JPS60156268A - Magnetic control type switching regulator - Google Patents

Magnetic control type switching regulator

Info

Publication number
JPS60156268A
JPS60156268A JP857984A JP857984A JPS60156268A JP S60156268 A JPS60156268 A JP S60156268A JP 857984 A JP857984 A JP 857984A JP 857984 A JP857984 A JP 857984A JP S60156268 A JPS60156268 A JP S60156268A
Authority
JP
Japan
Prior art keywords
reactor
capacitor
circuit
series
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP857984A
Other languages
Japanese (ja)
Other versions
JPH0667187B2 (en
Inventor
Kimihito Abe
阿部 公仁
Kenichi Onda
謙一 恩田
Kohei Yabuno
藪野 光平
Susumu Nakajima
晋 中島
Shigeru Takeda
茂 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP857984A priority Critical patent/JPH0667187B2/en
Publication of JPS60156268A publication Critical patent/JPS60156268A/en
Publication of JPH0667187B2 publication Critical patent/JPH0667187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To allow a switching regulator to be adapted for a high frequency and an increased output range by connecting in parallel snubber circuits at both ends of a saturable reactor and a rectifying diode connected in series, thereby constructing to eliminate the flow of the currents of the snubber circuit to the reactor. CONSTITUTION:A snubber circuit S3 which is constructed with capacitor C21 and a resistor R21 connected in series is connected with both ends of saturable reactor ML and a rectifying diode D21 connected in series. When a main switch is turned ON so that the reactor ML is magnetized to the saturated range, power is supplied from the secondary winding n2 to a capacitor CF and a load through the reactor ML, the diode D21 and a choke coil LF. The reactor ML is reset by the current controlled by the controller C2 while the main switch element is turned OFF.

Description

【発明の詳細な説明】 、 〔発明の利用分野〕 本発明は、磁気制御形スイッチングレギュV −タに、
係シ、特にその出力回路に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a magnetically controlled switching regulator V-tactor.
This invention relates in particular to its output circuit.

〔発明の背景〕[Background of the invention]

第1図に従来の磁気制御形スイッチングレギュV−夕の
一回路例を示す。
FIG. 1 shows an example of a conventional magnetically controlled switching regulator circuit.

Eは非安定な直流電源、Tは変圧器、QMは主スィッチ
素子□、C1は自励発振回路でQMを所定の周波数で動
作させるものである。
E is an unstable DC power supply, T is a transformer, QM is a main switch element □, and C1 is a self-excited oscillation circuit that operates QM at a predetermined frequency.

またDlは整流ダイオード、DlはチョークコイルLP
の蓄積エネルギをコンデンサCrに回生ずるための転流
ダイオードである。
Also, Dl is a rectifier diode, and Dl is a choke coil LP.
This is a commutating diode for regenerating the stored energy of Cr into the capacitor Cr.

可飽和リアクトルMLは、QMのターンオン期間に、T
の二次巻MA n xに誘起される電圧を一定期間だけ
阻止して出力電圧VOが一尼となるように制御するもの
である。この制御は、出力電圧の検出信号V、を誤差ア
ンプや規準電圧発生回路等で構成される制御回路C2に
入力し、コンデンサCvから制御用スイッチ素子Q、を
介してリセット電流Srが流される。E、はC冨の電力
を供給する補助電源で、専用に確立される場合と、■。
The saturable reactor ML has T during the turn-on period of QM.
The voltage induced in the secondary winding MA n x is blocked for a certain period of time to control the output voltage VO to be constant. In this control, a detection signal V of the output voltage is input to a control circuit C2 composed of an error amplifier, a reference voltage generation circuit, etc., and a reset current Sr is caused to flow from the capacitor Cv via the control switch element Q. E is an auxiliary power supply that supplies power to C, when it is established exclusively, and ■.

側から供給する場合がある。It may be supplied from the side.

この従来技術には次のような欠点がおる。即ち可飽和リ
アクトルMt、は、出力に応じて制御された電流i、の
ほかに、QMのターンオフ時のフライバック電圧で、コ
ンデンサ021を充電する電流iSが流される。1 ’
rの流れる経路は、抵抗几22と、図示の極性に12の
電圧で充電されているコンデンサCx2と、抵抗几21
、コンデンサ021とを経て可飽和リアクトルMLに流
れ込む。
This conventional technique has the following drawbacks. That is, in addition to the current i controlled according to the output, the saturable reactor Mt is supplied with a current iS that charges the capacitor 021 at the flyback voltage when the QM is turned off. 1'
The path through which r flows is through a resistor 22, a capacitor Cx2 charged with a voltage of 12 with the polarity shown, and a resistor 21.
, and flows into the saturable reactor ML via the capacitor 021.

この電流1 ’rがリセット電流1rに比べて大幅に小
さい領域では、大きな障害とならないが、i、さ0、即
ち電力を最大に出力する場合には、制御回路C2の制御
と無関係にi/rによって可飽和リアクトルMLがリセ
ット嘔れるため、七の分だけ出力が低下する不具合を生
ずる。結局鉄心の磁気特性H−H曲線で定まる不制御期
間(deadangle )に加えて電流iGでリセッ
トされた分だけ制御できないことになり、最大出力範囲
が小さくなる。
In a region where this current 1'r is much smaller than the reset current 1r, it does not cause a major problem, but when i is 0, that is, when the power is output to the maximum, i/ Since the saturable reactor ML is reset by r, a problem occurs in which the output decreases by an amount of 7. As a result, in addition to the deadangle determined by the magnetic characteristic H-H curve of the iron core, control is no longer possible due to the amount reset by the current iG, and the maximum output range becomes smaller.

特に近年鉄心の低損失化が進み、保磁力(Hcと記す)
の小さい材質が開発されている。Hcが小さい程わずか
な電流で磁化できる利点があるため、磁気制御の高周波
化に応用が試みられているが、一方では高周波になる程
ダイオードD1゜Dgの保護回路(C2t、几21及び
C22,几22)が1羞となシ、上述したdead a
ngleの拡大によって著しるしく出力制御範囲がせま
くなシ芙用できない。
Especially in recent years, iron core loss has been reduced, and coercive force (denoted as Hc)
Smaller materials have been developed. Since the smaller Hc has the advantage of being able to magnetize with a small amount of current, attempts have been made to apply it to higher frequencies in magnetic control.On the other hand, as the frequency increases, protection circuits of diodes D1゜Dg (C2t, 几21 and C22,几22) is 1 shame, the above-mentioned dead a
The output control range becomes extremely narrow due to the expansion of ngle, and cannot be used.

このようにダイオードの極間に保護回路が接続される構
成は、可飽和リアクトルの高周波駆動を阻害する。
This configuration in which a protection circuit is connected between the poles of the diode inhibits high-frequency driving of the saturable reactor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、整流ダイオードの保護回路を流れる電
流が、可飽和リアクトルのリセットに影響を与えない構
成を有する磁気制御形スイッチングレギュレータを提供
することにある。
An object of the present invention is to provide a magnetically controlled switching regulator having a configuration in which the current flowing through the protection circuit of the rectifier diode does not affect the reset of the saturable reactor.

〔発明の概要〕[Summary of the invention]

磁気制御形スイッチングレギュレータの可飽和リアクト
ルは、主スイツチ素子ターンオン期間に占めるdead
 a(Igleの割合が小さい程、高周波化及び出力制
御範囲確保に最適であるから、ダイオードの保護機能を
損うことなく、保膜回路の充放電々流を可飽和リアクト
ルに流さない構成とすることが、高周波化の有効手段と
なる。
The saturable reactor of a magnetically controlled switching regulator has a dead period that occupies the turn-on period of the main switch element.
a (The smaller the Igle ratio is, the more optimal it is for increasing the frequency and securing the output control range. Therefore, the structure is designed so that the charging and discharging current of the membrane protective circuit does not flow into the saturable reactor without impairing the protection function of the diode. This is an effective means of increasing the frequency.

このため、本発明に於ては直列接続された可飽和リアク
トルと整流ダイオードの両端に保護回路を並列接続する
ようにしてこの目的を構成したものである。
Therefore, in the present invention, this object is achieved by connecting a protection circuit in parallel to both ends of the saturable reactor and rectifier diode connected in series.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の一実施例を示す。図では主変圧器Tの
一次側を割愛し、二次側において詳細に説明する。図中
コンデンサC2t&抵抗R121の直列接続で構成され
る保護回路(以後スナノく回路と記す)Sは、直列に接
続された可飽和リアクトルMLと整流ダイオードD21
の両端に接続されている。
FIG. 2 shows an embodiment of the present invention. In the figure, the primary side of the main transformer T is omitted, and the secondary side will be explained in detail. In the figure, a protection circuit (hereinafter referred to as a sunon circuit) S consisting of a series connection of a capacitor C2t and a resistor R121 includes a saturable reactor ML and a rectifier diode D21 connected in series.
connected to both ends.

次に動作を説明すると、第1図に示しである主スィッチ
素子Q、がターンオンしてMLが飽和領域まで磁化され
ると、二次巻Hn2から、可飽和、 リアクト/l/M
L%ダイオードD2、チョークコイルLFを介してコン
デンサCr及び負荷に電力が供給嘔れる。この時転流ダ
イオードD2gのスナノく回路はコンデンサC22が図
示の極性に二次側巻線n2の電圧で充電され、ダイオー
ドD22を保護する。
Next, to explain the operation, when the main switch element Q shown in FIG.
Power is supplied to the capacitor Cr and the load via the L% diode D2 and the choke coil LF. At this time, the capacitor C22 in the parallel circuit of the commutating diode D2g is charged with the voltage of the secondary winding n2 to the polarity shown, thereby protecting the diode D22.

スイッチ素子QMがターンオフすると、出力に応じたリ
セット電流1rが流されて可飽和リアクトルMX、をリ
セットしはじめるが、同時に二次側巻線n、には図示黒
丸と反対側を正極性とするフライバック電圧が誘起され
るから、cZZの電荷を放電しながら図示破線の経路で
電流1 ’rが流れる。
When the switch element QM is turned off, a reset current 1r corresponding to the output is applied to start resetting the saturable reactor MX, but at the same time, the secondary winding n has a flywheel whose polarity is opposite to the black circle shown in the figure. Since a back voltage is induced, a current 1'r flows along the path shown by the broken line while discharging the charge of cZZ.

この電流はダイオードDSLのスナノ(回路のコンデン
サCZIを充電し終えると止まり、可飽和リアクトルM
Lのリセット電流には寄与しない。したかってQMのタ
ーンオフ期間中は、制御回路C2で制御されたlrがM
Lをリセットする。
This current stops after charging the capacitor CZI of the diode DSL (circuit capacitor CZI), and the saturable reactor M
It does not contribute to the L reset current. Therefore, during the turn-off period of QM, lr controlled by control circuit C2 becomes M
Reset L.

ダイオードD21がリカノ(りするときに発生するサー
ジ電圧をスナバ回路Sで吸収する機能は、従来の方法と
何ら変ることはない。
The function of the snubber circuit S to absorb the surge voltage generated when the diode D21 overflows is no different from the conventional method.

本実施例では、スナバ回路の電流が可飽和リアクトルM
1.に流れないことよシ、鉄心のB−H曲線で定まる不
制御期間で最大出力範囲を設計できる。
In this embodiment, the current of the snubber circuit is connected to the saturable reactor M
1. The maximum output range can be designed within the uncontrolled period determined by the B-H curve of the iron core.

第3図は本発明の他の実施例を示すものであシ、可飽和
リアクトルMLを二次側巻線n2の負極性側に設けた回
路構成に本発明を適用する実施例を示すものである。ス
ナバ回路Sは、実施例1と同様に、ダイオードD21と
可飽和リアクトルMLの直列回路と並列に接続される。
FIG. 3 shows another embodiment of the present invention, in which the present invention is applied to a circuit configuration in which a saturable reactor ML is provided on the negative polarity side of the secondary winding n2. be. As in the first embodiment, the snubber circuit S is connected in parallel with the series circuit of the diode D21 and the saturable reactor ML.

この場合も、スイッチ素子Q、がターンオンした時、ダ
イオードD21のリカバリ時に発生する電圧サージを吸
収する電流は、スナバ回路S1抵抗几22、コンデンサ
C22の経路で二次側巻線n2に流れ、可飽和リアクト
ルMLに流れることはない。
In this case as well, when the switch element Q is turned on, the current that absorbs the voltage surge generated during recovery of the diode D21 flows through the path of the snubber circuit S1 resistor 22 and the capacitor C22 to the secondary winding n2, It does not flow into the saturation reactor ML.

したがって、先の実施例と同様の効果が得られるほか、
主変圧器の二次巻線に流れないため、主変圧器を偏磁さ
せることがない。このことは、従来対策を施こしてきた
主変圧器飽和防止の必要がないため、主変圧器の小型化
、出力精度向上が得られる利点がある。
Therefore, in addition to obtaining the same effects as the previous embodiment,
Since it does not flow to the secondary winding of the main transformer, it does not cause the main transformer to become unbalanced. This has the advantage of reducing the size of the main transformer and improving output accuracy since there is no need to prevent saturation of the main transformer, which has conventionally been taken.

第4図に更に他の実施例を示す。本実施例では、リセッ
ト用別巻線nRを設は九可飽和リアクトルMLと整流ダ
イオードD2iの直列回路にスナバ回路Sが並列に接続
されている。可飽和リアクトルMLのリセット電流は図
示破線のように別巻線nRを介して流れる。スナバ回路
Sの充放電々流は、抵抗fizz、コンデンサC22を
介して二次巻線n3に流れるから、上述の他の実施例と
同じ効果が得られる。
FIG. 4 shows yet another embodiment. In this embodiment, a separate reset winding nR is provided, and a snubber circuit S is connected in parallel to a series circuit of a saturable reactor ML and a rectifier diode D2i. The reset current of the saturable reactor ML flows through a separate winding nR as indicated by the broken line in the figure. Since the charging/discharging current of the snubber circuit S flows to the secondary winding n3 via the resistor fizz and the capacitor C22, the same effect as in the other embodiments described above can be obtained.

次に、従来例や上記実施例では可飽和リアクトルMLの
端子電圧を観測すると、第5図に示すように主スィッチ
素子QMのターンオフ期間Tuts中に破線で示した電
圧波形が現われることが知られている。この電圧で磁化
される分は余分の鉄損であシ好ましくないが、電流の磁
気制御上さけられないものであった。
Next, in the conventional example and the above embodiment, when the terminal voltage of the saturable reactor ML is observed, it is known that a voltage waveform shown by a broken line appears during the turn-off period Tuts of the main switch element QM as shown in FIG. ing. Although the amount of magnetization caused by this voltage is undesirable because of extra iron loss, it is unavoidable in terms of magnetic control of the current.

この電圧の発生原因は、餓1図により説明するよ、QM
 F)、、fA@w、(r)17f:/ fCol、フ
イ(ツチ素子QMのターンオフ後、第5図のように値E
、まで過充電される。値E、はnlとnlの巻数比で定
まり、主変圧器の励磁エネルギをダイオードD1を介し
て電源Eに回生されると、この電圧Boに固定される。
The cause of this voltage generation will be explained using Figure 1, QM
F),,fA@w,(r)17f:/fCol,Fi(After the turn-off of the element QM, the value E as shown in Fig. 5
, will be overcharged. The value E is determined by the turns ratio between nl and nl, and is fixed at this voltage Bo when the excitation energy of the main transformer is regenerated to the power supply E via the diode D1.

この値E、から値E0の変化課程で、コンデンサC1の
電荷は、主変圧器Tの励磁インダクタンスを介して放電
されるから、Tの各巻線には図示黒丸を正とする電圧が
現われ、これによって磁化される電圧が、例えば第1図
では可飽和リアクトルMLに付した極性に、第3図では
図示黒丸を正極性とする′電圧となって観測される。
During this process of changing from value E to value E0, the charge in capacitor C1 is discharged via the excitation inductance of main transformer T, so a voltage with the black circles shown as positive appears in each winding of T, and this For example, in FIG. 1, the voltage magnetized by is observed as a voltage with the polarity attached to the saturable reactor ML, and in FIG.

本実施例では、スイッチ素子QMのスナノく回路に起因
する電圧は、第4図に示したように別巻線nRがあるた
め、電流icがダイオードD22、チョークコイルLF
、)ランジスタQRを介して流れるので、ダづオードD
22とトランジスタQBの順電圧降下分だけに低下する
ことができる。
In this embodiment, since there is a separate winding nR as shown in FIG. 4, the voltage caused by the switching circuit of the switching element QM is transferred to the diode D22 and the choke coil LF.
, ) flows through the transistor QR, so the voltage D
22 and the forward voltage drop of transistor QB.

したがって定常動作時の鉄損を大幅に軽減できるので、
鉄心の小型化が可能となる。
Therefore, iron loss during steady operation can be significantly reduced.
It becomes possible to downsize the iron core.

第6図に先の実施例の変形例を示す。動作上の、効果は
全く同一であるが、本実施例では、コモンアノードのダ
イオードが使用できるので、実装上部品点数が一つ少な
くなる利点が得られる。
FIG. 6 shows a modification of the previous embodiment. Although the operational effects are exactly the same, in this embodiment, a common anode diode can be used, so there is an advantage that the number of components is reduced by one in terms of mounting.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によればスナバ回路の電流が可飽
和リアクトルに流れない構成となるから、制御回路で制
御された電流のみでリセットかできる。これによって高
周波化、出力範囲拡大に最適な磁気制御形スイッチング
レギュレータを提供できる。
As described above, according to the present invention, the current of the snubber circuit does not flow to the saturable reactor, so that the reset can be performed using only the current controlled by the control circuit. This makes it possible to provide a magnetically controlled switching regulator that is ideal for increasing frequencies and expanding the output range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気制御形スイッチングレギュレータの
回路図、第2図〜第4図は本発明の実施例を示す回路図
、第5図は可飽和リアクトルの動作を説明する電圧波形
図、第6図は別な実施例を示す回路図である。 QM・・・主スィッチ素子、T・・・主変圧器、ML・
・・可策2図 第3図 追4図 T − 耶5図 第1頁の続き 0発 明 者 中 島 晋 熊谷市三ケ尻520G内
FIG. 1 is a circuit diagram of a conventional magnetically controlled switching regulator, FIGS. 2 to 4 are circuit diagrams showing an embodiment of the present invention, FIG. 5 is a voltage waveform diagram explaining the operation of a saturable reactor, FIG. 6 is a circuit diagram showing another embodiment. QM...Main switch element, T...Main transformer, ML...
...Continuation of Figure 2, Figure 3, Addendum 4, Figure T - Figure 5, page 1 0 Inventor Susumu Nakajima 520G Mikajiri, Kumagaya City

Claims (1)

【特許請求の範囲】[Claims] 1、@流電源と主変圧器の一次巻線と主スィッチ素子が
直列に接続され、主変圧器の二次側に磁気制御用、リア
クトルとこれに直列に接続された整流ダイオード、チョ
ークコイル及びコンデンサで構成される平滑回路と、前
記チョークコイルの励磁エネルギをコンデンサに回生ず
る転流ダイオードが設けられ、前記主スィッチ素子のオ
ン、オフによって前記主変圧器の二次巻線に出方される
電力を、前記制御用リアクトルによって一定出方に制御
するスイッチングレギュレータにおいて、前記磁気制御
用リアクトルと整流ダイオードの直列回路と並列にスナ
バ回路を設けることを特徴とする磁気制御形スイッチン
グレギュレータ。
1. The @ current power supply, the primary winding of the main transformer, and the main switch element are connected in series, and the secondary side of the main transformer is equipped with a reactor for magnetic control, a rectifier diode, a choke coil, and a reactor connected in series with the reactor. A smoothing circuit composed of a capacitor and a commutation diode are provided for regenerating the excitation energy of the choke coil into the capacitor, and the excitation energy of the choke coil is outputted to the secondary winding of the main transformer by turning on and off the main switch element. A magnetically controlled switching regulator in which power is controlled to a constant output by the control reactor, characterized in that a snubber circuit is provided in parallel with a series circuit of the magnetically controlled reactor and a rectifier diode.
JP857984A 1984-01-23 1984-01-23 Magnetically controlled switching regulator Expired - Lifetime JPH0667187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP857984A JPH0667187B2 (en) 1984-01-23 1984-01-23 Magnetically controlled switching regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP857984A JPH0667187B2 (en) 1984-01-23 1984-01-23 Magnetically controlled switching regulator

Publications (2)

Publication Number Publication Date
JPS60156268A true JPS60156268A (en) 1985-08-16
JPH0667187B2 JPH0667187B2 (en) 1994-08-24

Family

ID=11696925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP857984A Expired - Lifetime JPH0667187B2 (en) 1984-01-23 1984-01-23 Magnetically controlled switching regulator

Country Status (1)

Country Link
JP (1) JPH0667187B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135367A (en) * 1989-10-14 1991-06-10 Toko Inc Dc-dc converter
CN102412583A (en) * 2011-11-23 2012-04-11 中国船舶重工集团公司第七一二研究所 Excitation control box for magnetically controlled reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135367A (en) * 1989-10-14 1991-06-10 Toko Inc Dc-dc converter
CN102412583A (en) * 2011-11-23 2012-04-11 中国船舶重工集团公司第七一二研究所 Excitation control box for magnetically controlled reactor

Also Published As

Publication number Publication date
JPH0667187B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US5434768A (en) Fixed frequency converter switching at zero voltage
US5418703A (en) DC-DC converter with reset control for enhanced zero-volt switching
JP3199423B2 (en) Resonant type forward converter
JPH05111256A (en) Resonance-transition dc-dc converter and power- loss decreasing method thereof
JPH0254028B2 (en)
JP3402361B2 (en) Switching power supply
JPS60156268A (en) Magnetic control type switching regulator
JPH0250710B2 (en)
JP2835899B2 (en) Soft-switching circuit of discontinuous switching power supply in discontinuous current mode
JP3010903B2 (en) Voltage resonant switching power supply
JPH0739149A (en) Rectifying and smoothing circuit for voltage resonance converter
JPH08228478A (en) Flyback type dc-dc converter
JPH04368466A (en) Switching power source
JPH07170743A (en) Switching power supply device
JP2736713B2 (en) Switching regulator
JPH02179269A (en) Power supply device
JPH0574309B2 (en)
JPS5925580A (en) Switching regulator
JPH03164066A (en) Dc/dc converter
JPH0851777A (en) Self-excited switching power supply
JPH10178777A (en) Switching power source
JPH06178136A (en) Resonance type power source circuit
JPH1014232A (en) Switching power source
JPH01170368A (en) Switching power source
JPH04121056A (en) Converter