JPS6015573B2 - Method for producing cobalt-containing magnetic iron oxide particles - Google Patents

Method for producing cobalt-containing magnetic iron oxide particles

Info

Publication number
JPS6015573B2
JPS6015573B2 JP54137180A JP13718079A JPS6015573B2 JP S6015573 B2 JPS6015573 B2 JP S6015573B2 JP 54137180 A JP54137180 A JP 54137180A JP 13718079 A JP13718079 A JP 13718079A JP S6015573 B2 JPS6015573 B2 JP S6015573B2
Authority
JP
Japan
Prior art keywords
cobalt
iron oxide
magnetic iron
particles
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54137180A
Other languages
Japanese (ja)
Other versions
JPS5663826A (en
Inventor
博之 近藤
和志 高間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP54137180A priority Critical patent/JPS6015573B2/en
Publication of JPS5663826A publication Critical patent/JPS5663826A/en
Publication of JPS6015573B2 publication Critical patent/JPS6015573B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、コバルト含有磁性酸化鉄粒子粉末の製造法に
関するものであり、詳しくは高保磁力の経時変化が少な
く、更に磁気記録媒体としたときの消去特性が優れてい
るFe什/Fe川が0.2〜0.3であるコバルト含有
磁性酸化鉄粒子粉末の製造法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for producing cobalt-containing magnetic iron oxide particles, and more specifically, the present invention relates to a method for producing cobalt-containing magnetic iron oxide particles, which has a high coercive force that shows little change over time and also has excellent erasing characteristics when used as a magnetic recording medium. The present invention relates to a method for producing cobalt-containing magnetic iron oxide particles having a ratio of Fe/Fe of 0.2 to 0.3.

従来、磁気記録媒体に使用される磁性酸化鉄粒子粉末は
、高記録密度等の要求に答える為に高保磁力を有するも
のの開発が進められている。
Conventionally, magnetic iron oxide particles used in magnetic recording media have been developed to have high coercive force in order to meet the demands for high recording density and the like.

そのための方法の一つとして磁性酸化鉄粒子にコバルト
を含有させることが行われている。また、一方では、マ
グネタィトとマグヘマィトの中間的な酸化度の酸化鉄粒
子、換言すればFe什/Te川の値を0〜0.5の範囲
内で適当に制御した酸化鉄粒子とすることにより高保磁
力の磁性酸化鉄粒子を得ようとする方法も考えられてい
る。周知の通り、磁性酸化鉄粒子にコバルトを含有させ
る方法は種々存在するが、大別すると■所定量のコバル
トを含有する第一鉄塩水溶液とアルカリとを反応させ、
PHI沙〆上の水溶液を空気酸化することによってコバ
ルト含有ケータィド粒子を生成させるという湿式反応に
よってコバルト含有ゲータィト粒子を得、これを脱水、
還元、更には必要により酸化してコバルト含有磁性酸化
鉄粒子とする通常「ドープ法Jと呼ばれる方法、及び■
各種の一般的な製法によりマグネタィト粒子又はマグヘ
マィト粒子を得、該粒子の表面にコバルト層、あるいは
コバルトフェライト層を形成させてコバルト含有磁性酸
化鉄粒子とする通常「被看法」と呼ばれる方法があるこ
とは良く知られている。
One method for this purpose is to incorporate cobalt into magnetic iron oxide particles. On the other hand, by making iron oxide particles with an oxidation degree intermediate between magnetite and maghemite, in other words, iron oxide particles with the Fe/Te ratio appropriately controlled within the range of 0 to 0.5. Methods of obtaining magnetic iron oxide particles with high coercive force have also been considered. As is well known, there are various methods for incorporating cobalt into magnetic iron oxide particles, but they can be roughly divided into: (1) Reacting a ferrous salt aqueous solution containing a predetermined amount of cobalt with an alkali;
Cobalt-containing goethite particles are obtained through a wet reaction in which cobalt-containing ketide particles are generated by air oxidation of an aqueous solution on PHI sand, which is then dehydrated.
A method usually called "doping method J" in which cobalt-containing magnetic iron oxide particles are obtained by reduction and further oxidation if necessary, and
There is a method usually called the "observed method" in which magnetite particles or maghemite particles are obtained by various general manufacturing methods, and a cobalt layer or a cobalt ferrite layer is formed on the surface of the particles to obtain cobalt-containing magnetic iron oxide particles. is well known.

前者のドープ法によるコバルト含有磁性酸化鉄粒子は、
後者の後着法によるものに較べて磁気テープ等の磁気記
録媒体とした際に消去特性が優れているという特長を有
してはいるが、保磁力の経時変化があるものである為に
磁気記録媒体として使用するのに適しているものとは言
い難いものである。
Cobalt-containing magnetic iron oxide particles produced by the former doping method are
Although it has the advantage of superior erasing characteristics when used as a magnetic recording medium such as magnetic tape, compared to the latter method, it is difficult to use magnetic recording media because the coercive force changes over time. It is difficult to say that it is suitable for use as a recording medium.

この保磁力の経時変化は、例えば「粉体および粉末冶金
」第2母登第2号P.4隻等の文献により明らかにされ
ている通り、酸化鉄粒子中に含有させたコバルトが酸化
鉄粒子内で移動する為に起るものであると考えられ、更
にこのコバルトの移動は、酸化鉄粒子中にFe什が存在
すると、核Fe什の影響により活発になり、著しい保磁
力の経時変化が起ることになる。従って、ドープ法によ
るコバルト含有磁性酸化鉄粒子において「更に上記した
FeH/Fe川を制御し、該Fe什/Fewの制御によ
る保持力向上の効果を組み合せた磁性酸化鉄粒子粉末は
非常に得難いものである。
The change in coercive force over time can be seen, for example, in "Powders and Powder Metallurgy", Vol. 2, P. As clarified by the literature of 4 ships and others, this phenomenon is thought to occur because the cobalt contained in the iron oxide particles moves within the iron oxide particles. If Fe particles are present in the particles, they become active due to the influence of the nuclear Fe particles, causing a significant change in coercive force over time. Therefore, in cobalt-containing magnetic iron oxide particles produced by the doping method, it is extremely difficult to obtain a magnetic iron oxide particle powder that combines the effects of controlling the FeH/Fe ratio described above and improving the coercive force by controlling the Fe/Few ratio. It is.

本発明は、ドープ法によるコバルト含有磁性酸化鉄粒子
の改良を目的とし、前記湿式反応により得るコバルト含
有ゲータィト粒子を出発物とするものである。即ち本発
明者は、上記したドープ法によるコバルト含有磁性酸化
鉄のFeH/Fe川を制御し、高保磁力とし、且つ保磁
力の経時変化をなくするべく永年にわたり研究を重ねて
来た。
The present invention aims at improving cobalt-containing magnetic iron oxide particles by a doping method, and uses cobalt-containing goethite particles obtained by the above-mentioned wet reaction as a starting material. That is, the present inventor has conducted research for many years in order to control the FeH/Fe ratio of cobalt-containing magnetic iron oxide using the above-mentioned doping method, to make it have a high coercive force, and to eliminate changes in coercive force over time.

コバルト含有磁性酸化鉄の保磁力の経時変化をなくする
、換言すれば酸化鉄中のコバルトが移動しない様にする
為には酸化鉄中のFe什をなくすることが有効である。
しかしながらFe日をなくすると、一方のFe什/Fe
川の制御による保磁力の向上効果が期待できなくなる。
そこで本発明者は、Fe汁量が多いマグネタィト(Fe
H・/Fe州=0.5)の状態、即ちコバルトが動きや
すい状態で更に加熱処理を行い、コバルトの移動を完了
させてしまい、同時にFe汁/Fe日の値も適当な値と
するべくその条件について種々検討を重ねたのである。
コバルト含有マグネタィトに対し熱処理を施すに際して
、まず考慮しなければならない条件の一つは加熱温度で
ある。コバルトの移動を容易にするという意味からする
と高温である程その効果は高いと思われる。一方、マグ
ネタィト中のFe日を酸化してFe什を減少させること
によりFeH/Fe川の値を所定の値とする為には低温
で除々に酸化する方が制御しやすい。尚、保磁力の最も
高い領域となるFe什/Fe川値は「粉体粉末治金協会
昭和53王度春季大会講演概要集P.126〜127」
にも報告されている通り0.2〜0.3の範囲である。
In order to eliminate the change in coercive force of the cobalt-containing magnetic iron oxide over time, in other words, to prevent the cobalt in the iron oxide from moving, it is effective to eliminate Fe in the iron oxide.
However, if we eliminate the Fe day, one Fe/Fe
The effect of improving coercive force by controlling the river cannot be expected.
Therefore, the present inventor developed magnetite (Fe
In order to complete the movement of cobalt by further heat treatment in the state of H / Fe state = 0.5), that is, in a state where cobalt is easy to move, at the same time the value of Fe juice / Fe day should be set to an appropriate value. Various considerations were made regarding the conditions.
When heat-treating cobalt-containing magnetite, one of the conditions that must be considered first is the heating temperature. In terms of facilitating the movement of cobalt, it seems that the higher the temperature, the greater the effect. On the other hand, in order to bring the value of the FeH/Fe ratio to a predetermined value by oxidizing the Fe in magnetite and reducing the Fe content, it is easier to control the oxidation gradually at a low temperature. In addition, the Fe/Fe value, which is the highest area of coercive force, is from "Powder Metallurgy Association 1973 Spring Conference Lecture Summary Collection P.126-127"
It is in the range of 0.2 to 0.3 as reported in .

一般にFe什/?eMを制御する為には、酸化性雰囲気
下250つ0以下の低温で酸化する手段が探られている
Generally Fe/? In order to control eM, a means of oxidizing at a low temperature of 250°C or less in an oxidizing atmosphere is being explored.

しかし、このような低温では上記したコバルトの移動の
面からすると不充分であり、移動を完了させるのに非常
に長時間を要することになる。従って本発明者は、比較
的高温の250〜550℃の温度で加熱処理することと
した。しかし、この温度範囲では通常の酸化性雰囲気、
例えば空気中では過酸化となり、Fe什が存在しなくな
る恐れがある。そこで本発明者は、酸化性雰囲気につい
て検討を加えた結果、下記の条件を見し、出したのであ
る。即ち、y=ax十30(但しy=空気量(そ)、a
=20〜38 x=コバルト含有マグネタイト粒子量(
k9))の条件を満足する酸化性雰囲気で加熱処理すれ
ば、コバルトの移動を完了させ、同時にFe什/Fe州
の値も0.2〜0.3の範囲とすることが可能となり、
結果として得られるコバルト含有磁性酸化鉄粒子は高保
磁力であり、且つその保磁力の経時変化のないものとな
るのである。
However, such a low temperature is insufficient in terms of the above-mentioned movement of cobalt, and it takes a very long time to complete the movement. Therefore, the inventor decided to perform the heat treatment at a relatively high temperature of 250 to 550°C. However, in this temperature range, the normal oxidizing atmosphere,
For example, in air, it becomes overoxidized and there is a risk that Fe particles will no longer exist. Therefore, the inventors of the present invention investigated the oxidizing atmosphere and came up with the following conditions. That is, y=ax 130 (where y=air amount (so), a
=20~38 x=cobalt-containing magnetite particle amount (
If heat treatment is performed in an oxidizing atmosphere that satisfies the conditions of k9)), it is possible to complete the transfer of cobalt and at the same time set the value of Fe/Fe to within the range of 0.2 to 0.3.
The resulting cobalt-containing magnetic iron oxide particles have a high coercive force, and the coercive force does not change over time.

本発明者は、以上詳述した諸知見を基礎として完成した
ものである。
The present inventor has completed the invention based on the various findings detailed above.

即ち本発明は、コバルト含有ゲータィト粒子を脱水、還
元してコバルト含有マグネタイト粒子とした後、該コバ
ルト含有マグネタィト粒子をy=ax+30(但しy=
空気量(Z)、a=20〜3ふ x=コバルト含有マグ
ネタィト粒子量(k9))を満足する割合の空気を通気
している酸化性雰囲気中において250〜550q○の
温度範囲で加熱処理することによって、Fe什/Fe川
が0.2〜0.3であるコバルト含有磁性酸化鉄粒子と
することを特徴とするコバルト含有磁性酸化鉄粒子粉末
の製造法である。
That is, the present invention dehydrates and reduces cobalt-containing goethite particles to obtain cobalt-containing magnetite particles, and then converts the cobalt-containing magnetite particles to y=ax+30 (however, y=
Heat treatment at a temperature range of 250 to 550 q○ in an oxidizing atmosphere that is aerated with air at a rate that satisfies the amount of air (Z), a = 20 to 3 ft x = amount of cobalt-containing magnetite particles (k9)) This is a method for producing cobalt-containing magnetic iron oxide particles, characterized in that the cobalt-containing magnetic iron oxide particles have a ratio of Fe/Fe of 0.2 to 0.3.

次に本発明の構成について詳述する。Next, the configuration of the present invention will be explained in detail.

先づ、本発明の中心技術である加熱処理条件について説
明すると、加熱温度は250〜550qoの範囲でなけ
ればならない。
First, the heat treatment conditions, which are the core technology of the present invention, will be explained. The heating temperature must be in the range of 250 to 550 qo.

250q○以下では長時間の処理が必要となり工業的で
ない。
If it is less than 250q○, a long time treatment is required and it is not industrially practical.

一方550℃以上とした場合には磁性酸化鉄の命とも言
うべき針状性がくずれる恐れがあり、また、FeH/で
e川を所定の値とするのが困難となる為好ましくない。
次に加熱雰囲気について述べると、加熱処理の間に通気
する空気の量をy=ax+30(但し、y=空気量(Z
)、a=20〜35 x=コバルト含有マグネタィト粒
子量(k9))を満足する量としなければならない。こ
の式は、本発明者が数多〈の実験結果から導き出した式
であり、y<2舷十30の場合にはFe什/Fe州の値
が0.3以上のものしか得られない。一方y>3弦十3
0の場合には酸化が進みすぎFeH/Fe川の値を0.
2〜0.3の範囲内とすることが不可能となる。上記の
式で表わした空気量は、加熱処理の間に通気する空気量
の総量であり、その通気手段としては、空気のみを所定
量ずつ通気し、最終的にyで示した値となるような割合
で通気する方法、あるいは空気と窒素等の不活性ガスと
の混合ガスを通気し、混合ガス中の空気の総量がyの値
となるように制御する方法等種々の方法が挙げられるが
、いずれの方法を用いてもその効果に差異はない。工業
的に生産性、安定性等を考慮した場合には、空気/窒素
ガス=1/0.5〜1′2の混合ガスを通気するのが好
ましい。尚、本発明の最も中心の技術である加熱処理に
供給するコバルト含有マグネタィト粒子は、前述した湿
式法により得るコバルト含有ゲータィト粒子を脱水、還
元して得られるものであればいかなるものでも良い。
On the other hand, if the temperature is 550° C. or higher, there is a risk that the acicularity, which is the lifeblood of magnetic iron oxide, may be lost, and it becomes difficult to control the e-river to a predetermined value with FeH/, which is not preferable.
Next, regarding the heating atmosphere, the amount of air vented during the heat treatment is y=ax+30 (y=air amount (Z
), a = 20 to 35 x = amount of cobalt-containing magnetite particles (k9)). This formula was derived by the inventor from the results of numerous experiments, and when y<230, only a value of Fe/Fe state of 0.3 or more can be obtained. On the other hand, y > 3 strings 13
If it is 0, oxidation has progressed too much and the value of the FeH/Fe river is set to 0.
It becomes impossible to keep it within the range of 2 to 0.3. The amount of air expressed by the above formula is the total amount of air that is vented during the heat treatment, and the ventilation means is such that only air is vented in a predetermined amount, and the final value is the value shown by y. There are various methods such as a method of venting at a ratio of y, or a method of venting a mixed gas of air and an inert gas such as nitrogen and controlling the total amount of air in the mixed gas to the value of y. There is no difference in effectiveness no matter which method is used. When considering industrial productivity, stability, etc., it is preferable to aerate a mixed gas of air/nitrogen gas=1/0.5 to 1'2. The cobalt-containing magnetite particles to be supplied to the heat treatment, which is the most important technique of the present invention, may be any particles obtained by dehydrating and reducing the cobalt-containing goethite particles obtained by the wet method described above.

コバルトの含有量はマグネタィトに対し0.1〜10原
子%のものが適する。以上詳細にわたり説明した本発明
の奏する効果について以下に述べる。本発明により得ら
れるコバルト含有磁性酸化鉄粒子は、出発物としてのコ
バルト含有ゲータィト粒子は前記湿式反応によって得ら
れたものを使用するものであるから、本来ドープ法によ
り得られるコバルト含有磁性酸化鉄粒子が有している優
れた消去特性等の特性を備え、且つ、ドープ法によるコ
バルト含有磁性酸化鉄粒子の有している保磁力の経時変
化という欠点が解消されたものである。また、酸化鉄粒
子中のコバルトの移動を完全に行わしめてコバルト含有
による保磁力向上の効果は最大限に生かされたものとな
る。更に、酸化鉄粒子中のFeH/Fe川の値が保磁力
の高い領域となる0.2〜0.3の範囲に制御され、F
e什ノFewの値による保磁力向上効果も有効に発揮で
きるのである。以上の各種の優れた特性により、本発明
により得られるコバルト含有磁性酸化鉄粒子粉末は、磁
気テープ等の磁気記録媒体に使用するのに磁性材料とし
て優れたものである。次に本発明を実施例及び比較例に
より説明する。
A suitable content of cobalt is 0.1 to 10 atomic % based on magnetite. The effects of the present invention described in detail above will be described below. The cobalt-containing magnetic iron oxide particles obtained by the present invention are cobalt-containing magnetic iron oxide particles originally obtained by the doping method, since the cobalt-containing goethite particles as a starting material are those obtained by the above-mentioned wet reaction. It has characteristics such as the excellent erasing property possessed by the magnetic iron oxide particles, and also eliminates the disadvantage of the change in coercive force over time of the cobalt-containing magnetic iron oxide particles produced by the doping method. In addition, the cobalt in the iron oxide particles is completely transferred, and the coercive force improvement effect due to the cobalt content is maximized. Furthermore, the value of the FeH/Fe ratio in the iron oxide particles is controlled to a range of 0.2 to 0.3, which is a region with high coercive force, and F
The effect of improving the coercive force by changing the value of eFew can also be effectively exhibited. Due to the various excellent properties described above, the cobalt-containing magnetic iron oxide particles obtained by the present invention are excellent as magnetic materials for use in magnetic recording media such as magnetic tapes. Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、実施例及び比較例に使用したコバルト含有マグネタ
ィト粒子は次の方法により得たものである。
The cobalt-containing magnetite particles used in the Examples and Comparative Examples were obtained by the following method.

原料の製法 1 FeS0415.仇hol、COS040.15hol
を含む水溶液15そに4.65一NのNaOH水溶液1
5そを加えた後空気0を通気することにより針状のコバ
ルト含有ゲータィト粒子を得る。
Manufacturing method of raw materials 1 FeS0415. enemy hol, COS040.15hol
15 aqueous solution containing 4.65N NaOH aqueous solution 1
5. After adding soybean powder, 0 air is passed through the mixture to obtain acicular cobalt-containing goethite particles.

得られたコバルト含有ゲータィト粒子を炉別、水洗、乾
燥した後300℃で脱水、350COで還元してコバル
ト含有マグネタィト粒子とした。得られたコバルト含有
マグネタィト粒子夕はコバルト含有量(Co/Fe):
1原子%、長軸の平均粒子径0.6仏m、藤比(長軸/
短軸):6/1、BET法による比表面積:29〆/g
、Fe什/Fe川0.40であり、磁気特性は保磁力H
C:56比だ、飽和磁化。s:84.牢mu/gであっ
た。0このコバルト含有マグネタイトを「原料1」とす
る。
The obtained cobalt-containing goethite particles were separated in a furnace, washed with water, dried, dehydrated at 300° C., and reduced with 350 CO to obtain cobalt-containing magnetite particles. Cobalt content (Co/Fe) of the obtained cobalt-containing magnetite particles:
1 atomic %, average particle diameter of long axis 0.6 French m, Fujihi (long axis/
Short axis): 6/1, specific surface area by BET method: 29/g
, Fe/Fe is 0.40, and the magnetic properties are coercive force H
C:56 ratio, saturation magnetization. s:84. It was mu/g. 0 This cobalt-containing magnetite is referred to as "Raw material 1".

原料の製法 2COS04を0.3皿olとした他は原
料の製法1とまったく同様にしてコバルト含有マグネタ
ィト粒子夕を得る。
Manufacturing method of raw material Cobalt-containing magnetite particles were obtained in exactly the same manner as raw material manufacturing method 1 except that 2COS04 was used in 0.3 liters.

得られたコバルト含有マグネタィト粒子はコバルト含有
量(Co/Fe):2原子%、長軸の平均粒子径0.5
rm、軸比(長軸/短軸):6′1、BET法による比
表面積:32の/g、Fe‐什/Fe川:0.38であ
り、磁気特性は保磁力HC:065的友、飽和磁化。s
:84.1emu/gであった。このコバルト含有マグ
ネタィト粒子を「原料2」とする。実施例 1 「原料1」のコバルト含有マグネタィト粒子15k9を
レトルト容器に投入し、空気と窒素を1/1で混合した
ガスを2夕/側の割合で通気しながら、350午○の温
度で58分間加熱処理を行った。
The obtained cobalt-containing magnetite particles had a cobalt content (Co/Fe) of 2 at% and an average particle diameter of 0.5 along the long axis.
rm, axial ratio (major axis/minor axis): 6'1, specific surface area by BET method: 32/g, Fe-Ti/Fe river: 0.38, and magnetic properties are similar to coercive force HC: 065. , saturation magnetization. s
:84.1 emu/g. These cobalt-containing magnetite particles are referred to as "raw material 2." Example 1 Cobalt-containing magnetite particles 15k9 of "raw material 1" were put into a retort container, and heated at a temperature of 350 pm while a gas containing a 1/1 mixture of air and nitrogen was passed through at a rate of 2 pm/side. Heat treatment was performed for a minute.

加熱処理中の総空気量は58〆(y=2松十30に相当
する。)であった。得られたコバルト含有磁性酸化0鉄
粒子中のFeH/Fe川の値は0.25であり、磁気特
性を測定した結果、保磁力HC:63のe、飽和磁化。
s:76.氏mu/gであった。このコバルト含有磁性
酸化鉄粒子の保磁力の室温における経時変化を見る為に
3日、15日、30日、60日後の保磁力を測定したと
ころ、それぞれ67のe、7080e、70皮史、70
80eであった。実施例2〜6、及び比較例3〜5 加熱処理条件を変化させた他は実施例1と同様にしてコ
バルト含有磁性酸化鉄粒子を得た。
The total amount of air during the heat treatment was 58〆 (corresponding to y = 2 matsuju 30). The value of the FeH/Fe ratio in the obtained cobalt-containing magnetic 0 iron oxide particles was 0.25, and as a result of measuring the magnetic properties, coercive force HC: e of 63, saturation magnetization.
s:76. It was Mr.mu/g. In order to observe the change in the coercive force of these cobalt-containing magnetic iron oxide particles at room temperature, we measured the coercive force after 3 days, 15 days, 30 days, and 60 days.
It was 80e. Examples 2 to 6 and Comparative Examples 3 to 5 Cobalt-containing magnetic iron oxide particles were obtained in the same manner as in Example 1 except that the heat treatment conditions were changed.

加熱処理条件及び得られたコバルト含有磁性酸化鉄粒子
の各種特性を次表に示す。尚、実施例6は出発原料とし
て「原料2」を用いた。比較例3はy<2瓜十30、比
較例4はy>3球十30のものであり、比較例5は加熱
温度が本発明の特許請求の範囲外のものである。
The heat treatment conditions and various properties of the obtained cobalt-containing magnetic iron oxide particles are shown in the following table. In addition, in Example 6, "Raw material 2" was used as the starting material. Comparative Example 3 has y<2 30, Comparative Example 4 has y>3 30, and Comparative Example 5 has a heating temperature outside the scope of the claims of the present invention.

比較例 1,2 原料1及び2をそのまま室温下に放置して保磁力の経時
変化を見たところ、表に示す通りとなった。
Comparative Examples 1 and 2 Raw materials 1 and 2 were left as they were at room temperature and changes in coercive force over time were observed, and the results were as shown in the table.

船 S S 対 S ) 」 寒 譲 R ※ship S S versus S ) ” cold Yield R *

Claims (1)

【特許請求の範囲】 1 コバルト含有ゲータイト粒子を脱水、還元してコバ
ルト含有マグネタイト粒子とした後、該コバルト含有マ
グネタイト粒子をy=ax+30(但しy=空気量(l
)、a=20〜35、x=コバルト含有マグネタイト粒
子量(kg))を満足する割合の空気を通気している酸
化性雰囲気中において250〜550℃の温度範囲で加
熱処理することによつて、Fe■/Fe■が0.2〜0
.3であるコバルト含有磁性酸化鉄粒子とすることを特
徴とするコバルト含有磁性酸化鉄粒子粉末の製造法。 2 コバルト含有マグネタイト粒子中のコバルト含有量
が0.1〜10原子%である特許請求の範囲1に記載の
コバルト含有磁性酸化鉄粒子粉末の製造法。 3 空気の通気がy=28x+30(但しy=空気量(
l)、x=コバルト含有マグネタイト粒子量(kg))
である特許請求の範囲1又は2に記載のコバルト含有磁
性酸化鉄粒子粉末の製造法。 4 加熱温度範囲が300〜400℃である特許請求の
範囲1〜3のいずれかに記載のコバルト含有磁性酸化鉄
粒子粉末の製造法。
[Claims] 1. After dehydrating and reducing cobalt-containing goethite particles to obtain cobalt-containing magnetite particles, the cobalt-containing magnetite particles are converted to y=ax+30 (where y=air amount (l)
), a = 20 to 35, x = amount of cobalt-containing magnetite particles (kg) , Fe■/Fe■ is 0.2 to 0
.. 3. A method for producing a cobalt-containing magnetic iron oxide particle powder, characterized in that the cobalt-containing magnetic iron oxide particles are prepared as follows. 2. The method for producing a cobalt-containing magnetic iron oxide particle powder according to claim 1, wherein the cobalt content in the cobalt-containing magnetite particles is 0.1 to 10 at%. 3 Air ventilation is y = 28x + 30 (however, y = air volume (
l), x = amount of cobalt-containing magnetite particles (kg))
A method for producing cobalt-containing magnetic iron oxide particles according to claim 1 or 2. 4. The method for producing cobalt-containing magnetic iron oxide particle powder according to any one of claims 1 to 3, wherein the heating temperature range is 300 to 400°C.
JP54137180A 1979-10-23 1979-10-23 Method for producing cobalt-containing magnetic iron oxide particles Expired JPS6015573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54137180A JPS6015573B2 (en) 1979-10-23 1979-10-23 Method for producing cobalt-containing magnetic iron oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54137180A JPS6015573B2 (en) 1979-10-23 1979-10-23 Method for producing cobalt-containing magnetic iron oxide particles

Publications (2)

Publication Number Publication Date
JPS5663826A JPS5663826A (en) 1981-05-30
JPS6015573B2 true JPS6015573B2 (en) 1985-04-20

Family

ID=15192675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54137180A Expired JPS6015573B2 (en) 1979-10-23 1979-10-23 Method for producing cobalt-containing magnetic iron oxide particles

Country Status (1)

Country Link
JP (1) JPS6015573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163681U (en) * 1988-05-09 1989-11-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163681U (en) * 1988-05-09 1989-11-15

Also Published As

Publication number Publication date
JPS5663826A (en) 1981-05-30

Similar Documents

Publication Publication Date Title
US4309459A (en) Process for producing SiO2 coated iron oxide powder for use in the preparation of acicular magnetic iron or iron oxide powder
JPS6015573B2 (en) Method for producing cobalt-containing magnetic iron oxide particles
JPS5980901A (en) Manufacture of ferromagnetic metal powder
GB1589355A (en) Acicular cobalt magnetic iron oxide and its manufacture
KR890000702B1 (en) Production for cobalt containing magnetic iron oxide power
JPH0585487B2 (en)
JPS60181210A (en) Manufacture of ferromagnetic metallic powder
JPH01172501A (en) Manufacture of metal magnetic powder
JPS6242858B2 (en)
KR0125939B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP2744641B2 (en) Method for producing ferromagnetic metal powder
JPS6018609B2 (en) Ferromagnetic powder and its manufacturing method
US4348430A (en) Process for producing magnetic particles for magnetic recording medium
JPS5931961B2 (en) Manufacturing method of ferromagnetic powder
JPS5921922B2 (en) Method for producing acicular Fe-Co-Zn alloy magnetic particle powder
JPS5853686B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPS6034244B2 (en) Manufacturing method of ferromagnetic powder
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6012763B2 (en) Manufacturing method of ferromagnetic powder
JPS6349722B2 (en)
JPS5921363B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
EP0131223B1 (en) Process for producing cobalt-modified ferromagnetic iron oxide
JPS58161710A (en) Production of ferromagnetic powder
JPS6187302A (en) Manufacture of magnetic recording medium