JPS60155917A - Detection apparatus - Google Patents

Detection apparatus

Info

Publication number
JPS60155917A
JPS60155917A JP59012302A JP1230284A JPS60155917A JP S60155917 A JPS60155917 A JP S60155917A JP 59012302 A JP59012302 A JP 59012302A JP 1230284 A JP1230284 A JP 1230284A JP S60155917 A JPS60155917 A JP S60155917A
Authority
JP
Japan
Prior art keywords
magnetic field
permanent magnet
magnetic
movable part
fixed part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59012302A
Other languages
Japanese (ja)
Other versions
JPH0426047B2 (en
Inventor
Hiromi Onodera
博美 小野寺
Noriaki Wakabayashi
若林 則章
Taiji Sugizaki
杉崎 泰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59012302A priority Critical patent/JPS60155917A/en
Priority to EP85300512A priority patent/EP0151002B1/en
Priority to US06/695,049 priority patent/US4725776A/en
Priority to DE8585300512T priority patent/DE3583870D1/en
Publication of JPS60155917A publication Critical patent/JPS60155917A/en
Publication of JPH0426047B2 publication Critical patent/JPH0426047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To make it possible to improve the strain of an output wave form by utilizing a magnetic field formed by a permanent magnet, by arranging an MR element in the magnetic field between the permanent magnet and magnetic pole teeth and inclining the surfaces of usually parallel magnetic pole teeth and the magnetism-sensitive direction of the MR element by an angle alpha deg.. CONSTITUTION:This detection apparatus detects the relative position of a movable part 21 and a fixed part 20 when said movable part 21 linearly moves along the fixed part 20. The movable part 21 is constituted of a substrate 12 having a magnetism-sensitive part 13 comprising an MR element and terminal parts 14, 15 formed to the surface thereof and a permanent magnet 16 for supplying a bias magnetic field while the fixed part 21 has magnetic pole teeth with definite scored cycles formed to the surface thereof opposed to the movable part 20. When the movable part 21 moves to + or -X'-directions along the fixed part 20, line of magnetic force directed to a stator 20 from the permanent magnet 16 changes in its direction corresponding to the uneven shape of the magnetic pole teeth. By this mechanism, the non-linear region of MR characteristics is avoided and a region relatively good in linearity can be used and, therefore, the strain of an output wave form is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、直線運動する物体の移動距離や、回転運動す
る物体の回転角の検出等に使用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used to detect the distance traveled by a linearly moving object, the rotation angle of a rotary object, and the like.

磁気的異方性効果を有する強磁i薄膜−抵抗素子(以下
%MR素子と略す。)を使用した検出装置に関するもの
である。 、 従来例の構成とその問題点 第1図(ム)、申)は、MR素子の一例を示す平面図と
正面図である。
The present invention relates to a detection device using a ferromagnetic i-thin film resistive element (hereinafter abbreviated as %MR element) having a magnetic anisotropy effect. , Configuration of Conventional Example and Its Problems FIG. 1 (M) and D) are a plan view and a front view showing an example of an MR element.

第1図において、MR素子よりなる感磁部2および外部
接続用端子部3,4は基板1の表面に形成されており、
感磁部2は第1図中、±X方向の磁界強度の変化に応じ
て抵抗値が変化し、他の方向の磁界強度の変化に対して
は、抵抗値がほとんど変化しない、いわゆる磁気的異方
性効果を有している。
In FIG. 1, a magnetic sensing part 2 made of an MR element and external connection terminal parts 3 and 4 are formed on the surface of a substrate 1.
In Fig. 1, the magnetic sensing part 2 is a so-called magnetic sensor whose resistance value changes according to changes in magnetic field strength in the ±X direction, and whose resistance value hardly changes with respect to changes in magnetic field strength in other directions. It has an anisotropic effect.

第2図は前記MR素子の特性図であり、前記士X方向の
磁界強度の変化に対する前記感磁部2の抵抗値変化を示
す。図中a、C,el’l:磁界強度に対する抵抗値変
化が非直線な領域であり1図中す。
FIG. 2 is a characteristic diagram of the MR element, showing changes in the resistance value of the magnetic sensing section 2 with respect to changes in magnetic field strength in the X direction. In the figure, a, C, el'l: Regions in which the change in resistance value with respect to magnetic field strength is non-linear;

dは比較的直線性の良い領域である。d is a region with relatively good linearity.

以下に第1図および第2図で説明したMR素子の苛性を
利用した検出装置について説明する。
A detection device using causticity of the MR element described in FIGS. 1 and 2 will be described below.

第3図はMR素子を使用した従来の検出装置の一例を示
し、第3図の(A)Fi平面図、(B)は(A)のムー
A線断面図である。また、第3図(A)、 (B)にお
いて、第1図と同一の部分については同一の符号を付し
ている。
FIG. 3 shows an example of a conventional detection device using an MR element, and FIG. 3 (A) is a plan view of Fi, and (B) is a sectional view taken along the line A of FIG. In addition, in FIGS. 3(A) and 3(B), the same parts as in FIG. 1 are given the same reference numerals.

さて、この従来の検出装置は、可動部8が固定部9に清
って直線的に移動する際の両者の相対位置関係を検出す
るものであり、可動部8ば、表面に感磁部2および端子
部3;4を形成した基板1と、バイアス磁界を供給する
役目を持つ永久磁石7とで構成されている。一方、固定
部9は、可動部8と対向する面に、磁性材より成る多数
の歯状の凹凸(以後、磁極歯と称す)を含んでいる。ま
た、可動部8と固定部9の対向する面は、図示はしない
が、ベアリング等の走行保持系により1両者が一定の間
隙を維持しながら平行移動できるよう保持されている。
Now, this conventional detection device detects the relative positional relationship between the movable part 8 and the fixed part 9 when they move linearly. It is composed of a substrate 1 on which terminal portions 3 and 4 are formed, and a permanent magnet 7 that serves to supply a bias magnetic field. On the other hand, the fixed part 9 includes a large number of tooth-shaped irregularities (hereinafter referred to as magnetic pole teeth) made of a magnetic material on the surface facing the movable part 8. Further, although not shown, opposing surfaces of the movable part 8 and the fixed part 9 are held by a travel holding system such as a bearing so that they can move in parallel while maintaining a constant gap.

今、感磁部2が、第3図(ト)に示されるように、端子
部3,4全通して外部の定電流源10.固定抵抗器6.
接地11.出力端子6に接続された状態で、可動部8が
固定部9に沿って定速で移動すると、出力端子6からは
、固定部9の磁極歯のきざみ周期の2分の1周期の正弦
波様の出力が得られることは、一般に知られている。こ
れは、永久磁石7の発生する磁界が、固定部9の磁極歯
の凹凸な形状に影響を受け、周期的に曲げられ、可動部
8の感磁部2に対してその感磁方向(±X方向)の成分
?発生する為であり、感磁部2の抵抗値は。
Now, as shown in FIG. 3(G), the magnetic sensing part 2 is connected to the external constant current source 10. Fixed resistor6.
Grounding 11. When the movable part 8 moves at a constant speed along the fixed part 9 while connected to the output terminal 6, a sine wave with a half period of the pitch period of the magnetic pole teeth of the fixed part 9 is output from the output terminal 6. It is generally known that similar outputs can be obtained. This is because the magnetic field generated by the permanent magnet 7 is influenced by the uneven shape of the magnetic pole teeth of the fixed part 9 and is periodically bent, and the magnetic field is bent periodically with respect to the magnetically sensitive part 2 of the movable part 8 (± X direction) component? This is because the resistance value of the magnetic sensing part 2 is.

第2図で説明したように、受けだ磁界強度に応じで変化
する為、出力端子6には、周期的な正弦波様の出力が現
われる。これ金弟4図を用いてさらに詳しく説明する。
As explained in FIG. 2, since it changes depending on the strength of the received magnetic field, a periodic sine wave-like output appears at the output terminal 6. This will be explained in more detail using Figure 4 of the Golden Brother.

但し、第3図と同一の部分は、同一符号を付し1重複す
る説明は省略する。
However, the same parts as in FIG. 3 are given the same reference numerals, and redundant explanation will be omitted.

第4図中、101 + 102+ 103+ 104+
 1105は、永久磁石7の発生する磁力線のうち、代
表的なものを示している。第4図では、感磁部2が磁力
線103の通過する位置にあり、この時。
In Figure 4, 101 + 102+ 103+ 104+
1105 indicates typical lines of magnetic force generated by the permanent magnet 7. In FIG. 4, the magnetic sensing part 2 is at a position where the lines of magnetic force 103 pass.

磁力線103は感磁部2に対して垂直に通過する為、±
X方向の成分はなく、第2図の特性図で示すところの磁
界0の位置になり、感磁部2の抵抗値は最大を示す。可
動部8が移動して、感磁部2が磁力線101,105の
位置に米たときも同じように抵抗値は最大を示す。
Since the magnetic field lines 103 pass perpendicularly to the magnetic sensing part 2, ±
There is no component in the X direction, and the magnetic field is at a position of 0 as shown in the characteristic diagram of FIG. 2, and the resistance value of the magnetically sensitive portion 2 is at its maximum. Similarly, when the movable part 8 moves and the magnetically sensitive part 2 is positioned at the lines of magnetic force 101 and 105, the resistance value also reaches its maximum.

次に可動部8が移動して感磁部2が磁力線102の位置
に米だ場合について考えると、磁力線102は、感磁部
2金斜めに通過することになる。この磁力線102’i
直交成分に分けると、感磁部2を垂直に通過する成分と
、−X方向の成分に分解することができ、前記の−X方
向成分の磁界により、感磁部の抵抗値は磁界強度に応じ
て変化する。同様にして、磁力線104については、+
x方向成分の磁界が生じる。ここで第2図に示すように
、感磁部2の特性は、磁界0を中心にして左右対称な形
を示すので、可動部8が定速で移動して、感磁部2が磁
力線101から105の位置まで(磁極歯の1周期分)
移動すると、その時の抵抗値変化は、101から103
までと、103から106までとで、磁力線103の位
置を中心に左右対称になる。言い換えれば、磁極歯のき
ざみ周期の2分の1の周期の出力が得られることになる
Next, considering the case where the movable part 8 moves and the magnetic sensing part 2 is located at the position of the magnetic field lines 102, the magnetic field lines 102 will pass diagonally through the magnetic sensing part 2. This line of magnetic force 102'i
When divided into orthogonal components, they can be separated into a component that passes perpendicularly through the magnetically sensitive part 2 and a component in the -X direction, and due to the magnetic field of the -X direction component, the resistance value of the magnetically sensitive part changes depending on the magnetic field strength. It changes accordingly. Similarly, for the magnetic field lines 104, +
A magnetic field with an x-direction component is generated. As shown in FIG. 2, the characteristics of the magnetically sensitive part 2 are symmetrical with respect to the magnetic field 0, so the movable part 8 moves at a constant speed, and the magnetically sensitive part 2 moves along the line of magnetic force 101. to position 105 (one cycle of magnetic pole teeth)
When moving, the resistance value change at that time is from 101 to 103
and 103 to 106 are symmetrical with respect to the position of the line of magnetic force 103. In other words, an output with a cycle that is half the pitch cycle of the magnetic pole teeth is obtained.

しかしながら上記のような構成の検出装置においては、
第2図に示すMR特性のうち磁界o’l中心にプラス、
マイナス両方向で使用する為、非線形領域Cの影響で出
力信号の歪が太きいという欠点があった。特に、高精度
、高分解能な検出装置が必要な場合、固定部9の磁極歯
のきざみ周期を細かくしてゆけば、ある程度対応できる
が、信号検出が困難になるので、一般的には電気的内挿
法等を用いて信号の高分解能化を図ることも多い。
However, in the detection device configured as above,
Among the MR characteristics shown in Figure 2, plus the center of the magnetic field o'l,
Since it is used in both negative and negative directions, it has the disadvantage that the output signal is heavily distorted due to the influence of the nonlinear region C. In particular, if a high-precision, high-resolution detection device is required, it can be achieved to some extent by making the pitch period of the magnetic pole teeth of the fixed part 9 finer, but since signal detection becomes difficult, generally an electrical Interpolation methods are often used to increase the resolution of the signal.

その場合、信号処理の立場から見て、出力波形は正弦波
に近い方が望ましいが、従来の検出装置では、上記の歪
の為に、リニアリティーが悪く、高分解能化も困難であ
った。
In this case, from the standpoint of signal processing, it is desirable that the output waveform be close to a sine wave, but in conventional detection devices, linearity is poor due to the above-mentioned distortion, and it is difficult to achieve high resolution.

以上述べてきた従来の欠点は、第2図に示すMR素子の
特性の内、非線形領域Cを使用している事に起因するの
で、この欠点を取り除くには、同図の特性の内、比較的
直線性(リニアリティー)の良い領域すまたは(li使
用すれば良いのは明らかであるが、その為には、第1図
の感磁部2に常時。
The drawbacks of the conventional method described above are due to the use of the nonlinear region C of the characteristics of the MR element shown in FIG. It is obvious that it is sufficient to use a region with good linearity (Li), but for this purpose, it is necessary to always use the magnetically sensitive part 2 in FIG.

+Xまたは−X方向のある一定(第2図中すの領域の中
心またはdの領域の中心)の磁界をかけておく必要があ
り、このような磁界(以下、オフセット磁界と称す)を
安定して供給するのが困難であった。
It is necessary to apply a certain magnetic field in the +X or -X direction (the center of the area ``s'' or the center of the area d in Figure 2), and such a magnetic field (hereinafter referred to as an offset magnetic field) must be stabilized. It was difficult to supply the

発明の目的 本発明の目的は、前述のような欠点を除去するものであ
り、部品点数を増すことなく、簡単な構成で、MR素子
に安定したオフセット磁界を供給することを可能とし、
高精匿で、応用範囲も広い検出装置を提供することであ
る。
OBJECTS OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, and to make it possible to supply a stable offset magnetic field to an MR element with a simple configuration without increasing the number of parts.
It is an object of the present invention to provide a detection device that is highly precise and has a wide range of applications.

発明の構成 本発明の検出装置は、一定の間隙を維持しながら相対運
動を行う第1の手段と第2の手段とを含めて構成され、
前記第1の手段は、磁気的異方性効果を有する強磁性薄
膜抵抗素子と、これに磁界を与える永久磁石を含み、前
記第2の手段は、前記第1の手段と対向する面に、磁性
材よりなる歯状の凹凸をその相対運動方向に多数含んで
おり、前記強磁性薄膜抵抗素子は、前記永久磁石と前記
歯状の凹凸との間の磁界中に配置されるとともに強磁性
薄膜抵抗素子の磁界感磁方向は前記相対運動方向になる
よう配置され、かつ1強磁性薄膜抵抗素子の薄膜面は前
記第2の手段の凹凸が形成された磁性材の表面に対して
一定の傾斜角度をもって配置されるように構成したもの
であり、これにより精にの高い検出装置が実現できる。
Configuration of the Invention The detection device of the present invention is configured to include first means and second means for performing relative movement while maintaining a constant gap,
The first means includes a ferromagnetic thin film resistance element having a magnetic anisotropy effect and a permanent magnet that applies a magnetic field thereto, and the second means includes a surface facing the first means, The ferromagnetic thin film resistance element includes a large number of tooth-shaped unevenness made of a magnetic material in the direction of relative movement thereof, and the ferromagnetic thin film resistance element is disposed in a magnetic field between the permanent magnet and the tooth-shaped unevenness. The magnetic field sensing direction of the resistance element is arranged to be in the relative motion direction, and the thin film surface of the first ferromagnetic thin film resistance element has a certain inclination with respect to the surface of the magnetic material on which the unevenness of the second means is formed. It is configured to be arranged at an angle, thereby realizing a highly precise detection device.

実施例の説明 以下、本発明の実施例について、図面を参照しなから説
明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第5図は本発明の一実施例に係るMR素子を使用した検
出装置の要部断面図を示し、(A)は平面図、申)は(
A)のB −B線断面図である。。
FIG. 5 shows a cross-sectional view of a main part of a detection device using an MR element according to an embodiment of the present invention, (A) is a plan view, and (A) is a (
It is a sectional view taken along the line B-B of A). .

この検出装置は、可動部21が固定部2oK活って直線
的に移動する際の両者の相対位置を検出するも。アあ9
、ユ動部2,41表面に口素子 1よりなる感磁部13
および端子部14.15i形成した基板12と、バイア
ス磁界を供給する為の永久磁石16とで構成されている
This detection device detects the relative position of the movable part 21 and the fixed part 2o when they move linearly. Ah9
, a magnetic sensing part 13 consisting of a mouth element 1 is provided on the surface of the moving parts 2 and 41.
It is composed of a substrate 12 having terminal portions 14 and 15i formed thereon, and a permanent magnet 16 for supplying a bias magnetic field.

一方、固定部20ij、可動部21と対向する面に一定
のきざみ周期の磁極歯を形成している。さらに、可動部
21と固定部2oとは、第6図のように配置され、特に
基板12と固定部20ij、角度α0傾けてあり、永久
磁石16と固定部2oとは平行に配置されている。なお
、図面においては説明の都合上、可動部21を固定部2
0に沿って移動可能に保持する為の走行保持系は省略し
ている。また、前記感磁部13け、第6図(ト)に示す
ように端子部14.16i通して定電流源18.固定抵
抗器17.接地22.出力端子19に接続されているも
のとする。
On the other hand, magnetic pole teeth with a constant pitch period are formed on the surface facing the fixed part 20ij and the movable part 21. Further, the movable part 21 and the fixed part 2o are arranged as shown in FIG. 6, and in particular, the substrate 12 and the fixed part 20ij are inclined at an angle α0, and the permanent magnet 16 and the fixed part 2o are arranged in parallel. . In addition, in the drawings, for convenience of explanation, the movable part 21 is replaced by the fixed part 2.
A travel holding system for holding the vehicle movably along the zero axis is omitted. Further, as shown in FIG. 6(G), the magnetic sensing section 13 is connected to the constant current source 18.16 through the terminal section 14.16i. Fixed resistor 17. Grounding 22. It is assumed that the output terminal 19 is connected to the output terminal 19.

以上のように構成された本実施例の検出装置について、
以下その動作を説明する。第5図において可動部21が
固定部2oに沿って±X′方向に移動すると、永久磁石
16から固定子20(−Z方向)に向かう磁力線は、第
4図の従来例と同様に、磁極歯□の凹凸な形状に応じて
その方向が変化する。その様子を示したのが第6図であ
り、同図中106,107,108,109,110は
、永久磁石16より発生した磁力線の内、その代表的な
ものを示している。
Regarding the detection device of this embodiment configured as above,
The operation will be explained below. In FIG. 5, when the movable part 21 moves in the ±X' direction along the fixed part 2o, the lines of magnetic force from the permanent magnet 16 toward the stator 20 (-Z direction) are aligned with the magnetic poles, as in the conventional example shown in FIG. The direction changes depending on the uneven shape of the tooth □. This situation is shown in FIG. 6, in which 106, 107, 108, 109, and 110 indicate typical lines of magnetic force generated by the permanent magnet 16.

また、第7図は感磁部13が磁力線106の通過する位
置にある時の要部断面図を示している。
Further, FIG. 7 shows a cross-sectional view of a main part when the magnetic sensing part 13 is at a position where the lines of magnetic force 106 pass.

この図において、永久磁石16の発生するバイアス磁界
Ho が、感磁部13を斜めに通過する為、感磁部13
には、その感磁方向(+X方向)のオフセット磁界Hx
が与えられる事になり、そのオフセット磁界Hxの強さ
は、 lux l = lHo 1sina0・・・・−・(
1)で与えられる。これにより、第2図に示すMR素子
の特性図の内、従来磁界0を中心に磁界の出画方向で使
用していたのを、一定のオフセット磁界Hz ’に中心
に十又は−のどちらか一方向で使用することができる様
になる。感磁部13が磁力線108又は110の通過す
る位置にある時も同様である。また、前述の(1)式か
ら明らかな様に、IHxlFi永久磁石の発生するバイ
アス磁界lHo1の強さを変えるか、もしくは感磁部の
傾き角α0を変えることにより自由に設計することがで
きるので、第2図に示すMR素子の特性のうち非線形な
領域af避けて、比較的直線性の良い領域す又はdで使
用することが容易で、これにより従来問題とされた出力
波形の歪も大幅に改善され精度の良い検出装置を実現し
ている。
In this figure, since the bias magnetic field Ho generated by the permanent magnet 16 passes through the magnetically sensitive part 13 obliquely, the magnetically sensitive part 13
, the offset magnetic field Hx in the magnetically sensitive direction (+X direction)
is given, and the strength of the offset magnetic field Hx is lux l = lHo 1sina0...
1) is given. As a result, in the characteristic diagram of the MR element shown in Fig. 2, the conventional image direction of the magnetic field centered on magnetic field 0 can be changed to either 10 or - centered on a constant offset magnetic field Hz'. It can be used in one direction. The same holds true when the magnetic sensing portion 13 is located at a position where the lines of magnetic force 108 or 110 pass. Furthermore, as is clear from the above equation (1), it is possible to freely design the magnetic field by changing the strength of the bias magnetic field lHo1 generated by the IHxlFi permanent magnet or by changing the inclination angle α0 of the magnetically sensitive part. , among the characteristics of the MR element shown in Fig. 2, it is easy to avoid the nonlinear region af and use it in the region s or d where the linearity is relatively good, and as a result, the distortion of the output waveform, which was a problem in the past, can be significantly reduced. This has resulted in a highly accurate detection device.

次に本発明の他の実施例について図面を参照しながら説
明する。
Next, other embodiments of the present invention will be described with reference to the drawings.

第8図は本発明の他の実施例に係るMR素子を使用した
検出装置の要部断面図を示し%(A)は平面図、(B)
は(A)のC−C線断面図である。なお、構成部品は第
5図に示す本発明の第1の実施例と同一の部品を用いて
おり、対応するものには同一の符号を付すことにより、
ここでの説明は省略する。
FIG. 8 is a cross-sectional view of a main part of a detection device using an MR element according to another embodiment of the present invention, and (A) is a plan view, (B)
is a sectional view taken along line CC in (A). Note that the same components as in the first embodiment of the present invention shown in FIG. 5 are used, and corresponding parts are designated by the same reference numerals.
The explanation here will be omitted.

この検出装置は、可動部22が固定部20に沿って直線
的に移動する際の両者の相対位置を検出するものであり
、基板12と永久磁石16を固着して両者を一体で固定
部2oに対してα0傾けたという点で第5図に示す本発
明の第1の実施例とは異なる。
This detection device detects the relative position of the movable part 22 when it moves linearly along the fixed part 20, and fixes the substrate 12 and the permanent magnet 16 so that they are integrated into the fixed part 2o. It differs from the first embodiment of the present invention shown in FIG. 5 in that it is tilted by α0 with respect to the first embodiment.

以上のように構成された本実施例の検出装置においても
、第6図に示す第1の実施例と同様、感磁部13は永久
磁石16によりオフセット磁界を与えられる。よって第
2図に示すMR素子の特性のうち比較的直線性の領域す
又はdで使用することができ、出力端子19からは歪の
少ない正弦波様信号が得られる・ことが確認された。
In the detection device of this embodiment configured as described above, an offset magnetic field is applied to the magnetic sensing section 13 by the permanent magnet 16, as in the first embodiment shown in FIG. Therefore, it has been confirmed that the MR element can be used in the relatively linear region (d) of the characteristics of the MR element shown in FIG.

次に本発明の更に別の実施例について図面を参照しなが
ら説明する。
Next, still another embodiment of the present invention will be described with reference to the drawings.

第9図は本発明の他の実施例に係るMR素子を使用した
検出装置の主要部を示し、第9図の(A)は平面図、申
)は正面図である。なお、第5図に示した本発明の実施
例と同一の部品については同一の符号を付し、ここでの
説明を省略する。
FIG. 9 shows the main parts of a detection device using an MR element according to another embodiment of the present invention, in which (A) is a plan view and (A) is a front view. Note that the same parts as those in the embodiment of the present invention shown in FIG. 5 are given the same reference numerals, and the description thereof will be omitted here.

この検出装置は、回転運動する歯車24の回転位置を検
出するものであり、磁性材より成る歯車24と、基板1
2及び永久磁石16より成るセン?7.。2,238、
□わ、ヤ2ヶ7.。:)’ 7231は、第9図に示す
様に歯車24の側面に対して角度α0傾けて配置してお
り、歯車24の歯の側面部で回転位置、全検出するもの
である。この場合、MR素子は、図中の矢印±X方向の
磁界の強さに応じて抵抗値が変化する。
This detection device detects the rotational position of a rotating gear 24, and includes a gear 24 made of a magnetic material and a substrate 1.
2 and a permanent magnet 16. 7. . 2,238,
□Wow, 2 7. . :)' 7231 is arranged at an angle α0 with respect to the side surface of the gear 24, as shown in FIG. 9, and the rotational position and the entire rotational position are detected by the side surface of the teeth of the gear 24. In this case, the resistance value of the MR element changes depending on the strength of the magnetic field in the directions of arrows ±X in the figure.

以上のように構成された本実施例の検出装置においても
、その動作・原理は第5図に示す本発明の第1の実施例
と同様であり、ただ異なるのは、検出の対象が直線運動
から回転運動に変わっている点であり、やはり歯車24
の歯の凹凸に対して第9図(A)の様に角度α0傾けて
センサブロックを傾けることにより、感磁部13にオフ
セット磁界を与えて、第2図に示すMR特性の内、比較
的直線性の良い領域を使用し、結果として歪の少ない正
弦波様の出力金得ている。
The operation and principle of the detection device of this embodiment configured as described above is the same as that of the first embodiment of the present invention shown in FIG. The point is that the movement has changed from the rotational movement to the rotational movement, and the gear 24
By tilting the sensor block at an angle α0 as shown in FIG. 9(A) with respect to the unevenness of the teeth, an offset magnetic field is applied to the magnetic sensing part 13, and the MR characteristics shown in FIG. A region with good linearity is used, resulting in a sine wave-like output with little distortion.

次に本発明のもう一つの別の実施例について図面を参照
しながら説明する。
Next, another embodiment of the present invention will be described with reference to the drawings.

第10図は本発明の別の実施例に係るMR素子を使用し
た検出装置の主要部を示し、第10図の(ム)は平面図
%申)は(ム)のD−D線断面図である。なお、第6図
に示す本発明の実施例と同一の部品は。
FIG. 10 shows the main parts of a detection device using an MR element according to another embodiment of the present invention, and in FIG. It is. Note that the parts are the same as those in the embodiment of the present invention shown in FIG.

同一の番号を付し説明を省略する。The same numbers will be given and explanations will be omitted.

この検出装置は、回転運動する歯車24の回転位置を検
出するものであり、センサブロック23は、図に示す様
に歯車24の外周の接線に−1に対して角度α0傾斜さ
せて配置している。
This detection device detects the rotational position of a rotating gear 24, and the sensor block 23 is arranged to be inclined at an angle α0 relative to -1 to the tangent to the outer circumference of the gear 24, as shown in the figure. There is.

以上のように構成した本実施例の検出装置においても、
第9図の実施例と同様の効果が得られる。
Also in the detection device of this embodiment configured as above,
The same effect as the embodiment shown in FIG. 9 can be obtained.

なお、以上本発明の各実施例について各々図面を用いて
説明してきたが、この中で用いたMR素子の素子数、形
状は、本発明の主旨を逸脱しない範囲で自由に設計でき
ることは言うまでもない。
Although each embodiment of the present invention has been described above with reference to the drawings, it goes without saying that the number and shape of the MR elements used therein can be freely designed without departing from the gist of the present invention. .

またMR素子の使用方法についても、本発明の各実施例
において、定電流源18.固定抵抗器17゜接地22の
ような回路構成にしているが1回路構成はこれに限定さ
れるものではなく、例えば定電圧源を使用した回路構成
等も考えられる。
Further, regarding the method of using the MR element, in each embodiment of the present invention, the constant current source 18. Although the circuit configuration is such as a fixed resistor 17° and ground 22, the circuit configuration is not limited to this, and for example, a circuit configuration using a constant voltage source may also be considered.

発明の効果 以上の説明から明らかなように、本発明は永久磁石と磁
極歯の間の磁界中にMR素子を配置し、従来平行にして
いた磁極歯の表面とMR素子の感磁方向を角度α0傾け
ることにより、永久磁石のつくる磁界をバイアス磁界と
して利用するだけでなくオフセット磁界としても利用し
ているので、部品点数を増やすことなく、容易に安定な
オフセット磁界が得られるようになった。これにより、
MR特性の非線形な領域を避けて、比較的直線性の良い
領域を使用することができ、その為に従来問題とされた
出力波形の歪も大幅に改善されるという効果が得られる
。その効果により、出力信号を信号処理して、より高分
解能な検出装置の実現が可能となると共に高精度な検出
装置の実現できるという優れた効果が得られるものであ
る。また。
Effects of the Invention As is clear from the above explanation, the present invention arranges an MR element in a magnetic field between a permanent magnet and a magnetic pole tooth, and makes the magnetic sensing direction of the MR element at an angle with the surface of the magnetic pole tooth, which was conventionally parallel. By tilting α0, the magnetic field created by the permanent magnet is used not only as a bias magnetic field but also as an offset magnetic field, making it possible to easily obtain a stable offset magnetic field without increasing the number of parts. This results in
It is possible to avoid the nonlinear region of the MR characteristics and use a region with relatively good linearity, and therefore the distortion of the output waveform, which has been a problem in the past, can be significantly improved. As a result, an excellent effect can be obtained in that it is possible to realize a detection device with higher resolution by signal processing the output signal, and a detection device with higher precision can be realized. Also.

オフセット磁界の強さは、前記角度α0?変えるか、も
しくは永久磁石の磁界の強さを変えることにより自由に
設計できるので、様々な特性のMR素子にも容易に応用
できるという効果も得られる。
The strength of the offset magnetic field is the angle α0? Since it can be freely designed by changing the magnetic field strength of the permanent magnet or by changing the strength of the magnetic field of the permanent magnet, it is possible to easily apply it to MR elements with various characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(ム>、 (B)は従来例及び本発明の各実施例
で使用されるMR素子の一例を示す平面図と正面図、第
2図は第1図のMR素子の特性図、第3図(A)。 (B)i′iMR素子を使用した従来の検出装置の一例
を示す要部平面図と要部断面図、第4図は第3図に示す
従来の検出装置の要部拡大断面図、第6図(A)。 (B)はMR素子を使用した本発明の検出装置の一実施
例の要部平面図と要部断面図、第6図および第7図は第
6図に示す本発明の実施例の要部拡大断面図、第8図、
第9図および第10図の各(ム)、申)は各々本発明の
他の実施例の要部平面図と要部断面図である。 12・・・・・・基板、13・・・・・・感磁部、14
.15・・・・・・端子部、16・・・・・・永久磁石
、17・・・・・・固定抵抗器、18・・・・・・定電
流源、19・旧・・出力端子、20・・・・・・固定部
、2,1.22・旧・・可動部、23・・・・・・セン
サ部、24・旧・・歯車%26・・・用接地% 1o6
゜IQ7.IQ8,109,110・・・・・・磁力線
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名τ +X −X 手続補正書 昭和69年を月3日 特許庁長官殿 2発明の名称 検出装置 3補正をする者 事件との関係 特 許 出 願 大 佐 所 大阪府門真市大字門真1006番地名 称 (
582)松下電器産業株式会社代表者 山 下 俊 彦 4代理人□〒571 住 所 大阪府門真市大字門真1006番地松下電器産
業株式会社内 6、補正の内容 (1)明細書第9頁第11行目の「接地22」を「接地
26」に補正します。 (2)同第14頁第12行目の「接地22」を「接地2
6」に補正します。 (3) 図面第6図ム、第8図ム、第9図Bおよび第1
0図ムをそれぞれ別紙の通り補正します。 ■ 第5図 (ハ) 第8図 (八) 第9図 第1 (B)(八) O図
1(B) is a plan view and a front view showing an example of the MR element used in the conventional example and each embodiment of the present invention, FIG. 2 is a characteristic diagram of the MR element in FIG. 1, Figure 3 (A). (B) A plan view and a sectional view of the main parts showing an example of a conventional detection device using an i'i MR element. FIG. 6(A) is an enlarged sectional view of the main part, FIG. An enlarged sectional view of the main part of the embodiment of the present invention shown in FIG. 6, FIG.
9 and 10 are a plan view and a sectional view of a main part of another embodiment of the present invention, respectively. 12... Substrate, 13... Magnetically sensitive part, 14
.. 15...Terminal section, 16...Permanent magnet, 17...Fixed resistor, 18...Constant current source, 19.Old...Output terminal, 20... Fixed part, 2, 1. 22 Old... Movable part, 23... Sensor part, 24 Old... Gear% 26... Grounding % 1o6
゜IQ7. IQ8, 109, 110... Lines of magnetic force. Name of agent Patent attorney Toshio Nakao and 1 other person τ +X −X Procedural amendment dated March 3, 1986 Mr. Commissioner of the Japan Patent Office 2. Name detection device for invention 3. Person making the amendment Relationship to the case Patent application Colonel Address 1006 Kadoma, Kadoma City, Osaka Prefecture Name (
582) Matsushita Electric Industrial Co., Ltd. Representative Toshihiko Yamashita 4 Agent □ 571 Address Matsushita Electric Industrial Co., Ltd. 6, 1006 Oaza Kadoma, Kadoma City, Osaka Contents of amendment (1) Specification page 9, 11 Correct the "grounding 22" in the row to "grounding 26". (2) Change “Earth 22” in the 12th line of page 14 to “Earth 2”.
6". (3) Drawings Figure 6 M, Figure 8 M, Figure 9 B and Figure 1
Correct each figure 0 as shown in the attached sheet. ■ Figure 5 (C) Figure 8 (8) Figure 9 Figure 1 (B) (8) Figure O

Claims (1)

【特許請求の範囲】[Claims] 一定の間隔を維持しながら相対運動を行う第1の手段と
第2の手段とを含めて構成され、前記第7の手段は、磁
気的異方性効果を有する強磁性薄膜抵抗素子と、これに
磁界4与える永久磁石を含み、前記第2の手段は、前記
第1の手段と対向する面に、磁性材よりなる歯状の凹凸
をその相対運動方向に多数含んでなり、前記強磁性薄膜
抵抗素子は、前記永久磁石と前記歯状の凹凸との間の磁
界中に配置されるとともに強磁性薄膜抵抗素子の磁界感
磁方向は前記相対運動方向になるように配置され、かつ
、強磁性薄膜抵抗素子の薄膜面は前記第2の手段の凹凸
が形成された磁性材の表面に対して一定の傾斜角度をも
って配置されている事を特徴とする検出装置。
The seventh means includes a ferromagnetic thin film resistance element having a magnetic anisotropy effect, and a first means and a second means for performing relative movement while maintaining a constant interval. The second means includes a permanent magnet that applies a magnetic field 4 to the ferromagnetic thin film; The resistance element is arranged in a magnetic field between the permanent magnet and the tooth-shaped unevenness, and arranged so that the magnetic field sensing direction of the ferromagnetic thin film resistance element is in the direction of the relative motion, and the ferromagnetic A detection device characterized in that the thin film surface of the thin film resistance element is arranged at a constant inclination angle with respect to the surface of the magnetic material on which the unevenness of the second means is formed.
JP59012302A 1984-01-25 1984-01-25 Detection apparatus Granted JPS60155917A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59012302A JPS60155917A (en) 1984-01-25 1984-01-25 Detection apparatus
EP85300512A EP0151002B1 (en) 1984-01-25 1985-01-25 Magnetic detector
US06/695,049 US4725776A (en) 1984-01-25 1985-01-25 Magnetic position detector using a thin film magnetoresistor element inclined relative to a moving object
DE8585300512T DE3583870D1 (en) 1984-01-25 1985-01-25 MAGNETIC SENSOR.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012302A JPS60155917A (en) 1984-01-25 1984-01-25 Detection apparatus

Publications (2)

Publication Number Publication Date
JPS60155917A true JPS60155917A (en) 1985-08-16
JPH0426047B2 JPH0426047B2 (en) 1992-05-06

Family

ID=11801523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012302A Granted JPS60155917A (en) 1984-01-25 1984-01-25 Detection apparatus

Country Status (1)

Country Link
JP (1) JPS60155917A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142782A (en) * 1984-12-14 1986-06-30 Nippon Denso Co Ltd Position detector
JPS63205515A (en) * 1987-02-20 1988-08-25 Nippon Denso Co Ltd Rotation detector
JPH0299824A (en) * 1988-08-08 1990-04-11 General Motors Corp (Gm) Improved position sensor
WO1992012438A1 (en) * 1990-12-28 1992-07-23 Kabushiki Kaisha Komatsu Seisakusho Magnetic sensor and structure of its mounting
US6255811B1 (en) 1997-02-26 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Magnetic detector with a magnetoresistive element having hysteresis
US6954063B2 (en) 2001-03-27 2005-10-11 Denso Corporation Motion detecting device using magnetoresistive unit
JP2008145379A (en) * 2006-12-13 2008-06-26 Hamamatsu Koden Kk Magnetic sensor
CN105674865A (en) * 2014-12-05 2016-06-15 Kyb株式会社 Travel sensor
CN106482756A (en) * 2015-09-02 2017-03-08 Tdk株式会社 Detector for magnetic field and rotation detection device
JP2020197491A (en) * 2019-06-05 2020-12-10 Tdk株式会社 Magnetic sensor and magnetic sensor system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142782A (en) * 1984-12-14 1986-06-30 Nippon Denso Co Ltd Position detector
JPS63205515A (en) * 1987-02-20 1988-08-25 Nippon Denso Co Ltd Rotation detector
JPH0299824A (en) * 1988-08-08 1990-04-11 General Motors Corp (Gm) Improved position sensor
WO1992012438A1 (en) * 1990-12-28 1992-07-23 Kabushiki Kaisha Komatsu Seisakusho Magnetic sensor and structure of its mounting
US5450009A (en) * 1990-12-28 1995-09-12 Kabushiki Kaisha Komatsu Seisakusho Magnetic sensor and structure of its mounting
US6255811B1 (en) 1997-02-26 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Magnetic detector with a magnetoresistive element having hysteresis
US6954063B2 (en) 2001-03-27 2005-10-11 Denso Corporation Motion detecting device using magnetoresistive unit
JP2008145379A (en) * 2006-12-13 2008-06-26 Hamamatsu Koden Kk Magnetic sensor
CN105674865A (en) * 2014-12-05 2016-06-15 Kyb株式会社 Travel sensor
JP2016109539A (en) * 2014-12-05 2016-06-20 Kyb株式会社 Stroke sensor
CN106482756A (en) * 2015-09-02 2017-03-08 Tdk株式会社 Detector for magnetic field and rotation detection device
CN106482756B (en) * 2015-09-02 2019-06-25 Tdk株式会社 Detector for magnetic field and rotation detection device
JP2020197491A (en) * 2019-06-05 2020-12-10 Tdk株式会社 Magnetic sensor and magnetic sensor system

Also Published As

Publication number Publication date
JPH0426047B2 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
US6300758B1 (en) Magnetoresistive sensor with reduced output signal jitter
US4725776A (en) Magnetic position detector using a thin film magnetoresistor element inclined relative to a moving object
JP4324813B2 (en) Rotation angle detector and rotating machine
US6693422B2 (en) Accurate rotor position sensor and method using magnet and sensors mounted adjacent to the magnet and motor
JPS6349724Y2 (en)
JPS6318140B2 (en)
US5680042A (en) Magnetoresistive sensor with reduced output signal jitter
JPS60155917A (en) Detection apparatus
US6486656B1 (en) Magnetoresistive die and position sensor
JPH1019602A (en) Magnetic encoder
US10809097B2 (en) Detector apparatus and detector system
JPH063158A (en) Detector
JP2019066462A (en) Detector and detection system
JPS61120902A (en) Magnetic detecting apparatus
JP3344605B2 (en) Magnetoresistive sensor
JP2503481B2 (en) Rotation detector
JPH06147816A (en) Angle sensor
JP2556851B2 (en) Magnetoresistive element
JP3013140B2 (en) Encoder
JP3009274B2 (en) Angle detector
JPH0546483B2 (en)
JPH01233319A (en) Rotational position detector
JPH03276014A (en) Magnetic rotational angle detector
JPH02198321A (en) Rotary-position detecting apparatus
JPS63305211A (en) Magnetic encoder for clearing absolute position