JPS60155652A - Heat resistant steel - Google Patents

Heat resistant steel

Info

Publication number
JPS60155652A
JPS60155652A JP59010170A JP1017084A JPS60155652A JP S60155652 A JPS60155652 A JP S60155652A JP 59010170 A JP59010170 A JP 59010170A JP 1017084 A JP1017084 A JP 1017084A JP S60155652 A JPS60155652 A JP S60155652A
Authority
JP
Japan
Prior art keywords
less
cold
steel
ductility
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59010170A
Other languages
Japanese (ja)
Inventor
Masayuki Sukegawa
祐川 正之
Seishin Kirihara
桐原 誠信
Yoshimitsu Hida
飛田 芳光
Teruaki Hanai
花井 照明
Kiyoshi Hiyama
清志 桧山
Katsumi Iijima
飯島 活己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59010170A priority Critical patent/JPS60155652A/en
Publication of JPS60155652A publication Critical patent/JPS60155652A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To obtain a heat resistant steel having high strength, maintaining its ductility in a state with a strain applied by cold working, and usable at high temp. by adding V, Nb and other element to a heat resistant Cr-Ni steel. CONSTITUTION:An alloy steel consisting of 0.02-0.2% C, <1.5% Si, <3% Mn, 10-25% Cr, 8-25% Ni, 0.1-3% Mo, at least one between 0.02-0.5% Nb and 0.05-0.5% V, and the balance >=50% Fe is used as a heat resistant steel having a plastically cold worked state and suitable for use as the material of a fuel cladding pipe for a fast breeder or as a material for a tower for synthesizing a styrene monomer. The heat resistant steel may further contain at least one among 0.5-5% Cu, 0.005-0.02% B, 0.01-0.2% Ti, 0.005-0.2% Al and 0.005- 0.2% Zr.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な耐熱鋼に係シ、特に高速増殖炉用燃料被
覆管及びスチレンモノマー合成塔に好適な耐熱鋼に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a new heat-resistant steel, and particularly to a heat-resistant steel suitable for fuel cladding tubes for fast breeder reactors and styrene monomer synthesis towers.

〔発明の背景〕[Background of the invention]

原子力発電プラント、発電用プラントや化学プラントを
始めとする高温機器用材料としてはSUS304.31
6,321,347等のオーステナイトステンレス鋼が
広く使用されている。特公昭58−19742号公報に
はMOを含み、Ti含有のものが知られている。これら
高温機器は構造上、冷間加工にて曲率を有する形状に製
作し使用する部位や、冷間加工を意図的に与えて使用す
る部位がある。例えば、前者については配管系の曲シ部
SUS304.31 is a material for high-temperature equipment such as nuclear power plants, power generation plants, and chemical plants.
Austenitic stainless steels such as 6,321,347 are widely used. Japanese Patent Publication No. 58-19742 discloses a material containing MO and Ti. Due to their structure, these high-temperature devices include parts that are manufactured into a shape with curvature by cold working and parts that are used after being intentionally cold worked. For example, the former is a curved part of a piping system.

伝熱管のペンド部、熱膨張による伸びを吸収するエキス
パンション、各種容器やケーシングの曲率形状を有する
部位等があシ、又、後者については、使用環境を考えて
10〜20%程度の冷間加工を与えた後使用する高速炉
用燃料被覆管などがある。
There are bend parts of heat exchanger tubes, expansions that absorb elongation due to thermal expansion, parts with curvature of various containers and casings, etc., and for the latter, cold processing of about 10 to 20% is required considering the usage environment. Examples include fuel cladding tubes for fast reactors that are used after being given a

このような部位に使用される材料は、冷間にて所定の形
状に加工された後又は所定の加工ひずみを与えた後に、
機器に組み込まれる。このような状態で使用される材料
は、冷間加工により3〜30チの加工ひずみが付与され
、この加工ひずみにより材料は硬化される。従来硬化さ
れた材料は、強度的には高くなるが、延性が極端に低下
し、高温使用中の割れ発生の原因となっている。このよ
うな、加工ひずみを付与された材料の延性低下による割
れ発生を防止する手段として、ひずみ除去を目的とした
熱処理方法が一部行われているが、熱処理を施すには機
器の大きさに制限があし、また、実施するにしても多大
の費用がかかることなどの為に、加工によるひずみを付
与したまま使用される場合が多い。
The materials used for such parts are cold-processed into a predetermined shape or subjected to a predetermined processing strain.
Incorporated into equipment. A material used in such a state is subjected to a processing strain of 3 to 30 inches by cold working, and the material is hardened by this processing strain. Although conventionally hardened materials have high strength, they have extremely low ductility, which causes cracks to occur during high-temperature use. As a means of preventing cracks from occurring due to a decrease in ductility in materials that have been subjected to processing strain, some heat treatment methods have been used to remove the strain. Due to limitations and the high costs involved, it is often used with some distortion caused by processing.

このような現状に対処し、冷間加工にょシひずみが付与
された状態で、高温にて長時間使用されても延性低下が
少なく、かつ高い強度を有する材料を提供することが、
機器の信頼性、経済性の観点から重要となる。
To deal with this current situation, it is necessary to provide a material that has high strength and little decrease in ductility even if it is used for a long time at high temperature under cold working strain.
This is important from the viewpoint of equipment reliability and economic efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、冷間加工を施し、ひずみを付与された
状態のままで、使用中の延性低下が少なく、かつ高強度
を有する耐熱鋼を提供することにある。
An object of the present invention is to provide a heat-resistant steel that undergoes cold working and has high strength, with little decrease in ductility during use, even in a strained state.

〔発明の概要〕[Summary of the invention]

本発明は重量比で、C0,02〜0.15%、Si1.
5%以下、Mn25以下、Cr1O〜25%。
The present invention has a weight ratio of C0.02 to 0.15%, Si1.
5% or less, Mn 25 or less, Cr1O~25%.

Ni8〜25チ、 M o 0.1〜3.0%と、Nb
o、02〜0.5%及びV O,05〜0.5%の少な
くとも1覆とを含み、残部50%以上のpeからなり、
又はこれにCu0.5〜596.B0.001〜0.0
296゜AtO,01〜0.2%、Ti0.01〜0.
2%、Zr0.005〜0.2%の少なくとも1種以上
を含み、残部50%以上のpeからなり、好ましくは3
〜30%の冷間塑性加工ひずみが付与された耐熱鋼にお
るう 本発明の特徴は、マ) IJラックス中の固溶強化作用
によυ冷間加工を与える前の材料が高い強度を有してい
ること、Cu、V、Nb、Ti、Zr。
Ni 8-25%, Mo 0.1-3.0%, Nb
o, 02 to 0.5% and VO, 05 to 0.5% at least once, the remainder consisting of pe of 50% or more,
Or Cu0.5-596. B0.001~0.0
296°AtO, 01-0.2%, Ti0.01-0.
2%, Zr0.005 to 0.2%, and the remainder is 50% or more of pe, preferably 3
The characteristics of the present invention, which consists of heat-resistant steel that has been subjected to ~30% cold plastic working strain, are: (1) The material has high strength before cold working due to the solid solution strengthening effect in IJ lux. What we do, Cu, V, Nb, Ti, Zr.

At及びB添加のうち特にNb及びVの一方又はこれら
の一方にcul’r+、zr、Az及びBの少なくとも
1つの適性添加により冷間加工による延性低下を防止す
ることである。
Among At and B additions, in particular, one or more of Nb and V, or at least one of cul'r+, zr, Az, and B is appropriately added to prevent a decrease in ductility due to cold working.

冷間加工された鋼は、結晶粒内に多重に形成された転位
が存在し、これら転位が相互に弾性的に作用しあい、転
位の自由な動きを拘束している。
In cold-worked steel, there are multiple dislocations formed within the crystal grains, and these dislocations interact elastically with each other, restraining the free movement of the dislocations.

更に、この状態で高温にて使用すると、転位が浸入型原
子(C,N)の拡散または拡散と析出の雰囲気にとられ
れ、一層動けなくなり、結晶の硬化が起シ、かつ延性低
下の要因となる。冷間加工を施した場合、転位発生を防
止するととはできないが、転位へのC,Nの拡散を防止
することにより、高温使用中での延性低下を軽減するこ
とができる。
Furthermore, when used at high temperatures in this state, dislocations become trapped in the diffusion of interstitial atoms (C, N) or in the atmosphere of diffusion and precipitation, making them even more immobile, causing hardening of the crystals and a decrease in ductility. Become. Although cold working cannot prevent the occurrence of dislocations, it can reduce the decrease in ductility during high temperature use by preventing the diffusion of C and N into dislocations.

本発明の特徴は、C,Nとの親和力の強いVを添加する
ことにより安定なVの炭化物、窒化物又は炭窒化物を形
成させて、高温使用中に於けるC9Nの拡散及び不安定
な炭化物の析出を抑制することである。
The feature of the present invention is that stable V carbides, nitrides, or carbonitrides are formed by adding V, which has a strong affinity with C and N. The purpose is to suppress the precipitation of carbides.

以上の現象に基づき、CU、Vを適性量添加することで
、高温強度、延性に優れた、冷間加工を付与した耐熱鋼
を提案する。
Based on the above phenomena, we propose a cold-worked heat-resistant steel with excellent high-temperature strength and ductility by adding appropriate amounts of CU and V.

以下に各成分の限定理由を示す。The reasons for limiting each component are shown below.

Cは高温強度を向上させるために重要であるが、0.2
%以上になると加工性、溶接性を著しく低下する。ま*
0.02%より少なすぎると、十分な強度が得られない
。特に、0.03〜0.15%が好ましく、0.04〜
0,1チがよp好ましい。
C is important for improving high temperature strength, but 0.2
% or more, workability and weldability are significantly reduced. Ma*
If it is less than 0.02%, sufficient strength cannot be obtained. In particular, 0.03 to 0.15% is preferable, and 0.04 to 0.15% is preferable.
0.1 inch is more preferable.

Siは脱酸剤として添加するが、多すぎると溶接性及び
延性が低下するので1.5%を上限とする。
Si is added as a deoxidizing agent, but if it is too large, weldability and ductility deteriorate, so the upper limit is set at 1.5%.

好ましくは0.4〜1.0%である。Preferably it is 0.4 to 1.0%.

Mnもまた脱酸剤として添加するが、多すぎると耐食性
及び耐酸化性を低めるため3.0%を上限とする。好ま
しくは2%以下で、1〜2%がより好ましい。
Mn is also added as a deoxidizing agent, but if it is too large, corrosion resistance and oxidation resistance will be lowered, so the upper limit is set at 3.0%. It is preferably 2% or less, more preferably 1 to 2%.

Crは高温強度、耐酸化性、耐食性を得るために重要な
元素であシ、この効果を得るには10〜25%で充分で
ある。好ましくは14〜20%である。
Cr is an important element for obtaining high temperature strength, oxidation resistance, and corrosion resistance, and 10 to 25% is sufficient to obtain these effects. Preferably it is 14 to 20%.

Niはオーステナイト組織を作シ、高温強度を得るため
に重要な元素である。8%以下ではオーステナイト組織
が不安定となシ、高温で長時間使用すると脆く々る。一
方25%よシ多くなると、加工性を低下させる。好まし
くは10〜15%である。
Ni is an important element for creating an austenite structure and obtaining high temperature strength. If it is less than 8%, the austenite structure becomes unstable and becomes brittle if used at high temperatures for a long time. On the other hand, if the amount increases by more than 25%, the processability decreases. Preferably it is 10-15%.

Moはオーステナイトマトリックスを強化し、一部は炭
化物として析出し、高温強度を向上させるために0.1
%以上必要でおる。3.0%よシ多くなると、加工性及
び耐酸化性が低下し、シグマ相が析出しやすくなる。好
ましくは2〜3%である。
Mo strengthens the austenite matrix, some of which precipitates as carbides, and increases the high temperature strength by adding 0.1
% or more is required. When the amount exceeds 3.0%, workability and oxidation resistance decrease, and sigma phase tends to precipitate. Preferably it is 2 to 3%.

Cuはオーステナイトマトリックスに固溶し、高温強度
を向上さぜるためO,5%以上必要であるが、5%よシ
多くなると、溶接性を低下させるとともに、粒界を脆化
させる。
Cu dissolves in the austenite matrix and improves high-temperature strength, so 5% or more of O is required, but if the content exceeds 5%, it reduces weldability and embrittles grain boundaries.

Bは特に長時間クリープ強度を向上させるために0.0
01%以上必要である。一方、o、oi%より多くなる
と加工性、溶接性を低下させる。好ましくは0.001
〜0.008%である。
B is 0.0 to particularly improve long-term creep strength.
0.1% or more is required. On the other hand, when the content exceeds o and oi%, workability and weldability are reduced. Preferably 0.001
~0.008%.

Atは窒素の固定及びマ) l)ツクス中への固溶によ
り、高温強度、延性を向上させる。多すぎると固溶kl
が増大し、炭化物の成長を促進させる。
At fixes nitrogen and improves high-temperature strength and ductility by solid solution in the matrix. If there is too much, solid solution KL
increases, promoting the growth of carbides.

丘だ、少なすぎると窒素量が多くなp1他の添加元素の
効果を半減させる。Atの添加量としては0.005〜
0,2%が必要である。好ましくは0.01〜0.05
≠である。
It's a hill, if too little, the effect of p1 and other additive elements with a large amount of nitrogen will be halved. The amount of At added is 0.005~
0.2% is required. Preferably 0.01 to 0.05
≠.

■の添加は強度、耐食性を向上させるが、多すぎると加
工性、溶接性、耐酸化性を低下させる。
Addition of (2) improves strength and corrosion resistance, but too much of it reduces workability, weldability, and oxidation resistance.

更に■添加の効果は、安定な炭化物、窒化物又は炭窒化
物を形成することによシ、冷間加工によつ、て生じた転
位へのC,Nの拡散、析出を防止し、延性の低下を抑制
することにある。特に、■の添加量はCの添加量との相
関関係が重要である。重量比でV/Cが少ないと、■添
加の効果が少なく、強度の顕著な向上に対して2以上が
好ましい。一方、多すぎるとCの拡散抑制の効果以上に
■炭化物そのものが多くな多すぎることによる延性の低
下がおこるので、7以下が好ましい。■の添加量として
は、0.05〜0.5%が必要であシ、2≦■/C≦7
が好適である。好ましくは0.1〜0.3%でおる。
Furthermore, the effect of addition is that by forming stable carbides, nitrides, or carbonitrides, it prevents the diffusion and precipitation of C and N into dislocations caused by cold working, and improves ductility. The goal is to suppress the decline in In particular, the correlation between the amount of addition of (■) and the amount of C added is important. If V/C is small in terms of weight ratio, the effect of addition (1) will be small, and 2 or more is preferable for significant improvement in strength. On the other hand, if it is too large, the amount of carbide itself is greater than the effect of suppressing the diffusion of C, resulting in a decrease in ductility, so it is preferably 7 or less. The amount of ■ added should be 0.05 to 0.5%, 2≦■/C≦7
is suitable. Preferably it is 0.1 to 0.3%.

Nbも■と同様の効果を有しており、それぞれ適量を添
加することにより、強度及び延性を向上させるには0.
02%以上とするとともに、冷間加工後の延性低下を軽
減させるには0.5%以下でかければならない。好まし
くは0.05〜0.2%であり、更に、重量比でNb/
Cは1〜5が好ましい。
Nb also has the same effect as ■, and by adding appropriate amounts of each, strength and ductility can be improved by adding 0.0.
0.02% or more, and 0.5% or less in order to reduce the decrease in ductility after cold working. It is preferably 0.05 to 0.2%, and furthermore, the weight ratio of Nb/
C is preferably 1 to 5.

Ti、Zr、B及びAtはいずれも同様に強度を向上す
るものである。特に、これらはNb及び■との組合せ添
加において強度及び延性の両方を向上させる。冷間塑性
加工された後に高温で加熱されたときに結晶粒を微細化
する。Ti0.01〜0.2%、AtO,005〜0.
2%、 z r 0.005〜0.5係及び130.0
01〜0.02%が、各々必要である。
Ti, Zr, B, and At all similarly improve strength. In particular, they improve both strength and ductility when added in combination with Nb and ■. After cold plastic working, the crystal grains are refined when heated at high temperatures. Ti0.01-0.2%, AtO,005-0.
2%, z r 0.005-0.5 and 130.0
01-0.02% of each is required.

Tit At、zrのいずれも0.2%及びBは0.0
2係を越えると延性を低めるので避けるべきである。
Both Tit At and zr are 0.2% and B is 0.0
If the ratio exceeds 2, the ductility decreases and should be avoided.

好ましくはTi0.03〜0.15%、At0.01〜
0.05%、 Z r 0.01〜0.1%及びBO,
OO1〜0.006%である。また、重量比で(Nb+
T i ) / Cは1〜5が好ましい。
Preferably Ti0.03-0.15%, At0.01-0.01%
0.05%, Z r 0.01-0.1% and BO,
OO1 to 0.006%. In addition, the weight ratio (Nb+
T i )/C is preferably 1 to 5.

本発明鋼からなる高速増殖炉用燃料被覆管は溶解、鍛造
後、熱間圧延を行い、焼鈍と冷間塑性加工とを繰返し、
外径6〜7咽、肉厚0.4〜0.5mのパイプに製造さ
れ、最終冷間塑性加工率3〜20%の状態で使用される
。好ましい組成は、重量で、C0,05〜0.07%、
SiO,4〜0.7%。
The fuel cladding tube for fast breeder reactors made of the steel of the present invention is melted, forged, hot rolled, annealed and cold plastic worked repeatedly,
It is manufactured into a pipe with an outer diameter of 6 to 7 mm and a wall thickness of 0.4 to 0.5 m, and is used with a final cold plastic working rate of 3 to 20%. A preferred composition is C0.05-0.07% by weight;
SiO, 4-0.7%.

M n 1.5〜1.8%、Ni12〜15%、Mo1
.8〜2.5%、Cu2〜2.5%、Vo、25〜0.
45%(V104〜6.5>、NbO,1〜0.3%、
Ti0.08〜0.12%、80.003〜0.005
%、At0901〜0.04%である。加工率は10〜
20チが好ましい。
Mn 1.5-1.8%, Ni 12-15%, Mo1
.. 8-2.5%, Cu2-2.5%, Vo, 25-0.
45% (V104~6.5>, NbO, 1~0.3%,
Ti0.08-0.12%, 80.003-0.005
%, At0901-0.04%. Processing rate is 10~
20 inches is preferable.

本発明鋼は、スチレンモノマー合成塔の鏡板及ヒエキス
パンジョンの少なくとも一方ニ用イラレる。鏡板は3〜
10%及びエキスパンションは3〜20チの冷間塑性加
工率で冷間塑性加工され、そのままで他の部材と突合せ
溶接され、溶接のままで使用される。上述の被覆管と同
様の組成が好ましい。
The steel of the present invention can be used for at least one of the head plate and the expansion plate of a styrene monomer synthesis tower. The mirror plate is 3~
10% and expansions are cold plastic worked at a cold plastic working rate of 3 to 20 inches, butt welded to other parts as they are, and used as welded. A composition similar to that of the cladding described above is preferred.

〔発明の実施例〕[Embodiments of the invention]

(実施例1) 第1表に示す組成からなる鋼材を供試材としクリープ破
断試験を行った。試験は、第1表に示す組成のものをそ
れぞれ1100Cで1時間の固溶化処理を施したままの
もの(固溶化材)、及び固溶化処理後引張加工によシ1
0チの塑性加工を施したもの(冷間塑性加工材)につい
て実施した。クリープ試験は温度6501:l’、応力
26kg/鱈2行った。第2表に各々のクリープ破断時
間、伸び率及び絞シ率を示す。本発明鋼はA2−11で
あり、A1及び12は比較鋼である。表に示す如く、本
発明鋼の冷間加工材は強度、伸び率及び絞シ率がいずれ
もすぐれていることが明らかである。
(Example 1) A creep rupture test was conducted using steel materials having the compositions shown in Table 1 as test materials. The tests were conducted on the compositions shown in Table 1, which had been subjected to solution treatment at 1100C for 1 hour (solution treatment materials), and the materials with the compositions shown in Table 1 that had been subjected to tensile processing after solution treatment.
The test was carried out on a material that had been subjected to 0° plastic processing (cold plastic processing material). The creep test was conducted at a temperature of 6501:l' and a stress of 26 kg/2 cods. Table 2 shows each creep rupture time, elongation rate and shrinkage rate. The invention steel is A2-11, and A1 and 12 are comparison steels. As shown in the table, it is clear that the cold-worked steel of the present invention has excellent strength, elongation, and drawing ratio.

第1図及び第2図は固溶化材と冷間塑性加工材のクリー
プ破断時間及び伸び率との関係を示す線図である。図中
の数字は鋼の煮である。図に示す如く、MOのみを含む
A1に対し、本発明鋼の冷間加工材のA2−12のもの
はいずれも強度及び伸び率が高いことが明らかである。
FIGS. 1 and 2 are diagrams showing the relationship between the creep rupture time and the elongation rate of the solution-treated material and the cold-plastically worked material. The numbers in the diagram are steel. As shown in the figure, it is clear that A2-12, which is a cold-worked steel of the present invention, has higher strength and elongation than A1, which contains only MO.

第3図及び第4図は各々クリープ破断時間とV及びV/
C比との関係を示す線図である。図中の数字は鋼の煮で
ある。いずれの図にも明らかな如く、■の添加及びCu
の添加によシ顕著にクリープ破断強度が向上される。V
itが0.4%以上では飽和する。
Figures 3 and 4 show the creep rupture time, V and V/, respectively.
It is a diagram showing the relationship with C ratio. The numbers in the diagram are steel. As is clear from both figures, the addition of ■ and Cu
Creep rupture strength is significantly improved by adding . V
When it is 0.4% or more, it is saturated.

第5図はクリープ破断試験後の破断伸び率、絞り率とV
/Cの関係を示す線図である。V量が0.5%を越え又
はV/Cの比が8を越える煮12の伸び率及び絞り率は
急激に低下する。従来材のA1及び比較材のA12に比
べ本発明鋼は高い値を示す。特に、A2,3,4.5,
6,7.10に比べ、Cuを含み、v/Cが2以下の■
を含むA8,9は溶体化処理のまま及び10%加工状態
とも高い強度を有している。一方、■/Cを7以上含む
AIo、11.12は10%冷間加工を与えることによ
る延性が低下するが、特にAl1は著しく低下するのに
対し、本発明材の屋8,9は冷間加工後の延性低下が極
めて少ない。このように、Cuを含み、かつV/Cが2
〜7の範囲にあるものの本発明材は冷間加工後の強度が
高く、かつ延性の低下が少ない事が判る。
Figure 5 shows the elongation at break, reduction ratio and V after the creep rupture test.
It is a diagram showing the relationship of /C. The elongation rate and squeezing rate of the boiled steel 12 in which the V amount exceeds 0.5% or the V/C ratio exceeds 8 rapidly decrease. The steel of the present invention exhibits a higher value than the conventional material A1 and the comparative material A12. In particular, A2, 3, 4.5,
6, 7. Compared to 10, it contains Cu and has a v/C of 2 or less.
A8 and 9 containing A8 and A9 have high strength both in the as-solution treated state and in the 10% processed state. On the other hand, the ductility of AIo, 11.12, which contains There is extremely little decrease in ductility after machining. In this way, it contains Cu and V/C is 2.
It can be seen that the materials of the present invention have high strength after cold working, and have little decrease in ductility, although the values are in the range of 7 to 7.

(実施例2) 市販材の5US30’4材及び第3表(重量%)に示す
鋼を用い、室温にて冷間塑性加工を施し、650Cでの
引張試験を行った。第3表の鋼には110(lで1時間
加熱の固溶化処理を施した。
(Example 2) Using a commercially available 5US30'4 material and the steel shown in Table 3 (wt%), cold plastic working was performed at room temperature, and a tensile test at 650C was conducted. The steels in Table 3 were subjected to solution treatment by heating at 110 (l) for 1 hour.

第3表 図に示すように、0.2%耐力は冷間加工率3%以上で
強度の向上が大きい。
As shown in Table 3, the 0.2% yield strength shows a large improvement in strength when the cold working rate is 3% or more.

延性は冷間加工率3%以下では変化がなく、冷間加工の
影響は無い。一方、冷間加工率が30%よシ大きくなる
と延性の低下が大きくなる。この延性が15〜20%以
下になると冷間加工により与えられた残留ひずみ(残留
応力)が原因となって、使用中に割れが発生する確立が
非常に太きくなる。
The ductility does not change at a cold working rate of 3% or less, and is not affected by cold working. On the other hand, when the cold working rate increases by more than 30%, the decrease in ductility increases. When this ductility is less than 15 to 20%, there is a very high probability that cracks will occur during use due to residual strain (residual stress) imparted by cold working.

(実施例3) 第8図は本発明鋼の一使用例を示す高速増殖炉用燃料棒
の断面構成図である。核分裂生成物質2は被覆管1内に
挿入され、バネ4によって固定され、上端3及び下端3
によってそれぞれ封じられている。被覆管1として、第
1表のA8の合金を用い、外径6〜7mm5肉厚0.4
〜0.5 wmのパイプを、真空溶解、鍛造後、熱間押
出し、焼鈍稜、ピルガ−ミルにて冷間塑性加工と焼鈍と
を繰返し製造した。最後の冷間塑性加工率は15%であ
る。
(Example 3) FIG. 8 is a cross-sectional diagram of a fuel rod for a fast breeder reactor showing an example of the use of the steel of the present invention. The fission product 2 is inserted into the cladding tube 1 and fixed by a spring 4, with the upper end 3 and the lower end 3
Each is sealed by The cladding tube 1 is made of alloy A8 in Table 1, with an outer diameter of 6 to 7 mm and a wall thickness of 0.4 mm.
A pipe of ~0.5 wm was manufactured by vacuum melting, forging, hot extrusion, annealing, and repeated cold plastic working and annealing in a pilger mill. The final cold plastic working rate is 15%.

製造された被覆管は図に示すように核燃料物質が挿入さ
れ、不活性ガスが封入され、両端に各々端栓を溶接によ
って封止される。溶接は電子ビーム溶接が適用された。
As shown in the figure, nuclear fuel material is inserted into the manufactured cladding tube, inert gas is sealed, and end plugs are welded to both ends of the cladding tube. Electron beam welding was used for welding.

押出し後の焼鈍は1,100〜1.150Cで行った。Annealing after extrusion was performed at 1,100 to 1.150C.

(実施例4) 第9図(a)は本発明鋼の他の使用例を示すスチレ−ン
モノマー合成塔の正面図である。この合成塔は、上部及
び下部に各々鏡板5.6があり、エキスパンション8を
介して胴部7,9が各々突合せ溶接接合されている。第
9図(b)はエキスパンション8の拡大図である。鏡板
5,6及びエキスパンション8として第1表のA8の合
金を用い、真空溶解。
(Example 4) FIG. 9(a) is a front view of a styrene monomer synthesis tower showing another example of use of the steel of the present invention. This synthesis tower has head plates 5 and 6 at the upper and lower parts, respectively, and the body parts 7 and 9 are butt-welded to each other via an expansion 8. FIG. 9(b) is an enlarged view of the expansion 8. FIG. The alloy A8 in Table 1 was used as the end plates 5 and 6 and the expansion 8, and vacuum melted.

鍛造後、熱間圧延によって所望の厚さにした後、1.1
00〜1,150℃で焼鈍し、所望の表面に仕上げた。
After forging and hot rolling to the desired thickness, 1.1
It was annealed at 00 to 1,150°C to give the desired surface finish.

鏡板5−6 ハ厚す20 tra、エキスパンション8
は10簡の厚きである。これらはいずれも図に示す形状
に室温で加工され、前者が7%及び後者が15%の加工
率を有する。これらは加工されたままで図に示すように
互いに共金ワイヤによシ突合せ溶接され、使用される。
Mirror plate 5-6 Thickness 20 tra, expansion 8
is 10 strips thick. Both of these are processed into the shape shown in the figure at room temperature, and the former has a processing rate of 7% and the latter 15%. These are butt welded to each other with matching metal wire as shown in the figure and used as they are.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温強度が高く、かつ高温使用中の延
性の低下の少ない耐熱鋼が得られ、高温機器の寿命向上
に顕著な効果が発揮される。
According to the present invention, a heat-resistant steel with high high-temperature strength and little decrease in ductility during high-temperature use can be obtained, and a remarkable effect is exhibited in improving the life of high-temperature equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は各々冷間塑性加工材と固溶化材との
クリープ破断時間及び伸び率との関係を示す線図、第3
図及び第4図は各々クリープ破断時時と■量及びV/C
比との関係を示す線図、第5図はクリープ破断伸び率及
び絞り率とV/C比との関係を示す線図、第6図及び第
7図は冷間塑性加工率と引張試験による引張強さ、耐力
、伸び率との関係を示す線図、第8図は高速増殖炉用燃
料棒の断面図、第9図はスチレンモノマー合成塔の正面
図である。 1・・・被覆管、2・・・核燃料物質、3・・・端栓、
4・・・バネ、5,6・・・鏡板、7,9・・・胴部、
8・・・エキスパンション。 代理人 弁理士 高橋明大 ’tiyr 囲 D ’200 400 400 800 7θ00m;
*4Ca/l 7’/−7’I;19111El’!f
I’Aワ (々う第 2 図 ? 戸コシ@−4t−オ才/1(φ仏−牽 (外]第 3 
図 OD、1 o・z D・3 D・4 0′5V (’k
) 請 4 図 体 1 図 o to zo 30 4θ 50 ンなI’tlfia工4酬 (4) 冷IfIno工奪1%J 誤 g 回 メ qm (久) ぐ (b) 第1頁の続き ■Int、CI、’ 識別記号 庁内整理番号@発明者
 検出 情意 日立車輪3 所内 0発明者 飯島 活己 日立車輪3 所内
Figures 1 and 2 are diagrams showing the relationship between the creep rupture time and elongation of cold-plastically worked materials and solution-treated materials, respectively.
Figures and Figure 4 show the time of creep rupture, the amount and V/C, respectively.
Figure 5 is a diagram showing the relationship between creep rupture elongation rate and reduction ratio and V/C ratio, Figures 6 and 7 are based on cold plastic working rate and tensile test. A diagram showing the relationship between tensile strength, yield strength, and elongation rate, FIG. 8 is a sectional view of a fuel rod for a fast breeder reactor, and FIG. 9 is a front view of a styrene monomer synthesis tower. 1... Cladding tube, 2... Nuclear fuel material, 3... End plug,
4... Spring, 5, 6... End plate, 7, 9... Body part,
8... Expansion. Agent Patent Attorney Akita Takahashi'tiyr Wall D '200 400 400 800 7θ00m;
*4Ca/l 7'/-7'I;19111El'! f
I'Awa (Nou 2nd figure? Tokoshi @-4t-Osai/1 (φ Buddha-Ken (outside) 3rd
Figure OD, 1 o・z D・3 D・4 0'5V ('k
) Request 4 Figure body 1 Figure o to zo 30 4θ 50 Nna I'tlfia engineering 4 exchange (4) Cold IfIno engineering 1%J False g Times qm (ku) Gu (b) Continuation of the first page ■Int, CI,' Identification symbol Internal reference number @ inventor Detection Emotion Hitachi Wheel 3 Internal 0 Inventor Iijima Katsuki Hitachi Wheel 3 Internal

Claims (1)

【特許請求の範囲】 1、重量で、C0,02〜0.2%、Si1.5チ以下
。 M n 3%以下、Cr10〜25%、Ni8〜25%
、Mo0.1〜3%と、Nb0.02〜0.5%及びV
 O,05〜0゜5チの少なくとも1種とを含み、残部
50%以上のpeからなり、冷間塑性加工状態を有する
ことを特徴とする耐熱鋼。 2、重量で、C0102〜0.2%、Si1.5%以下
。 Mn3%以下、Cr1O〜25%、Ni8〜25%、M
o0.1〜3%と、Nb0.02〜0.5%及びVo、
05〜0.5%の少なくとも1種と、CuO,5〜5%
、Bo、0005〜0,02%、Ti0.01〜0.2
%、At0.005〜0.2%及びZr01OO5〜0
.2%の少なくとも1種とを含み、残部50%以上のp
eからなシ、冷間塑性加工状態を有することを特徴とす
る耐熱鋼。 3、重量で、CO,02〜0.2%、Si1.5%以下
。 Mn3%以下、Cr1O〜25%、Ni8〜25%、M
o0.1〜3%と、Nb O,02〜0.5 %及びV
 O,05〜0.5%の1種以上とを含み、残部が50
%以上のpeからなシ、冷間塑性加工状態を有すること
を特徴とする高速増殖炉用燃料被覆管。 4、重量で、CO,02%、Si1.5%以下、Mn3
%以下、0rlO〜25%、Ni8〜25%。 Mo0.1〜3%と、Nb0.02〜0.5%及びVO
,05〜0.5%の1種以上とを含み、残部が50−以
上のFeからなシ、冷間塑性加工状態を有する部材であ
って、該部材によって鏡板及びエキスパンションの少な
くとも一方を構成していることを特徴とするスチレン合
成塔、
[Claims] 1. By weight, C0.02 to 0.2%, Si 1.5 or less. Mn 3% or less, Cr10-25%, Ni8-25%
, Mo0.1-3%, Nb0.02-0.5% and V
1. A heat-resistant steel characterized by containing at least one type of 0.05 to 0.5 mm, the remainder being 50% or more of PE, and having a cold plastic working state. 2. By weight, C0102~0.2%, Si 1.5% or less. Mn 3% or less, Cr1O~25%, Ni8~25%, M
o0.1-3%, Nb0.02-0.5% and Vo,
05-0.5% and CuO, 5-5%
, Bo, 0005~0.02%, Ti0.01~0.2
%, At0.005~0.2% and Zr01OO5~0
.. 2% of at least one species, and the remaining 50% or more of p
A heat-resistant steel characterized by having a cold plastic working state. 3. By weight, CO, 02-0.2%, Si 1.5% or less. Mn 3% or less, Cr1O~25%, Ni8~25%, M
o0.1-3%, NbO,02-0.5% and V
O, 05 to 0.5%, and the balance is 50%.
A fuel cladding tube for a fast breeder reactor, characterized in that the fuel cladding tube has a PE of at least % and is in a cold plastic working state. 4. By weight, CO, 02%, Si 1.5% or less, Mn3
% or less, 0rlO~25%, Ni8~25%. Mo0.1-3%, Nb0.02-0.5% and VO
, 05 to 0.5%, and the remainder is Fe of 50 to 0.5%, and has a cold plastic working state, and the member constitutes at least one of the end plate and the expansion. A styrene synthesis tower characterized by
JP59010170A 1984-01-25 1984-01-25 Heat resistant steel Pending JPS60155652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59010170A JPS60155652A (en) 1984-01-25 1984-01-25 Heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010170A JPS60155652A (en) 1984-01-25 1984-01-25 Heat resistant steel

Publications (1)

Publication Number Publication Date
JPS60155652A true JPS60155652A (en) 1985-08-15

Family

ID=11742803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010170A Pending JPS60155652A (en) 1984-01-25 1984-01-25 Heat resistant steel

Country Status (1)

Country Link
JP (1) JPS60155652A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244559A (en) * 1985-08-20 1987-02-26 Kobe Steel Ltd Stainless steel for use in core material for fast breeder reactor and its production
JPS6270553A (en) * 1985-09-24 1987-04-01 Sumitomo Metal Ind Ltd Austenitic steel having superior strength at high temperature
US4818485A (en) * 1987-02-11 1989-04-04 The United States Of America As Represented By The United States Department Of Energy Radiation resistant austenitic stainless steel alloys
JPH024945A (en) * 1988-06-10 1990-01-09 Hitachi Ltd Austenitic steel exposed to high temperature and high pressure water under neutron irradiation
US5306357A (en) * 1993-02-04 1994-04-26 Carondelet Foundry Company Sulfuric acid resistant alloys
JP2016537656A (en) * 2013-11-19 2016-12-01 ジョイント ストック カンパニー“アクメ−エンジニアリング” Fuel rod cladding tube, fuel rod and fuel assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270924A (en) * 1975-12-10 1977-06-13 Kubota Ltd Heat-resisting austenite casting alloy
JPS5713154A (en) * 1980-06-02 1982-01-23 Kernforschungsz Karlsruhe Austenite iron-nickel- chromium alloy
JPS59100219A (en) * 1982-11-27 1984-06-09 Sumitomo Metal Ind Ltd Production of stainless steel pipe for heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270924A (en) * 1975-12-10 1977-06-13 Kubota Ltd Heat-resisting austenite casting alloy
JPS5713154A (en) * 1980-06-02 1982-01-23 Kernforschungsz Karlsruhe Austenite iron-nickel- chromium alloy
JPS59100219A (en) * 1982-11-27 1984-06-09 Sumitomo Metal Ind Ltd Production of stainless steel pipe for heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244559A (en) * 1985-08-20 1987-02-26 Kobe Steel Ltd Stainless steel for use in core material for fast breeder reactor and its production
JPS6270553A (en) * 1985-09-24 1987-04-01 Sumitomo Metal Ind Ltd Austenitic steel having superior strength at high temperature
US4818485A (en) * 1987-02-11 1989-04-04 The United States Of America As Represented By The United States Department Of Energy Radiation resistant austenitic stainless steel alloys
JPH024945A (en) * 1988-06-10 1990-01-09 Hitachi Ltd Austenitic steel exposed to high temperature and high pressure water under neutron irradiation
US5306357A (en) * 1993-02-04 1994-04-26 Carondelet Foundry Company Sulfuric acid resistant alloys
JP2016537656A (en) * 2013-11-19 2016-12-01 ジョイント ストック カンパニー“アクメ−エンジニアリング” Fuel rod cladding tube, fuel rod and fuel assembly

Similar Documents

Publication Publication Date Title
EP1154027B1 (en) Heat-resistant alloy wire
EP0674721B1 (en) Thermomechanical processing of metallic materials
US4975131A (en) High strength hot worked stainless steel
JPH1171643A (en) Austeno-ferritic stainless steel extremely low in nicel content and excellent in tensile elongation
US4049431A (en) High strength ferritic alloy
EP0157509B1 (en) Sintered stainless steel and production process therefor
JP2002212634A (en) Method for producing austenitic heat resistant steel tue having excellent creep rupture strength
JP2952929B2 (en) Duplex stainless steel and method for producing the same
JPH08225833A (en) Production of martensitic heat resistant steel excellent in high temperature creep strength
JPS60155652A (en) Heat resistant steel
US3694271A (en) Method of producing articles of composite material,and resulting products
US4464210A (en) Ni-Cr-W alloy having improved high temperature fatigue strength and method of producing the same
US4259126A (en) Method of making razor blade strip from austenitic steel
JPH06322489A (en) Steel tube for boiler excellent in steam oxidation resistance
JPS5940901B2 (en) Corrosion-resistant austenitic stainless steel
JP3501573B2 (en) Ferritic stainless steel pipe excellent in secondary work crack resistance and method for producing the same
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP2017020054A (en) Stainless steel and stainless steel tube
JPS6053108B2 (en) Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance
US4435231A (en) Cold worked ferritic alloys and components
JP2688392B2 (en) Method for producing martensitic stainless steel with low cracking susceptibility
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP4207447B2 (en) Stainless steel rebar and manufacturing method thereof
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP3118566B2 (en) Precipitation-hardened martensitic iron-base heat-resistant alloy