JPS60155438A - Manufacture of fiber-reinforced plastic container - Google Patents

Manufacture of fiber-reinforced plastic container

Info

Publication number
JPS60155438A
JPS60155438A JP59011039A JP1103984A JPS60155438A JP S60155438 A JPS60155438 A JP S60155438A JP 59011039 A JP59011039 A JP 59011039A JP 1103984 A JP1103984 A JP 1103984A JP S60155438 A JPS60155438 A JP S60155438A
Authority
JP
Japan
Prior art keywords
resin
port
injected
deairing
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59011039A
Other languages
Japanese (ja)
Inventor
Eiji Koyanagi
小柳 瑛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59011039A priority Critical patent/JPS60155438A/en
Publication of JPS60155438A publication Critical patent/JPS60155438A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Insulating Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a high-strength FRP container by a method wherein a fiber material layer is covered with an outer die having a lower open end and an upper deairing port to form a circular space and after a vacuum deairing is done from the upper deairing port, a liquid resin is injected from the circular space. CONSTITUTION:Following an evacuation, a low-viscosity and long-time usable epoxy resin is injected from an injection port 8. The resin injected initially flows circumferentially in a space 7 and is retained down temporarily in the space 7. As the amount of the injected resin increases, the liquid surface thereof rise and then, reaches the rim of a glass cloth 2 all at once in the entire circumference thereof. Thereafter, the cloth is impregnated with the resin along the height by a capillary action while the remaining air is forced to discharge at the deairing port 5 corresponding to the capacity equivalent to that occupied by the resin. Thus, the impregnation is completed with the overflow of the resin at the deairing port 5 and subsequently, the resin is hardened by the ordinary resin hardening method.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は繊維強化プクステツク容器の!Il造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fiber reinforced plastic container! This invention relates to a manufacturing method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

核融合炉が実現するためには超電導ボロイダルコイルが
必要である。これと同時にコイルを格納する極低温用容
器のう□ず電流損な苓としなければならない。ボロイダ
ルコイルはパルス的電流変化が必要であり、従ってコイ
ル格納容器が尋電性であればうす電流の住起は避けられ
ず従つ″C損失が生ずる。コイルが超電導化されエネル
ギ損失が零となってもこの容器損失がある限り効率は悪
い。
Superconducting boloidal coils are necessary to realize a nuclear fusion reactor. At the same time, the cryogenic container housing the coil must be protected against eddy current loss. Voloidal coils require pulsed current changes, so if the coil containment vessel is superconducting, the build-up of thin current is unavoidable, resulting in C loss.The coil becomes superconducting and energy loss is zero. Even so, the efficiency is poor as long as there is this container loss.

このため絶縁性の容器か考えられるが以下の様な厳しい
仕様を満たさねばならない。
For this reason, an insulating container may be considered, but it must meet the following strict specifications.

■ 液体ヘリウムが充填される極低温下で亀裂が住じて
はならない。
■ Cracks must not live under the cryogenic temperatures filled with liquid helium.

■ 超電導コイルがクエンチし液体へリクムが気化した
際の高圧力で破裂しないこと。
■ The superconducting coil quenches and the liquid helicum does not rupture due to the high pressure that evaporates.

■ ガスヘリウムが透過しく−<いこと。■ Gas helium is transparent.

■ 断熱性に優れていること。■ It has excellent insulation properties.

これらの要求のうち■の仕様を済た丁ためには繊維強化
プラスチック(FRP)であることが必要である。しか
し容器形状は一般に円筒形となるため市販の積層板製造
技術ではカバーできない。
In order to meet specification (1) of these requirements, it is necessary to use fiber reinforced plastic (FRP). However, since the container shape is generally cylindrical, it cannot be covered by commercially available laminate manufacturing technology.

■の仕様を満たすため(二はマトリックス樹脂が均一に
分散していなければならず樹脂の溜り、あるいは突膝が
あると熱応力が集中し割れが生じる。
In order to meet the specifications (2), the matrix resin must be uniformly dispersed, and if there is a pool of resin or a knee, thermal stress will concentrate and cracks will occur.

■の仕様からも内部にククツク、ボイドがあってはなら
ない。
According to the specifications of ■, there should be no cracks or voids inside.

これらの要求に答える可能性としてはガラス繊維強化エ
ポキシ樹脂組成が考えられる。しかもボイドな含んでは
いけないことがら被含浸ガクス繊維層を真空脱気し樹脂
で置換する、いわゆる真空含浸方式を採用した製造法を
とらざるを得ない。
Glass fiber-reinforced epoxy resin compositions are considered as a possibility to meet these demands. Moreover, since voids must not be included, it is necessary to adopt a manufacturing method that employs a so-called vacuum impregnation method in which the gas fiber layer to be impregnated is vacuum degassed and replaced with resin.

しかし真空含浸方式に於ても強化繊維の積層方向によっ
て樹脂の含浸性に難易があり、ボイドがとり残される場
合が多い。
However, even in the vacuum impregnation method, resin impregnation is difficult depending on the direction in which the reinforcing fibers are laminated, and voids are often left behind.

〔発明の目的〕[Purpose of the invention]

本発明の目的は突膝を含まず、従って液体ヘリウム充填
容器として使用しても亀裂を生じず、ヘリウムガス透過
のしにくい信頼性の高い高強度のFRP容器の製造法を
提供することにある。
An object of the present invention is to provide a method for manufacturing a highly reliable, high-strength FRP container that does not include a protrusion, therefore does not crack even when used as a liquid helium-filled container, and is resistant to helium gas permeation. .

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明の製造方法において
は下部開口端を有する内型の外周に繊維質材料層を形成
し、この繊維質材料層の外側を下部開口端と上部脱気口
とを有する外型で覆い、前記内型および外型の下部開口
端によって挾まれて前記繊維質材料層の存在しない環状
空間を形成し、前記上部脱気口から真空脱気して前記環
状空間から前記繊維質材料層に液状樹脂を注入するよう
C;して、注入された樹脂を円周方向に導き繊維層への
樹脂浸入条件を周方向に均一とするものである。
In order to achieve the above object, in the manufacturing method of the present invention, a fibrous material layer is formed on the outer periphery of an inner mold having a lower open end, and the outside of this fibrous material layer is defined as a lower open end and an upper degassing port. and is sandwiched between the lower open ends of the inner mold and the outer mold to form an annular space in which the fibrous material layer does not exist, and vacuum degasses from the upper deaeration port to form the annular space. The liquid resin is injected into the fibrous material layer, and the injected resin is guided in the circumferential direction to make conditions for resin infiltration into the fibrous layer uniform in the circumferential direction.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面を参照し以下に説明する。 An embodiment of the present invention will be described below with reference to the drawings.

集4図は本発明の一実施例による製造方法の途中を示す
断面図である。内側含浸槽lの周囲にガラスクロス2が
巻回されている。内側含浸槽lはガラスクロスのマンド
レルを兼ねているので機械的に強固なものでなけれiな
らないが円筒部と半球頂部とは一体化していれば分割で
きるものであってもよい。ガラスクロス2は内側含浸槽
lの開放端部3のふちを残して巻き回しする。ガラスク
ロス2が巻回された外側にその外表面C:密着した外側
含浸槽4をかぶせる。外側含浸槽の反開放端頂上部には
脱気口5を設ける;内側および外側含浸槽1.4の開放
端部は端板6でシールする。ガ本装置は別途真空排気の
可能な大形タンクを設けてその内部に設置しても、また
本装置単独に運転してもよいが、ここでは別の真空タン
ク9内に設置した場合について各部の作用を説明する。
Figure 4 is a cross-sectional view showing the middle of a manufacturing method according to an embodiment of the present invention. A glass cloth 2 is wound around the inner impregnating tank 1. Since the inner impregnating tank 1 also serves as a mandrel for glass cloth, it must be mechanically strong, but it may be separable as long as the cylindrical part and the hemispherical top part are integrated. The glass cloth 2 is wound around the open end 3 of the inner impregnating tank 1 leaving the edges intact. The outer surface C of the glass cloth 2 is covered with an outer impregnating tank 4 that is in close contact with the outer surface of the wound glass cloth 2. A deaeration port 5 is provided at the top of the opposite open end of the outer impregnation tank; the open ends of the inner and outer impregnation tanks 1.4 are sealed with end plates 6. This device can be installed inside a large tank that can be evacuated separately, or can be operated independently, but here we will explain each part when installed in another vacuum tank 9. Explain the effect of

樹脂含浸前の含浸槽1.4内の真空引きは脱気口5、及
び樹脂注入口8の双方より行なわれる。真空引きに続い
て樹脂注入口8より低粘度で可使時間の長いエポキシ樹
脂が注入される。この時真空タンク9は真空引きが引続
き行なわれており従ってガラスクロス内の残存空気は上
部の脱気口5より排気される。注入された樹脂は空間7
においてまず円周方向(二流動しひとまず空間7内の下
方にとめおかれる。注入レシンが増すに従い液面は高く
なり、やがてガラスクロス2のふちに全円周で同時に到
達する。その後樹脂は毛細管作用により高さ方向に含浸
される樹脂で占有された容積分だけの残存空気は脱気口
5より押し出される。このようにして樹脂が脱気口5よ
りあふれ出た時をもって含浸は終了し、この後は通常知
られた樹脂の硬化工程に入る。
Vacuuming of the impregnating tank 1.4 before resin impregnation is performed through both the degassing port 5 and the resin injection port 8. Following vacuuming, an epoxy resin with low viscosity and a long pot life is injected from the resin injection port 8. At this time, the vacuum tank 9 continues to be evacuated, so that the remaining air in the glass cloth is exhausted from the upper degassing port 5. The injected resin is in space 7
At first, the liquid flows in the circumferential direction (the two flows are temporarily stopped at the lower part of the space 7. As the injected resin increases, the liquid level becomes higher and eventually reaches the edge of the glass cloth 2 at the same time around the entire circumference. After that, the resin flows into the capillary tube). Due to this action, the remaining air corresponding to the volume occupied by the resin impregnated in the height direction is pushed out from the deaeration port 5. In this way, when the resin overflows from the deaeration port 5, the impregnation ends. After this, a commonly known resin curing process begins.

本実施例によれば空間7(二おいて注入樹脂が円周方向
にまんべんなく行きわたり、かつ端板が水平に置かれて
いればガラスクロス2のふちに樹脂が到達する時期は半
径、円周方向とも全く同時である。このためガラスクロ
ス2への樹脂の含浸条件はi所によらずすべて同一とな
る。また内、外側含浸槽1.4はガラスクロス2に密着
しているため樹脂の含浸供給は常にガラスクロス2のふ
ちに限られる。この結果、従来の真空含浸方式でボイド
生成の大きな原因の1つであったガラス積層方向の違い
による含浸性の差が問題とはならない。
According to this embodiment, if the injected resin spreads evenly in the circumferential direction in the space 7 (2) and the end plate is placed horizontally, the timing at which the resin reaches the edge of the glass cloth 2 is determined by the radius and circumference. Both directions are exactly the same. Therefore, the conditions for impregnating the glass cloth 2 with resin are the same regardless of the location. Also, since the inner and outer impregnating tanks 1.4 are in close contact with the glass cloth 2, the resin impregnation conditions are the same regardless of the location. The impregnating supply is always limited to the edge of the glass cloth 2. As a result, the difference in impregnating properties due to the difference in glass lamination direction, which was one of the major causes of void formation in the conventional vacuum impregnating method, does not become a problem.

即ち積層面方向のみの含浸であるためボイドな残存させ
る可能性が減少する。また下方から樹脂を注入し、上方
から排気しているため置換される残存空気は非常に取除
かれやすい。
That is, since the impregnation is performed only in the direction of the laminated surface, the possibility of voids remaining is reduced. Furthermore, since the resin is injected from below and exhausted from above, residual air to be replaced is very easily removed.

他の実施例として強化繊維としてガラス口−ビング又は
ガラスマットを使用しても同様ζニボイドの無いFRP
容器が得られる。使用する含浸樹脂としてはエポキシ樹
脂の他ポリエステル樹脂、ビニルエステ°ル樹脂も可能
である。
As another example, even if glass opening or glass mat is used as the reinforcing fiber, the same result can be obtained from FRP without ζ niboid.
A container is obtained. In addition to epoxy resin, polyester resin and vinyl ester resin can also be used as the impregnating resin.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、含浸槽の開放端部(:窒間を設
けるので、ボイドのないPRP容器の製造が可能となり
、従って液体ヘリウム充填容器として使用しても応力ひ
ずみによってり2ツクの生起することが無く、またヘリ
ウム透過のしζ二くい高強度FRP容器が製作できる。
According to the method of the present invention, since a gap is provided at the open end of the impregnation tank, it is possible to manufacture a PRP container without voids. A high-strength FRP container that does not allow helium to pass through can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

l・・・内側含浸槽 2・・・ガラスクロス3・・・開
放端部 4・・・外側含浸槽5・・・脱気口 6・・・
端板 7・・・窒間 8・・・樹脂注入口。 代理人 弁理士 則 近 憲 佑
l...Inner impregnating tank 2...Glass cloth 3...Open end 4...Outer impregnating tank 5...Deaeration port 6...
End plate 7... Nitoma 8... Resin injection port. Agent Patent Attorney Noriyuki Chika

Claims (1)

【特許請求の範囲】[Claims] 下部開口端を有する内型の外周に繊維質材料層を形成し
、この繊維質材料層の外側を下部開口端と上部脱気口と
を有する外型で覆い、前記内型および外型の下部開口端
によって挾まれて前記繊維質材料層の存在しない環状空
間を形成し、前記上部脱気口から真窒脱気して前記環状
空間から前記繊維質材料層に液状樹脂を注入することを
特徴とする繊維強化プラスチツク容器の製造方法。
A fibrous material layer is formed around the outer periphery of an inner mold having a lower open end, and an outer mold having a lower open end and an upper degassing port covers the outside of the fibrous material layer, and the lower parts of the inner mold and the outer mold are covered with an outer mold having a lower open end and an upper degassing port. An annular space is formed between the open ends in which the fibrous material layer does not exist, and true nitrogen is degassed from the upper deaeration port, and liquid resin is injected from the annular space into the fibrous material layer. A method for manufacturing a fiber-reinforced plastic container.
JP59011039A 1984-01-26 1984-01-26 Manufacture of fiber-reinforced plastic container Pending JPS60155438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59011039A JPS60155438A (en) 1984-01-26 1984-01-26 Manufacture of fiber-reinforced plastic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011039A JPS60155438A (en) 1984-01-26 1984-01-26 Manufacture of fiber-reinforced plastic container

Publications (1)

Publication Number Publication Date
JPS60155438A true JPS60155438A (en) 1985-08-15

Family

ID=11766910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011039A Pending JPS60155438A (en) 1984-01-26 1984-01-26 Manufacture of fiber-reinforced plastic container

Country Status (1)

Country Link
JP (1) JPS60155438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320302A2 (en) * 1987-12-10 1989-06-14 General Electric Company Method and apparatus for making a fiber reinforced composite article
JPH04296538A (en) * 1991-03-26 1992-10-20 Ngk Insulators Ltd Manufacture of fiber reinforced plastics
JPH06286004A (en) * 1993-04-06 1994-10-11 Three D Compo Res:Kk Method and apparatus for double-sealed molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320302A2 (en) * 1987-12-10 1989-06-14 General Electric Company Method and apparatus for making a fiber reinforced composite article
JPH04296538A (en) * 1991-03-26 1992-10-20 Ngk Insulators Ltd Manufacture of fiber reinforced plastics
JPH06286004A (en) * 1993-04-06 1994-10-11 Three D Compo Res:Kk Method and apparatus for double-sealed molding

Similar Documents

Publication Publication Date Title
US8316528B2 (en) Method for making electrical windings for transformers and electrical apparatus
US4648929A (en) Magnetic core and methods of consolidating same
US3979530A (en) Polyester fiber-vacuum impregnated epoxy resin insulation system for high voltage transformers
CN109109407B (en) A kind of insulating composite material and preparation method thereof
JPH05135936A (en) Apparatus and method for impregnation for superconductive winding
JPS60155438A (en) Manufacture of fiber-reinforced plastic container
JP4170546B2 (en) Insulating coil, resin impregnation apparatus and resin impregnation method
US3532575A (en) Method of manufacturing a laminated material for electrical insulator
EP2339723B1 (en) Method for realising insulation around a conductive bar
US20080248283A1 (en) Expanded polymer material for cryogenic applications apparatus and method
US4707678A (en) Consolidated magnetic core containing amorphous metal
JPS61263714A (en) Curing of resin-impregnated product
JP2000294087A (en) Resin mold vacuum valve
JP2011255581A (en) Method of manufacturing tank
JP2622053B2 (en) Manufacturing method of coil for electromagnet
JPH10295063A (en) Method for resin-impregnation and hardening of electrical apparatus winding
JPH05315126A (en) Mold coil and manufacture thereof
JP2007251184A (en) Insulating coil, device of curing resin, and method of curing resin
JPH07335948A (en) Method and apparatus for manufacture of thermal-type permanent current switch
JP2007234692A (en) Resin impregnation method for superconducting coil
JPH02228005A (en) Manufacture of superconducting coil
CN220021466U (en) Battery box cover and battery pack
JPS5857711A (en) Resin formed coil for propulsion of levitated rall way
JP2022047888A (en) Method for manufacturing resin mold coil
JP2007035835A (en) Manufacturing method of inner tub of cryostat