JPS60155907A - Ultrasonic measuring apparatus - Google Patents

Ultrasonic measuring apparatus

Info

Publication number
JPS60155907A
JPS60155907A JP1244984A JP1244984A JPS60155907A JP S60155907 A JPS60155907 A JP S60155907A JP 1244984 A JP1244984 A JP 1244984A JP 1244984 A JP1244984 A JP 1244984A JP S60155907 A JPS60155907 A JP S60155907A
Authority
JP
Japan
Prior art keywords
measured
ultrasonic
distance
article
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1244984A
Other languages
Japanese (ja)
Inventor
Eiji Seki
英治 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1244984A priority Critical patent/JPS60155907A/en
Publication of JPS60155907A publication Critical patent/JPS60155907A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To accurately measure a distance without receiving the influence of the change in the temp. of a medium, by measuring the distance from an article to be measured on the basis of the input output time difference of a pair of ultrasonic sensors respectively present at positions spaced apart from said article to be measured over certain distances according to a specific operation formula. CONSTITUTION:A surface plate part 7b, to which a large number of ultrasonic sensors 2 are arranged in longitudinal and lateral directions, is movable only over a distance L0 with respect to attachment parts 7a for supporting the upper and lower ends of an article 1 to be measured. When a time interval, wherein an ultrasonic wave is emitted from each sensor 2 to be reflected from the article 1 to be measured and again inputted to said sensor 2, is set to T, the distance L1 between the sensor and the article 1 to be measured and the distance L2 between both of them after the surface plate part 7 moved over a distance L0 are calculated from respectively measured time intervals T1, T2 according to formula. However, because this formula receives no influence of the change in the temp. of an ultrasonic wave transmitting medium, accurate distances L1, L2 can be operated.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、例えば長尺柱状体の歪みや変形等の測定に際
して使用さ゛れる超音波測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic measuring device used, for example, in measuring distortion, deformation, etc. of a long columnar body.

[発明の技術的背景とその問題点] 原子力発電所に□おいて使用される燃料集合体やチャン
ネルボックス等のような長尺の柱状体の歪みや変形を測
定する場合には、被測定物をほとんど歪みのない規準荷
台(定盤)に取付け、接触型もしくは非接触型の測定装
置を用いて荷台からの距離を多数点測定し、測定した距
離の分布状態から柱状体の歪み、変形量をめることが行
われている。
[Technical background of the invention and its problems] When measuring the distortion and deformation of long columnar bodies such as fuel assemblies and channel boxes used in nuclear power plants, it is necessary to is mounted on a standard loading platform (surface plate) with almost no distortion, and the distance from the loading platform is measured at multiple points using a contact or non-contact measuring device, and the amount of distortion and deformation of the columnar body is determined from the distribution of the measured distances. is being carried out.

ここで、接触型の測定装置としては、電気マイクロメー
タ、空気式マイクロメータ等があるが、被測定物の表面
を傷付りるおそれがあるので、通常は非接触型の・もの
が多用されている。
Here, contact-type measuring devices include electric micrometers and pneumatic micrometers, but non-contact types are usually used because they may damage the surface of the object to be measured. ing.

非接触型の測定装置の代表的なものとしくは、渦電流セ
ンサを用いるものと、超音波センサを用いるものとがあ
る。
Typical non-contact measuring devices include those that use eddy current sensors and those that use ultrasonic sensors.

渦電流センサは渦電流損によるコイルのインピーダンス
の変化量によって被測定物(金属)までの距離を測定す
るものであるが、被測定物が長期間水中に放置された金
属の場合には、表面に付着した錆のため大きな測定誤差
が生じるという欠点がある。
Eddy current sensors measure the distance to a measured object (metal) based on the amount of change in coil impedance due to eddy current loss, but if the measured object is a metal that has been left in water for a long time, The drawback is that large measurement errors occur due to rust attached to the surface.

一方、超音波センサによる場合は、表面に錆が付着して
いても何ら問題なく測定できるので、長期間水中に放置
された柱状体の歪みや変形測定に好適している。
On the other hand, when using an ultrasonic sensor, measurement can be performed without any problem even if rust is attached to the surface, so it is suitable for measuring distortion and deformation of a columnar body left in water for a long period of time.

第1図は超音波測定装置の基本構成を示している。同図
において、被測定物1に対向して超音波センサ2が設置
され、それらの間隙には超音波伝達媒体として水3が入
れられている。超音波センサ2には増幅器4が接続され
、この増幅器4には信号発生器5と信号処理装置6が接
続されている。
FIG. 1 shows the basic configuration of an ultrasonic measuring device. In the figure, an ultrasonic sensor 2 is installed facing an object to be measured 1, and water 3 is placed in a gap therebetween as an ultrasonic transmission medium. An amplifier 4 is connected to the ultrasonic sensor 2, and a signal generator 5 and a signal processing device 6 are connected to the amplifier 4.

このような構成の超音波測定装置において、信号発生器
5から発振されたパルス信号は超音波センサ2に入力さ
れて超音波信号に変換され、被測定物1に向けて発射さ
れる。発射された超音波信号は被測定物1の表面で反射
され、超音波センサ2に入力される。超音波センサ2に
入力された超音波信号は電気信号に変換され、増幅器4
に入力される。
In the ultrasonic measuring device having such a configuration, a pulse signal oscillated from the signal generator 5 is input to the ultrasonic sensor 2, converted into an ultrasonic signal, and emitted toward the object to be measured 1. The emitted ultrasonic signal is reflected on the surface of the object to be measured 1 and input to the ultrasonic sensor 2 . The ultrasonic signal input to the ultrasonic sensor 2 is converted into an electrical signal, and then sent to the amplifier 4.
is input.

ここで増幅器4には、信号発生器5から発生された信号
と、反射によって検出された信号とが入力され、第2図
に示すような出力信号が信号処理装置6に入力される。
Here, the signal generated from the signal generator 5 and the signal detected by reflection are input to the amplifier 4, and an output signal as shown in FIG. 2 is input to the signal processing device 6.

この信号処理装置6には、上記2つの信号間の時間を検
出するための回路と、その時間に対応した距離への変換
回路が備えられ1、距離による表示が行えるようになっ
ている。
This signal processing device 6 is equipped with a circuit for detecting the time between the two signals and a converting circuit to a distance corresponding to the time 1, and is capable of displaying the distance.

ここで超音波あ伝送速度を9.2つの信号間の時間差を
T、超音波センサ2から被測定物1まeの距離をLとす
ると、Lは次式で表わされる。
Here, if the ultrasonic transmission speed is 9, the time difference between the two signals is T, and the distance from the ultrasonic sensor 2 to the object to be measured 1 is L, then L is expressed by the following equation.

L−(V−T)/2・・・・・・・・・・・・・・・・
・・・・・・・・(1)このような原理によって超音波
センサから被測定物までの距離を測定できるような超音
波センサ2を、第3図に示す如く規準荷台7に多数配置
し、その規準荷台に被測定物1を取付けることにより、
超音波センサ2を配置した位置の超音波センサ2と被測
定物1間の距離が一定され、それぞれの距離の測定デー
タから被測定物1の変形、歪み聞を検出できる。
L-(V-T)/2・・・・・・・・・・・・・・・
(1) A large number of ultrasonic sensors 2 that can measure the distance from the ultrasonic sensor to the object to be measured based on the above principle are arranged on the standard loading platform 7 as shown in Fig. 3. , by attaching the object to be measured 1 to the standard loading platform,
The distance between the ultrasonic sensor 2 at the position where the ultrasonic sensor 2 is arranged and the object to be measured 1 is fixed, and deformation and distortion of the object to be measured 1 can be detected from measurement data of each distance.

第4図は超音波センサ2°を規準荷台7に取付けた具体
例を示す。
FIG. 4 shows a specific example in which an ultrasonic sensor 2° is attached to a standard loading platform 7.

このような構成の超音波測定装置においては、水3の温
度変化が問題となる。
In an ultrasonic measurement device having such a configuration, temperature changes in the water 3 pose a problem.

すなわち、水温が例えば20℃から25℃に変化した場
合、水中の超音波の速度Vは1482.66 m/ S
eeから1497.00m+/ secまで変化するこ
とになり、水温が5℃上昇することにより次式に示す割
合 (1497,00−1482,66)/1482.66
= 0.97%・・・・・・・・・・・・・・・・・・
・旧・・・・・・旧・・(2)で速くなり、(1)式に
よる距離の測定値しも0.91%15℃の誤差を生じ、
正確な距離の測定が不可能となる。
That is, when the water temperature changes from, for example, 20°C to 25°C, the velocity V of ultrasonic waves in water is 1482.66 m/S.
It will change from ee to 1497.00m+/sec, and as the water temperature increases by 5℃, the ratio shown in the following formula (1497,00-1482,66)/1482.66
= 0.97%・・・・・・・・・・・・・・・・・・
・Old: Old: (2) is faster, and the distance measured by equation (1) has an error of 0.91% 15°C,
Accurate distance measurement becomes impossible.

[発明の目的] 本発明は背景技術における上述の如き問題点を除去し、
被測定物あるいはそれと超音波センサとの間の媒体を正
確に測定し得る超音波測定装置を、提供することを・目
的とする。
[Object of the invention] The present invention eliminates the above-mentioned problems in the background art,
An object of the present invention is to provide an ultrasonic measurement device that can accurately measure an object to be measured or a medium between it and an ultrasonic sensor.

[発明の概要]゛ すなわち本発明の超音波測定装置は、超音波、センサh
\ら被測定物に向けて超音波信号を発信し、その反射信
号を受信してそれらの時間差に基づいて距離を測定する
超音波測定装置において、前記被測定物からそれぞれ距
離L1およびL2離れた位置にある一対の超音波センサ
の入出力時間差T1、T2に基づいて次式のいずれかの L+ = (T+ ・Lo )/ (T2−T+ )L
2 = (T2 ・Lo )/ (T2−T+ )但し
L2−Lo、+L+(ここでLoは既知の値)演算を行
ない、前記超音波センサから前記被測定物までの距離L
 + 、L zを測定するよう構成したことを特徴とす
る。
[Summary of the invention] In other words, the ultrasonic measuring device of the present invention uses ultrasonic waves, a sensor h
In an ultrasonic measuring device that transmits an ultrasonic signal toward an object to be measured, receives the reflected signal, and measures the distance based on the time difference between them, the ultrasonic measuring device is configured to transmit an ultrasonic signal toward an object to be measured, receive the reflected signal, and measure the distance based on the time difference between them. Based on the input/output time difference T1, T2 of a pair of ultrasonic sensors located at the same position, one of the following formulas L+ = (T+ ・Lo)/(T2-T+)L
2 = (T2 ・Lo) / (T2-T+) However, L2-Lo, +L+ (here, Lo is a known value) is calculated, and the distance L from the ultrasonic sensor to the object to be measured is calculated.
+, Lz.

[発明の実施例] 以下第5図ないし第9図を参照して本発明の実施例とそ
の作動を説明する。なおこれらの図では第1図および第
3図におけると同一部材にはそれらと同一の符号を付し
である。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention and their operations will be described with reference to FIGS. 5 to 9. In these figures, the same members as in FIGS. 1 and 3 are given the same reference numerals.

第5図において、規準荷台7は被測定物1の上下端を支
持する取付部7aと、これらの取付部間を連結する定盤
部7bとから構成されている。
In FIG. 5, the standard loading platform 7 is composed of mounting portions 7a that support the upper and lower ends of the object to be measured 1, and a surface plate portion 7b that connects these mounting portions.

多数個の超音波センサ2を縦横方向に所定の間隔をおい
て配列固定した定盤部7bは取付部7aに対して距離L
oだけ移動できるよう、図示を省略した移動機構を介し
て取付部7aに連結されている。
The surface plate part 7b, on which a large number of ultrasonic sensors 2 are arranged and fixed at predetermined intervals in the vertical and horizontal directions, is at a distance L from the mounting part 7a.
It is connected to the mounting portion 7a via a moving mechanism (not shown) so that it can be moved by o.

第6図は第5図の場合と反対に規準荷台7がコの字状の
固定台であり、これに対して被測定物1が移動できるよ
うにした例を示すもので、規準荷台7の上下両端に形成
した取付部7aの両側面にはガイド用ラック8が固着さ
れている。被測定物1の上下両端には矩形筒状の取付台
9が固定されており、これらの取付台は取付部7aに嵌
挿され、駆動ワイヤ10を介して駆動用モータ(図示せ
ず)により牽引されて取付部7aの長手方向に移動する
。また取付台9の両側に回転自在に取付けた歯車11の
一部は取付台9の側面に形成した窓9aを通して取付台
9の内方に突出し、前記ガイド用ラック8に噛み合って
いる。ガイド用ラック8の両端には歯を切っていない突
部8aが設けられており、そこに歯車11が乗り上げる
と、取付台9のそれ以上の移動が阻止される。
FIG. 6 shows an example in which, contrary to the case in FIG. 5, the reference carrier 7 is a U-shaped fixed base, and the object to be measured 1 can be moved relative to it. Guide racks 8 are fixed to both side surfaces of the mounting portions 7a formed at both the upper and lower ends. Rectangular cylindrical mounting bases 9 are fixed to the upper and lower ends of the object to be measured 1, and these mounting bases are fitted into the mounting portions 7a and are driven by a drive motor (not shown) via drive wires 10. It is pulled and moves in the longitudinal direction of the attachment part 7a. Further, a part of the gear 11 rotatably attached to both sides of the mounting base 9 protrudes inward of the mounting base 9 through a window 9a formed on the side surface of the mounting base 9, and meshes with the guide rack 8. A protrusion 8a without teeth is provided at both ends of the guide rack 8, and when the gear 11 rides on the protrusion 8a, further movement of the mounting base 9 is blocked.

第7図は本発明の超音波測定装置の基本構成を示すもの
で、第1図におけると同様に、信号発生器5からのパル
スを増幅器4を通して超音波センサ2に入力し、超音波
信号3を発生させる。この超音波信号は被測定物1の表
面で反射し、反射波として超音波センサ2に入力される
。超音波センサ1は反射波を電気信号に変換し、廟幅器
4を通して信号処理装置6に伝える。
FIG. 7 shows the basic configuration of the ultrasonic measuring device of the present invention. As in FIG. 1, pulses from the signal generator 5 are input to the ultrasonic sensor 2 through the amplifier 4, and the ultrasonic signal 3 to occur. This ultrasonic signal is reflected on the surface of the object to be measured 1 and is input to the ultrasonic sensor 2 as a reflected wave. The ultrasonic sensor 1 converts the reflected wave into an electrical signal and transmits it to the signal processing device 6 through the transducer 4.

信号処理装置6では、超音波信号の送信時刻と反射波の
受信時刻とを記憶し、(1)式の演算を行なうが、本発
明の実施例では、この記憶演算処理は超音波センサ2と
被測定物1の距離がLlの場杏と、被゛°測定物1が予
め設定した距離L’oだGj移動して両者間の距離が1
2となった場合の2回に分けて実行される。
The signal processing device 6 stores the transmission time of the ultrasonic signal and the reception time of the reflected wave, and performs the calculation of equation (1). In the embodiment of the present invention, this storage calculation processing is performed by the ultrasonic sensor 2 If the distance of the object to be measured 1 is Ll, then the object to be measured 1 moves a preset distance L'o and Gj, and the distance between them becomes 1.
If the number is 2, it will be executed twice.

被測定物1を1′まで動かした場合、超音波センサ2か
ら被測定物1までの距離が11から12に変化すること
になら、増幅器4から信号処理装置6に入力される信号
は、第8図に示す如く変化し、信号発生器5から発信さ
れた信鳥と被測定物1から反射された信号との時間間隔
もT1からT2に変化することになる。
If the distance from the ultrasonic sensor 2 to the object 1 changes from 11 to 12 when the object 1 is moved to 1', the signal input from the amplifier 4 to the signal processing device 6 is As shown in FIG. 8, the time interval between the signal transmitted from the signal generator 5 and the signal reflected from the object to be measured 1 also changes from T1 to T2.

ここで11およびLlは(1)式より LI −(v −T+ )/2・・・・・・・・・・・
・・・・・・・(3)Ll = (V−T2)/2・・
・・・・・・・・・・・・・・・・(4)で表わされ、
Ll =Lo +1+の関係によりLI、Llは LI = (T+ ・Lo )/ (T2−T+ 1”
 (5)Ll = (T−2・Lo )/ (T2−T
+ )・= (6)となる。
Here, 11 and Ll are LI −(v −T+ )/2 from equation (1).
......(3) Ll = (V-T2)/2...
・・・・・・・・・・・・・・・・It is expressed as (4),
Due to the relationship Ll = Lo +1+, LI, Ll is LI = (T+ ・Lo)/(T2-T+ 1"
(5) Ll = (T-2・Lo)/(T2-T
+ )・= (6).

ここで、(5)、(6)式の演算は各超音波センサ2毎
に信号処理装置6において実行されるが、T I 、T
 2は測定値であり、またLOは一定の値であるので、
LlとLlは測定値のみによって決定され、(1)式で
の超音波の速度Vに無関係となり、水温の変化等物理的
な変化に無関係なものとなる。、 従って、このような測定にお□いては、一定の距離を動
かすLoの精度および発信信号との時間T1、T2の測
定精庫によって決定されることになる。
Here, the calculations of equations (5) and (6) are executed in the signal processing device 6 for each ultrasonic sensor 2, but T I , T
Since 2 is a measured value and LO is a constant value,
Ll and Ll are determined only by measured values and are unrelated to the ultrasonic velocity V in equation (1), and are unrelated to physical changes such as changes in water temperature. Therefore, such a measurement is determined by the accuracy of Lo moving a certain distance and the measurement precision of the times T1 and T2 with the transmitted signal.

なお以上の実施例においCは、規準荷台7と被測定物1
のいずれか一方を移動させ、移動の前後における測定を
2回に分けて行なう例につき説明したが、規準荷台7お
よび被測定物1の位置は変化させず検出器そのものを動
かす方法を採用してもよい。
In the above embodiments, C represents the reference loading platform 7 and the object to be measured 1.
We have explained an example in which one of the detectors is moved and measurements are taken twice before and after the movement. However, it is also possible to move the detector itself without changing the positions of the reference carrier 7 and the object to be measured 1. Good too.

また、本発明は第9図に示すように変形できる。Further, the present invention can be modified as shown in FIG.

同図は規準荷台7に被測定物1との距離がLOだけ異な
るよう超音波センサ2a 、2bの位置をずらして固定
した□もので、この場合には超音波センサ2a、2.b
から超音波信号を同時に発射させ、反射波の到達時間差
に基づいて(5)式および(6)式の演算を行なうよう
にすることができ、測定時間の短縮と、被測定物1、規
準荷台7あるいは超音波センサ2a12bの移動機構を
省略できるというメリットが得られる。
In the figure, the ultrasonic sensors 2a, 2b are fixed on the standard loading platform 7 with their positions shifted so that the distance to the object to be measured 1 differs by LO; in this case, the ultrasonic sensors 2a, 2. b
It is possible to simultaneously emit ultrasonic signals from the 1st object and to calculate the equations (5) and (6) based on the arrival time difference of the reflected waves. 7 or an advantage that the moving mechanism for the ultrasonic sensor 2a12b can be omitted.

[発明の効果] 上述の如く本発明の超音波測定装置では、被測定物から
既知の距離Loだけ異なる位置にある超音波センサから
超音波信号を送出し、それらの反射波の時間差を(5)
式および(6)式により演算して被測定物との間の距離
を演算するようにしたので、超音波伝達媒体、例えば水
の温痕が変化しても、その影響を受けることなく、正確
な測定を行なうことが可能である。
[Effects of the Invention] As described above, in the ultrasonic measuring device of the present invention, ultrasonic signals are transmitted from the ultrasonic sensors located at positions different from the object to be measured by a known distance Lo, and the time difference between the reflected waves is calculated by (5 )
Since the distance to the object to be measured is calculated using equations (6) and (6), even if the ultrasonic transmission medium, such as the heat trace of water, changes, it will not be affected by the change and will be accurate. It is possible to perform accurate measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超音波測定装置の基本構成を示すブロッ
ク図、第2図はその作動説明図、第3図は従来の超音波
測定装置を例示する分解斜視図、第4図は超音波センサ
の取付例を示す縦断面図、第5図は本発明の実施例を示
す分解斜視図、第6図は本発明の他の実施例を示す分解
斜視図、第7図は本発明の超音波測定装置の基本構成を
示すブロック図、第8図はその作動説明図、第9図は本
発明のさらに他の実施例を示す説明図である。 1.1′・・・被測定物 2.2a、2b・・・超音波センサ 3・・・・・・・・・・・・媒 体 4・・・・・・・・・・・・増幅器 5・・・・・・・・・・・・信号発生器6・・・・・・
・・・・・・信号処理装置7・・・・・・・・・・・・
規準荷台 7a・・・・・・・・・取付部 7b・・・・・・・・・定盤部 8・・・・・・・・・・・・ガイド用ラック8a・・・
・・・・・・突 部 9・・・・・・・・・・・・取付台 9a・・・・・・・・・窓 10・・・・・・・・・・・・駆動ワイヤ11・・・・
・・・・・・・・歯 車 代理人弁理士 須 山 佐 − 第1図 第2図 時間 第3図 第4図 第5図 第6図 冨キ 第8図 時間
Fig. 1 is a block diagram showing the basic configuration of a conventional ultrasonic measuring device, Fig. 2 is an explanatory diagram of its operation, Fig. 3 is an exploded perspective view illustrating a conventional ultrasonic measuring device, and Fig. 4 is an ultrasonic measuring device. FIG. 5 is an exploded perspective view showing an embodiment of the present invention; FIG. 6 is an exploded perspective view showing another embodiment of the invention; FIG. 7 is an exploded perspective view showing an embodiment of the present invention; FIG. 8 is a block diagram showing the basic configuration of the acoustic wave measuring device, FIG. 8 is an explanatory diagram of its operation, and FIG. 9 is an explanatory diagram showing still another embodiment of the present invention. 1.1'...Object to be measured 2.2a, 2b...Ultrasonic sensor 3...Medium 4...Amplifier 5...... Signal generator 6...
...... Signal processing device 7 ......
Standard loading platform 7a...Mounting section 7b...Surface plate section 8...Guide rack 8a...
...Protrusion 9 ...Mounting base 9a ... Window 10 ... Drive wire 11・・・・・・
...Gear Agent Patent Attorney Sa Suyama - Figure 1 Figure 2 Time Figure 3 Figure 4 Figure 5 Figure 6 Tomiki Figure 8 Time

Claims (1)

【特許請求の範囲】 (1)超音波センサから被測定物に向けて超音波信号を
発信し、その反射信号を受信してそれらの時間差に基づ
いて距離を測定する超音波測定装置において、前記被測
定物からそれぞれ距離L1およびL2離れた位置にある
一対の超音波センサの入出力時間差TI、T2に基づい
て次式のいずれかの L+ = (T+ ・Lo )/ (T2−T+ )1
2 = (T2 ・ Lo )/ (T2 −T+ )
但しL2 =Lo +L+ (ここでLoは既知の値)
演紳を行ない、前記超音波センサから前記被測定物まで
の距離ml、L2を測定づるよう構成したことを特徴と
する超音波測定装置。 ′(2)超音波センサは規準荷台に取付番プられている
特許請求の範囲第1項記載の超音波測定装置。 (3)規準荷台は、取付部とこの取付部に対して移動で
きるよう取付けられた定盤部とからなり、超音波センサ
が前記定盤部に取付けられている。特許請求の範囲第2
項記載の超音波測定装置。
[Scope of Claims] (1) In an ultrasonic measurement device that transmits an ultrasonic signal from an ultrasonic sensor toward an object to be measured, receives the reflected signal, and measures a distance based on the time difference between the ultrasonic signals, Based on the input/output time difference TI and T2 of a pair of ultrasonic sensors located at distances L1 and L2 from the object to be measured, respectively, L+ = (T+ ・Lo)/(T2-T+)1
2 = (T2 · Lo) / (T2 - T+)
However, L2 = Lo +L+ (Here, Lo is a known value)
1. An ultrasonic measuring device characterized in that it is configured to measure a distance ml, L2 from the ultrasonic sensor to the object to be measured. (2) The ultrasonic measuring device according to claim 1, wherein the ultrasonic sensor has a mounting number attached to the standard loading platform. (3) The reference loading platform is composed of a mounting portion and a surface plate portion that is mounted so as to be movable with respect to the mounting portion, and an ultrasonic sensor is attached to the surface plate portion. Claim 2
The ultrasonic measuring device described in Section 1.
JP1244984A 1984-01-26 1984-01-26 Ultrasonic measuring apparatus Pending JPS60155907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1244984A JPS60155907A (en) 1984-01-26 1984-01-26 Ultrasonic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1244984A JPS60155907A (en) 1984-01-26 1984-01-26 Ultrasonic measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60155907A true JPS60155907A (en) 1985-08-16

Family

ID=11805644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244984A Pending JPS60155907A (en) 1984-01-26 1984-01-26 Ultrasonic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60155907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109388A (en) * 2007-10-31 2009-05-21 Nakano Plants Kk Template

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109388A (en) * 2007-10-31 2009-05-21 Nakano Plants Kk Template

Similar Documents

Publication Publication Date Title
US4049954A (en) Device for accurate measurement of the dimensions of an object by ultrasonic waves
US5736695A (en) Device for detecting position
JPS62261913A (en) Deflection measuring system
JPS6279306A (en) Inspection machine with free probe
JPS63186112A (en) Mass flow measuring method and device
JPH06186020A (en) Thickness measuring device for running web and web thickness gage
US4285053A (en) Acoustic method and apparatus for measuring micron and submicron distances
JPS61219843A (en) Method and device for measuring temperature of fluid in package by using ultrasonic wave
US4470307A (en) Sonic system inspection control
US3694800A (en) Acoustical gauge
US3288241A (en) Method and appartus for measurement of acoustic power transmission and impedance
US4545249A (en) Acoustical position gage
JPS60155907A (en) Ultrasonic measuring apparatus
JPH06281417A (en) Method for measuring height and deviation of trolley line
EP0028540B1 (en) Method and apparatus for non-contact acoustic measurement of physical properties of continuously moving metal strip
JP2650935B2 (en) Partial discharge location method
JPS631987A (en) Ultrasonic distance measuring device
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JPS60233579A (en) Position measuring method and its device
JPH04313010A (en) Method and instrument for measuring thickness
JPS5928384Y2 (en) Probe for current meter used for 3-directional measurement
JPS6027361B2 (en) How to measure the thickness of conductive materials
JPS60155908A (en) Ultrasonic measuring apparatus
JPH0729447Y2 (en) Ultrasonic measuring device
JPH0452694Y2 (en)