increased or decreased at a constant rate by the correction coefficient α, and is controlled so that the amount of fuel always corresponds to the target air-fuel ratio. The injector 5 injects fuel by the final injection MTt based on the injection signal 3t.

一方、点火時期はディストリビュータ7に組み込まれて
いる遠心進角機構や真空進角機構により回転数およびエ
ンジン負荷に応じて最適に制御される。
On the other hand, the ignition timing is optimally controlled according to the rotational speed and engine load by a centrifugal advance mechanism or a vacuum advance mechanism built into the distributor 7.

しかしながら、このような従来の空燃比制御装置にあっ
ては、全気筒から排出される排気の平均的な酸素濃度を
検出し、この検出結果に基づいて金気筒の燃料噴射量を
所定の増量あるいは減量補正タイミングで一括制御する
一方、点火時期については空燃比の変化に拘らず何ら制
御が行われない構成となっていたため、全気筒の空燃比
が同一タイミングで製筒制御され、エンジンにトルク変
動が発生するとともに、このようなトルク変動を点火時
期の制御で低減させることができないという問題点があ
った。
However, with such conventional air-fuel ratio control devices, the average oxygen concentration of exhaust gas discharged from all cylinders is detected, and based on this detection result, the fuel injection amount of the golden cylinder is increased or increased by a predetermined amount. While it was collectively controlled at the weight reduction correction timing, the ignition timing was not controlled at all regardless of changes in the air-fuel ratio, so the air-fuel ratio of all cylinders was controlled at the same timing, causing torque fluctuations in the engine. However, there is a problem in that such torque fluctuations cannot be reduced by controlling the ignition timing.

すなわぢ、空燃比を目標空燃比に制御するための製筒制
御ば、言い換えれば燃料噴射量の増減制御であり、この
制御は補正係数αを用いて目標空燃比に対し製筒方向に
燃料噴射量を増減補正することにより行われる。一方、
エンジンの軸1−ルク(エンジンの出力軸(クランクシ
ャフト)から有効に取り出される正味トルク)は燃料噴
射量に略比例しており、該燃料噴射量の増減に伴いトル
クも増減する。したがって、このような両者の関係から
、例えば増量補正のタイミングではトルクが増大し、増
量補正のタイミングではトルクが減少する。その結果、
空燃比のa薄制御に−伴いトルク変動が発生する。
In other words, the cylinder manufacturing control for controlling the air-fuel ratio to the target air-fuel ratio is, in other words, the increase/decrease control of the fuel injection amount. This is done by increasing or decreasing the injection amount. on the other hand,
The engine shaft torque (net torque effectively extracted from the output shaft (crankshaft) of the engine) is approximately proportional to the fuel injection amount, and as the fuel injection amount increases or decreases, the torque also increases or decreases. Therefore, due to the relationship between the two, for example, the torque increases at the timing of the increase correction, and the torque decreases at the timing of the increase correction. the result,
Torque fluctuations occur due to thin air-fuel ratio control.

また、このようなトルク変動は、目標空燃比が理論空燃
比より希薄な空燃比(以下、リーン空燃比という)に設
定された場合に著しく発生ずる。すなわち、第2図に軸
トルクTと空燃比A/Fとの関係(以下、T−A/F特
性という)を示すように、エンジンの軸トルクは理論空
燃比近傍を緩やかな頂点としてその前後では急激に低下
する傾向にある。詳しくは、A/F= 12.5におい
て軸トルクが最大となる。これは、この空燃比付近では
最も点火しやすく、燃焼速度も大きいためである。した
がって、例えば目標空燃比が理論空燃比である場合には
、空燃比のS薄変動ΔA/Fに対してトルク変動は八T
、なる小さい値となる。一方、目標空燃比がリーン空燃
比である場合には、同一のa薄変動ΔA/Fに対して変
動がΔT2 (八T2〉Δ1゛。
Further, such torque fluctuations occur significantly when the target air-fuel ratio is set to an air-fuel ratio leaner than the stoichiometric air-fuel ratio (hereinafter referred to as a lean air-fuel ratio). In other words, as shown in Fig. 2, which shows the relationship between shaft torque T and air-fuel ratio A/F (hereinafter referred to as T-A/F characteristic), engine shaft torque has a gradual peak near the stoichiometric air-fuel ratio, and then changes around the stoichiometric air-fuel ratio. tends to decline rapidly. Specifically, the shaft torque is maximum at A/F=12.5. This is because near this air-fuel ratio, ignition is easiest and the combustion speed is also high. Therefore, for example, when the target air-fuel ratio is the stoichiometric air-fuel ratio, the torque fluctuation is 8T for the S thin fluctuation ΔA/F of the air-fuel ratio.
, will be a small value. On the other hand, when the target air-fuel ratio is a lean air-fuel ratio, the variation is ΔT2 (8T2>Δ1゛) for the same a thin variation ΔA/F.

)なる大きい値となる。さらに、このようなトルク変動
の周期は、空燃比のフィードバック制御(製筒制御)の
速度(通常、0.5〜311z程度)と一致するため、
例えば走行中にあっては車両の前後振れ(サージ)が発
生し、またアイドリング時にあっては、回転数が変動し
アイドル運転が不安定になるという不具合を招く。
) becomes a large value. Furthermore, since the period of such torque fluctuations matches the speed of air-fuel ratio feedback control (tube manufacturing control) (usually about 0.5 to 311z),
For example, when the vehicle is running, longitudinal vibration (surge) of the vehicle occurs, and when idling, the rotational speed fluctuates, causing problems such as unstable idling.

ところで、周知のように軸トルクと密接な関係がある混
合気の燃焼状態は、空燃比、吸入空気量、圧縮圧力等と
ともに、点火時期によっても大きく影響される。したが
って、詳細は後述するが、空燃比の製筒制御に伴い点火
時期を適切に制御すれば、トルク変動の低減が可能とな
る。しかしながら、このような有効な点火時期制御が何
ら行われておらず、トルク変動を低減させることができ
ない。言い換えれば、従来の点火時期制御は空燃比の製
筒変動に伴うトルク変動に対して何ら寄与していない。
By the way, as is well known, the combustion state of the air-fuel mixture, which is closely related to the shaft torque, is greatly influenced by the ignition timing as well as the air-fuel ratio, intake air amount, compression pressure, etc. Therefore, although the details will be described later, if the ignition timing is appropriately controlled in conjunction with cylinder manufacturing control of the air-fuel ratio, torque fluctuations can be reduced. However, such effective ignition timing control is not performed at all, and torque fluctuations cannot be reduced. In other words, conventional ignition timing control does not contribute at all to torque fluctuations associated with cylinder manufacturing fluctuations in air-fuel ratio.

(発明の目的) そこで本発明は、目標空燃比に対応する最適点火時期を
境として空燃比の製筒制御に応じて点火時期を遅進制御
することにより、混合気の燃焼状態を常にトルク変動が
最小となるように制御して、トルク変動を低減させエン
ジンの運転性を向上させることを目的としている。
(Purpose of the Invention) Therefore, the present invention retards the ignition timing in accordance with cylinder manufacturing control of the air-fuel ratio, starting from the optimum ignition timing corresponding to the target air-fuel ratio, thereby constantly changing the combustion state of the air-fuel mixture with torque fluctuations. The objective is to control the torque to a minimum, thereby reducing torque fluctuations and improving engine drivability.

(発明の構成) 本発明による空燃比制御装置は、エンジンの排気中の酸
素濃度を検出する酸素センサと、エンジンの運転状態に
基づいて燃料供給量を演算する供給量演算手段と、酸素
センサの出力に基づいて空燃比を目標空燃比に補正する
補正係数を演算するとともに、この補正係数に基づし)
で前記燃料供給量を増減補正し空燃比をフィードバック
制御する空燃比制御手段と、前記補正係数の値に応して
エンジンの点火時期を制御する点火時期制御手段と、を
備えており、空燃比の製筒変動に拘らず混合気の燃焼状
態を常にトルク変動が最小となるように制御するもので
ある。
(Structure of the Invention) The air-fuel ratio control device according to the present invention includes an oxygen sensor that detects the oxygen concentration in the exhaust gas of the engine, a supply amount calculation means that calculates the amount of fuel supplied based on the operating state of the engine, and an oxygen sensor that detects the oxygen concentration in the exhaust gas of the engine. (Based on this correction coefficient)
and an ignition timing control means for controlling the ignition timing of the engine according to the value of the correction coefficient. This is to control the combustion state of the air-fuel mixture so that the torque fluctuation is always minimized regardless of the cylinder manufacturing fluctuation.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第3〜6図は本発明の一実施例を示す図である。3 to 6 are diagrams showing an embodiment of the present invention.

まず、構成を説明する。本実施例は従来例と同じく直列
4気筒エンジンに適用されており、その概略構成は第1
図と同様であるため省略し、第3図に主要部であるブロ
ック構成図を示す。
First, the configuration will be explained. This example is applied to an in-line four-cylinder engine like the conventional example, and its schematic configuration is the first one.
Since it is the same as that shown in the figure, the explanation will be omitted, and a block configuration diagram of the main part is shown in FIG.

また、第3図において、従来と同一構成で表されるブロ
ックには同一符号を付すのみでその説明を省略する。
Further, in FIG. 3, blocks having the same configuration as the conventional one are simply given the same reference numerals and their explanations will be omitted.

第3図において、21は供給量演算回路(供給量演算手
段)であり、供給量演算回路21はエアフローメータ2
の出力Qaおよびクランク角センサ(ディストリビュー
タ)7の出力Nに基づいて基本噴射量Tp (Tp=に
−Qa/N。
In FIG. 3, 21 is a supply amount calculation circuit (supply amount calculation means), and the supply amount calculation circuit 21 is connected to the air flow meter 2.
Based on the output Qa of the engine and the output N of the crank angle sensor (distributor) 7, the basic injection amount Tp (Tp=to-Qa/N) is determined.

K:定数)を演算し空燃比制御手段22に出力する。空
燃比制御手段22はバンファアンプ23、基準電源24
、比較回路5、積分回路26、補正回路27および駆動
回路28により構成されており、比較回路25には酸素
センサ11の出ガSOがバ、/ファアンプ詔を介して入
力されるとともに、基準電源24からの基準電圧VOが
入力される。この基準電圧Voは目標空燃比に対応した
値に設定される。したがって、比較回路25は現空燃比
が目標空燃比より過a(リッチ)であるか希薄(リーン
)であるかを判別して、リッチ・リーン信号R/Lを積
分回路Uに出力する。積分回路26はリッチ・リーン信
号R/Lに基づいて■ (積分)制御により現空燃比を
目標空燃比に補正する補正係数αを演算し、補正回路2
7に出力する。この補正係数αは現空燃比の目標空燃比
からのずれの程度に応し゛ζ演算され、補正割合の傾き
(積分制御の傾き)は一定である。補正回路27には、
ざらに供給量演算回路21からの基本噴射量1゛pが入
力されており、補正回路27は補正係数αに基づいて基
本噴射量]゛pを所定割合(すなわち、上記積分制御の
傾き)で増量あるいは減量補正して目標空燃比に対応す
る最終噴射量Ttを演算し、駆動回路側に出力する。駆
動回路2日は最終噴射量]゛tに対応する噴射信号St
をインジェクタ5に出力する。そして、インジェクタ5
は吸気ボーI−近傍の吸気管3に取り付けられており、
噴射信号3tにより駆動されて最終噴射量1゛tの燃料
を噴射する。
K: constant) is calculated and output to the air-fuel ratio control means 22. The air-fuel ratio control means 22 includes a Banfa amplifier 23 and a reference power source 24.
, a comparison circuit 5, an integration circuit 26, a correction circuit 27, and a drive circuit 28. The comparison circuit 25 is inputted with the output gas SO of the oxygen sensor 11 via the amplifier and the reference power supply. A reference voltage VO from 24 is input. This reference voltage Vo is set to a value corresponding to the target air-fuel ratio. Therefore, the comparison circuit 25 determines whether the current air-fuel ratio is richer or leaner than the target air-fuel ratio, and outputs a rich/lean signal R/L to the integrating circuit U. The integral circuit 26 calculates a correction coefficient α for correcting the current air-fuel ratio to the target air-fuel ratio by (integral) control based on the rich/lean signal R/L, and the correction circuit 2
Output to 7. This correction coefficient α is calculated according to the degree of deviation of the current air-fuel ratio from the target air-fuel ratio, and the slope of the correction ratio (the slope of integral control) is constant. The correction circuit 27 includes
Roughly, the basic injection amount 1゛p from the supply amount calculation circuit 21 is input, and the correction circuit 27 calculates the basic injection amount ゛p at a predetermined ratio (i.e., the slope of the integral control) based on the correction coefficient α. The final injection amount Tt corresponding to the target air-fuel ratio is calculated by increasing or decreasing the amount and outputs it to the drive circuit side. On the second day of the drive circuit, the injection signal St corresponding to the final injection amount]
is output to the injector 5. And injector 5
is attached to the intake pipe 3 near the intake bow I,
It is driven by the injection signal 3t and injects a final injection amount of 1゛t of fuel.

前記積分回路26の出力、すなわち補正係数αば点火時
期制御手段29に入力されており、点火時期制御手段2
9は波形整形回路30、遅角制御回路31および増幅回
路32により構成されている。
The output of the integration circuit 26, that is, the correction coefficient α, is input to the ignition timing control means 29, and the correction coefficient α is input to the ignition timing control means 29.
9 is composed of a waveform shaping circuit 30, a retard control circuit 31, and an amplifier circuit 32.

波形整形回路30にはピンクアップコイル33からの点
火1次信号Sptが入力されており、このピックアップ
コイル33はディストリビュータフに内蔵され、例えば
4気筒エンンンではクランク角の180°毎に1回、6
気筒エンジンではI20°毎に1回のタイミングでパル
ス信号(点火1次信号)Sp+を出力する。また、ピッ
クアップコイル33は、図示は略されているがディスト
リヒユータフに組み込まれている遠心進角機構や真空進
角機構により、その相対位置(気筒のピストンに対する
位置)が可変される。したがって、ピックアップコイル
33はエンジン回転数Nやエンジン負荷(Tpに対応)
に応じてパルス信号を出力するタイミング(点火時期)
をずらす(例えば、進める)。波形成形回路30はパル
ス状の点火1次信号S I) lを矩形波状に波形整形
し、整形信号Ssとして遅角制御回路31に出力する。
A primary ignition signal Spt from a pink-up coil 33 is input to the waveform shaping circuit 30, and this pickup coil 33 is built into the distributor tough.
The cylinder engine outputs a pulse signal (primary ignition signal) Sp+ once every 20°. Although not shown, the relative position (position with respect to the piston of the cylinder) of the pickup coil 33 is varied by a centrifugal advance mechanism or a vacuum advance mechanism incorporated in the distributor. Therefore, the pickup coil 33 corresponds to the engine rotation speed N and the engine load (Tp).
Timing to output a pulse signal according to (ignition timing)
Shift (e.g. move forward). The waveform shaping circuit 30 shapes the pulsed primary ignition signal S1) into a rectangular waveform and outputs it to the retard control circuit 31 as a shaped signal Ss.

遅角制御回路31は積分回路34および比較回路35に
より構成されており、補正係数αの値に応じて点火時期
を制御している。すなわち、積分回路34は整形信号S
sを所定の積分定数で積分し積分信号Siとして比較回
路35に出力する。比較回路35には、さらに前記補正
係数αが入力されており、比較回路35は積分信号Si
と補正係数αの値を比較し、Si>αのとき〔■1〕 
となりSi<αのとき(L)となる遅角信号Sdを出力
する。したがって、この遅角信号Sdは点火1次信号S
l’tを補正係数αの値に応して補正したものとなり、
補正係数αが増量補正タイミングにあるときには点火1
次信号Splに比して点火時期を遅らせる角度(以下、
遅角量τという)が次第に大きくなり、また、減量補正
タイミングにあるときにば該遅角量τが次第に小さくな
る。そして、遅角信号Sdは増幅回路32により増幅さ
れた後、パワートランジスタ36に供給される。パワー
トランジスタ36は遅角信号Sdの立下り/立上りに同
期して0N10FF作動し点火コイル8の1次電流を断
続制御して、該点火コイル8の2次側に高電圧の点火2
次信号Sp2を誘起させディストリビュータ7を介して
点火プラグ6に供給する。
The retard control circuit 31 includes an integrating circuit 34 and a comparing circuit 35, and controls the ignition timing according to the value of the correction coefficient α. That is, the integrating circuit 34 receives the shaped signal S
s is integrated by a predetermined integral constant and outputted to the comparison circuit 35 as an integral signal Si. The comparator circuit 35 is further inputted with the correction coefficient α, and the comparator circuit 35 receives the integral signal Si.
and the value of the correction coefficient α, and when Si>α [■1]
Thus, when Si<α, a retard signal Sd which becomes (L) is output. Therefore, this retard signal Sd is the ignition primary signal S
l't is corrected according to the value of the correction coefficient α,
When the correction coefficient α is at the increase correction timing, ignition 1
The angle at which the ignition timing is delayed compared to the next signal Spl (hereinafter referred to as
The retard amount τ) gradually increases, and when it is time for the reduction correction, the retard amount τ gradually decreases. The retard signal Sd is then amplified by the amplifier circuit 32 and then supplied to the power transistor 36. The power transistor 36 operates as a 0N10FF in synchronization with the fall/rise of the retard signal Sd, controls the primary current of the ignition coil 8 intermittently, and supplies a high voltage ignition 2 to the secondary side of the ignition coil 8.
The next signal Sp2 is induced and supplied to the spark plug 6 via the distributor 7.

なお、点火2次信号Sp2は遅角信号Sdの立上りに同
期して供給されており、この点火2次信号Sp2と点火
1次信号Sp□とのクランク角度差が上記遅角量τとな
る(後述する第6図参照)。
The secondary ignition signal Sp2 is supplied in synchronization with the rise of the retard signal Sd, and the crank angle difference between the secondary ignition signal Sp2 and the primary ignition signal Sp□ becomes the retard amount τ ( (See Figure 6 below).

次に作用を説明する。Next, the action will be explained.

一般に、T−A/F特性で示したようにエンジンの軸ト
ルクは理論空燃比近傍を頂点としてその前後で低下する
ため、全気筒の空燃比を所定のフィードハック周期で一
括して製筒制御すると、トルク変動が発生ずる。
Generally, as shown in the T-A/F characteristics, the engine shaft torque peaks near the stoichiometric air-fuel ratio and decreases before and after that, so the air-fuel ratio of all cylinders is controlled at once at a predetermined feed-hack cycle. As a result, torque fluctuations occur.

ところで、軸I−ルクは混合気の燃焼状態と密接な関係
を有しており、空燃比に限らず、例えば点火時期によっ
ても左右される。すなわち、第4図は点火時期と空燃比
との関係を等吸入空気量の条件下で示す図であり、図中
実線Tは等軸トルク曲線を、破線Hは等HC排出量曲線
をそれぞれ表わしている。したがって、例えば目標空燃
比が図中A点で示す理論空燃比に設定された場合、矢印
ΔA力方向空燃比を製筒制御ずればトルク変動が生じる
。一方、このとき該濃開制御に同期して矢印Δへ′方向
に点火時期を制御すると、軸トルクは等軸トルク曲線T
上を移動することとなり、トルク変動を低減させること
ができる。このような原理は目標空燃比が所定のリーン
空燃比(図中B点)に設定された場合であっても同様で
あり、矢印ΔB、ΔB′は上記矢印ΔA、Δへ′と同様
の制御方向をそれぞれ示している。
Incidentally, the axis I-lux has a close relationship with the combustion state of the air-fuel mixture, and is influenced not only by the air-fuel ratio but also by, for example, the ignition timing. That is, FIG. 4 is a diagram showing the relationship between ignition timing and air-fuel ratio under the condition of equal intake air amount, and the solid line T in the figure represents the equiaxed torque curve, and the broken line H represents the equal HC emission curve. ing. Therefore, for example, when the target air-fuel ratio is set to the stoichiometric air-fuel ratio indicated by point A in the figure, if the air-fuel ratio in the force direction of arrow ΔA is shifted during cylinder manufacturing control, torque fluctuations will occur. On the other hand, if the ignition timing is controlled in the direction of the arrow Δ' in synchronization with the rich opening control at this time, the shaft torque will change to the equiaxed torque curve T
As a result, torque fluctuations can be reduced. This principle is the same even when the target air-fuel ratio is set to a predetermined lean air-fuel ratio (point B in the figure), and the arrows ΔB and ΔB' are controlled in the same way as the arrows ΔA and Δ' above. Each direction is indicated.

そこで本実施例では、かかる原理に着目して、空燃比の
制御中心である目標空燃比に対応する最適点火時期(以
下、中心点火時期という)を境として空燃比が目標空燃
比よりリッチ側に制御されているときは点火時期を遅ら
セ、リーン側に制御されているときは点火時期を進めて
空燃比のa薄?1ilJ御に伴うトルク変動を低減させ
ている。
Therefore, in this embodiment, focusing on this principle, the air-fuel ratio is set to the richer side than the target air-fuel ratio at the optimum ignition timing (hereinafter referred to as the center ignition timing) corresponding to the target air-fuel ratio, which is the center of control of the air-fuel ratio. When the ignition timing is controlled, the ignition timing is retarded, and when the ignition timing is controlled to the lean side, the ignition timing is advanced to improve the air-fuel ratio. This reduces torque fluctuations associated with 1ilJ control.

すなわち、第5FI!Ja−cに示すように中心点火時
期の遅角量τ0(以下、中心遅角量という。また、これ
は補正係数αで表わすと該補正係数αの平均値αに対応
する最適点火時期の遅角量τ0となる)を境として、α
〉αのときはαの値に応じてτB〉τ0という関係で表
わされるリッチ遅角11尺だけ点火時期を遅らせ、αく
αのときはαの値に応じてて、〈τ0という関係で表わ
されるリーン遅角量τ5だけ点火時期を遅らせている(
これは、中心点火時期からみれば、点火時期が進められ
ることを意味している)。
In other words, the 5th FI! As shown in Ja-c, the retardation amount τ0 of the center ignition timing (hereinafter referred to as the center retardation amount. Also, when expressed as a correction coefficient α, this is the retardation of the optimum ignition timing corresponding to the average value α of the correction coefficient α). α
〉α, the ignition timing is delayed by 11 rich retard angles expressed by the relationship τB〉τ0 according to the value of α, and when α is less than α, the ignition timing is delayed according to the value of α and expressed by the relationship 〈τ0. The ignition timing is delayed by the lean retard amount τ5 (
This means that the ignition timing is advanced from the center ignition timing).

次に、第6図に示すタイミングチャートを参照して上記
遅角量での制御について説明する。
Next, control using the above retard amount will be explained with reference to the timing chart shown in FIG.

まず、第G図aに示すように現空燃比がタイミングt1
でリッチ側からリーン側へと変化すると、リッチ・リー
ン信号R/ Lは同図すに示すような変化となり、この
リッチ・リーン信号R/Lに応して補正係数αが同図C
に示す傾きで空燃比をリッチ側に補正する。一方、点火
1次信号Sp、は第6図dに示すようにエンジン回転数
およびエンジン負荷に応じて適切に進角制御されており
、この点火1次信号Sp工は波形整形されて同図eに示
すような矩形波状の整形信号Ssとなる。遅角制御回路
31は、この整形信号Ssを積分するとともに、その積
分値(積分信号)Si(第6図C参照)を補正係数αと
比較して第6図gに示すような遅角信号Sdを出力する
。このとき、遅角信号Sdの立上りエツジは補正係数α
の増大に応じて次第に遅れたものとなる。また、その遅
角量τは第6図jに示すうように、補正係数αが目標空
燃比に対応する平均値αを横切るタイミングt2を境と
して、1<12なる期間tでは中心遅角量τ0より小さ
い(進んだ)τLl、τ、λ−−−−一・なる値のリー
ン遅角量τLとなり、一方、1>12なる期間tでは該
中心遅角量τ0より大きい(遅れた)τ91、τR2−
−’−なる値のリッチ遅角量τRとなる。そして、この
遅角信号Sdにより第6図りに示すようにパワートラン
ジスタ36が0N10 F F制御され、同図iに示す
点火2次信号31)2が点火プラグ6に供給される。し
たがって、点火時期は、空燃比を目標空燃比よりリーン
側に制御する期間(t2〜1.)では進み、リッチ側に
制御する期間(1,〜t2)(第6図C参照)では遅れ
る。その結果、空燃比の製筒変動に拘らず第4図に示し
た原理により混合気の燃焼状態が常にトルク変動を最小
とするよ ゛うに制御され、エンジンのトルク変動を低
減させることができる。
First, as shown in Figure G a, the current air-fuel ratio changes at timing t1.
When the rich side changes from the lean side to the lean side, the rich/lean signal R/L changes as shown in the figure, and the correction coefficient α changes according to this rich/lean signal R/L.
Correct the air-fuel ratio to the rich side with the slope shown in . On the other hand, the primary ignition signal Sp is appropriately advanced in accordance with the engine speed and engine load, as shown in Figure 6d, and this primary ignition signal Sp is waveform-shaped and A rectangular shaped signal Ss as shown in FIG. The retard control circuit 31 integrates this shaped signal Ss and compares the integral value (integral signal) Si (see FIG. 6C) with a correction coefficient α to generate a retard signal as shown in FIG. 6g. Output Sd. At this time, the rising edge of the retard signal Sd is the correction coefficient α
It gradually becomes delayed as the number increases. In addition, as shown in FIG. 6j, the retardation amount τ is the center retardation amount in a period t where 1<12, with the timing t2 at which the correction coefficient α crosses the average value α corresponding to the target air-fuel ratio as a boundary. The lean retardation amount τL is smaller (advanced) than τ0, τLl, τ, λ---1. On the other hand, in the period t where 1>12, the center retardation amount τ91 is larger (delayed) than the center retardation amount τ0. , τR2−
The rich retard amount τR has a value of -'-. Then, the power transistor 36 is controlled to 0N10FF by this retard signal Sd as shown in the sixth figure, and the ignition secondary signal 31)2 shown in the figure i is supplied to the spark plug 6. Therefore, the ignition timing is advanced during the period (t2 to 1.) in which the air-fuel ratio is controlled to be leaner than the target air-fuel ratio, and delayed in the period (1, to t2) in which the air-fuel ratio is controlled to be richer (see FIG. 6C). As a result, the combustion state of the air-fuel mixture is always controlled to minimize torque fluctuations based on the principle shown in FIG. 4, regardless of cylinder manufacturing fluctuations in the air-fuel ratio, and engine torque fluctuations can be reduced.

したがって、車両の前後振れを防止することができると
ともに、アイドル運転を安定させることができる。また
、上記のように点火時期を制御すれば第4図に示す等H
C排出量曲線Hから明らかであるように、空燃比のリッ
チ方向への制御時にHC排出量を低減させることができ
るとともに、排気温度の上昇を抑制してN。
Therefore, it is possible to prevent the vehicle from swinging back and forth, and to stabilize idling. In addition, if the ignition timing is controlled as described above, H
As is clear from the C emissions curve H, it is possible to reduce the HC emissions when controlling the air-fuel ratio toward the richer direction, and to suppress the rise in exhaust gas temperature.

X排出量をも低減させることができる。It is also possible to reduce the amount of X emissions.

さらに、上述した効果は目標空燃比がリーン空燃比に設
定された場合に、特に顕著なものとなる。
Furthermore, the above-mentioned effect becomes particularly noticeable when the target air-fuel ratio is set to a lean air-fuel ratio.

なお、上記遅角量τは積分回路34の積分定数を変える
ことにより任意の大きさに変化させることが可能であり
、例えば運転条件やエンジン機種等に応じて適切に設定
すればより一層トルク変動を低減させることができる。
Note that the retard amount τ can be changed to an arbitrary value by changing the integral constant of the integrating circuit 34. For example, if it is set appropriately depending on the operating conditions and engine model, torque fluctuations can be further reduced. can be reduced.

(効果) 本発明によれば、目標空燃比に刻応する最適点火時期を
境として空燃比のiJ!薄制御に応じて点火時期を制御
することができ、混合気の燃焼状態を常に1−ルク変動
が最小となるように制御することができる。その結果、
トルク変動を低減させ、エンジンの運転性を向上させる
ことができる。
(Effect) According to the present invention, the air-fuel ratio iJ! The ignition timing can be controlled according to the lean control, and the combustion state of the air-fuel mixture can be controlled so that the 1-lux fluctuation is always minimized. the result,
It is possible to reduce torque fluctuations and improve engine drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は従来の空燃比制御装置を示す図であり、第
1図はその概略構成図、第2図はそのT−A/F特性を
示す図、第3〜6図は本発明の一実施例を示す図であり
、第3図はそのブロック構成図、第4図はその点火時期
、空燃比、軸トルクおよびHC排出量の各関係を示す図
、第5図a〜Cはその点火時期制御を説明するためのタ
イミングチャート、第6図a −jはその遅角量制御を
説明するだめのタイミングチャートである。 11−・−−−酸素センサ、 21−−−一供給量演算手段、 22−−−−一空燃比制御手段、 29−−−−一点火時期制御手段。 特許出願人 日産自動車株式会社 代理人弁理士 有我軍一部
Fig. 1.2 is a diagram showing a conventional air-fuel ratio control device, Fig. 1 is a schematic diagram thereof, Fig. 2 is a diagram showing its T-A/F characteristics, and Figs. 3 to 6 are diagrams showing the present invention. FIG. 3 is a block diagram of the embodiment; FIG. 4 is a diagram showing the relationships between ignition timing, air-fuel ratio, shaft torque, and HC emissions; FIGS. Timing charts for explaining the ignition timing control, and FIGS. 6A to 6J are timing charts for explaining the retard amount control. 11----Oxygen sensor, 21--Supply amount calculation means, 22--Air-fuel ratio control means, 29--Ignition timing control means. Patent Applicant Nissan Motor Co., Ltd. Representative Patent Attorney Agagun Part

Claims (1)

【特許請求の範囲】 (11エンジンの排気中の酸素濃度を検出する酸素セン
サと、エンジンの運転状態に基づいて燃料供給量を演算
する供給量演算手段と、酸素センサの出力に基づいて空
燃比を目標空燃比に補正する補正係数を演算するととも
に、この補正係数に基づいて前記燃料供給量を増減補正
し空燃比をフィードバック制御する空燃比制御手段と、
前記補正係数の値に応じてエンジンの点火時期を制御す
る点火時期制御手段と、を備えたことを特徴とする空燃
比制御装置。 (21前記点火時期制御手段が、目標空燃比に対応する
最適点火時期を境として前記補正係数により空燃比が目
標空燃比よりリンチ側に制御されているとき点火時期を
遅らせ、リーン側に制御されているとき点火時期を進め
ることを特徴とする特許請求の範囲第1項記載の空燃比
制御装置。
[Claims] an air-fuel ratio control means that calculates a correction coefficient for correcting the air-fuel ratio to a target air-fuel ratio, increases or decreases the fuel supply amount based on the correction coefficient, and performs feedback control of the air-fuel ratio;
An air-fuel ratio control device comprising: ignition timing control means for controlling ignition timing of an engine according to the value of the correction coefficient. (21) When the air-fuel ratio is controlled to the leaner side than the target air-fuel ratio by the correction coefficient with the optimal ignition timing corresponding to the target air-fuel ratio as a boundary, the ignition timing control means delays the ignition timing and controls the ignition timing to the lean side. 2. The air-fuel ratio control device according to claim 1, wherein the air-fuel ratio control device advances the ignition timing when the engine is running.
JP59011419A 1984-01-25 1984-01-25 Air-fuel ratio controller Pending JPS60156952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59011419A JPS60156952A (en) 1984-01-25 1984-01-25 Air-fuel ratio controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011419A JPS60156952A (en) 1984-01-25 1984-01-25 Air-fuel ratio controller

Publications (1)

Publication Number Publication Date
JPS60156952A true JPS60156952A (en) 1985-08-17

Family

ID=11777533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011419A Pending JPS60156952A (en) 1984-01-25 1984-01-25 Air-fuel ratio controller

Country Status (1)

Country Link
JP (1) JPS60156952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148791A (en) * 1990-09-19 1992-09-22 Hitachi, Ltd. Method of electronic engine control for internal combustion engine having a plurality of cylinders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148791A (en) * 1990-09-19 1992-09-22 Hitachi, Ltd. Method of electronic engine control for internal combustion engine having a plurality of cylinders

Similar Documents

Publication Publication Date Title
JP4023115B2 (en) Control device for direct-injection spark ignition engine
US7185631B2 (en) Combustion control system and method for direct-injection spark-ignition internal combustion engine
US8150598B2 (en) Engine controller
JP2003254141A (en) Idling control device for engine
JP3085181B2 (en) Ignition timing control device for internal combustion engine
US20030221665A1 (en) Idle speed control apparatus and method for internal combustion engine
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP3141563B2 (en) Air flow control device for internal combustion engine
JP4943873B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP3572783B2 (en) Engine exhaust purification device
JP3743277B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JPS60156952A (en) Air-fuel ratio controller
JP2822767B2 (en) Ignition timing control device for internal combustion engine
JP3812301B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3451769B2 (en) Engine control device
JP3131895B2 (en) Control device for multi-cylinder internal combustion engine
JPH03111652A (en) Idle speed controller of engine
JPH02119677A (en) Dynamic correction method of ignition timing of internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JPH11343915A (en) Idling engine rotational speed controller of engine
JP2004270584A (en) Multi-cylinder internal combustion engine with secondary air supply system and control method for multi-cylinder internal combustion engine
JP6647983B2 (en) Vehicle control device
JP2004019571A (en) Engine idling control device
JPS60156945A (en) Air-fuel ratio controller
JP3513881B2 (en) V-type engine exhaust purification system