JPH04296538A - Manufacture of fiber reinforced plastics - Google Patents

Manufacture of fiber reinforced plastics

Info

Publication number
JPH04296538A
JPH04296538A JP3062135A JP6213591A JPH04296538A JP H04296538 A JPH04296538 A JP H04296538A JP 3062135 A JP3062135 A JP 3062135A JP 6213591 A JP6213591 A JP 6213591A JP H04296538 A JPH04296538 A JP H04296538A
Authority
JP
Japan
Prior art keywords
resin
fiber cloth
voids
cloth
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3062135A
Other languages
Japanese (ja)
Other versions
JPH0767751B2 (en
Inventor
Shigeo Ishino
茂雄 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3062135A priority Critical patent/JPH0767751B2/en
Publication of JPH04296538A publication Critical patent/JPH04296538A/en
Publication of JPH0767751B2 publication Critical patent/JPH0767751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To simply manufacture FRP free from voids. CONSTITUTION:Fiber cloth 31 is set to a mold 11 and, at the time of the impregnation of the fiber cloth 31 with a liquid resin, the level of the liquid resin is raised at a rising speed 0.5-2.5 times the initial rising speed of the level of the liquid resin rising above the fiber cloth 31 by a capillary phenomenon.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はファイバークロスにレ
ジンを含浸させるようにした繊維強化プラスチックス(
以下、単にFRPという)の製造方法に関する。
[Industrial Application Field] This invention is a fiber-reinforced plastic made by impregnating fiber cloth with resin.
The present invention relates to a manufacturing method of FRP (hereinafter simply referred to as FRP).

【0002】0002

【従来の技術】FRPは、ガラスファイバー等のファイ
バークロスにエポキシ樹脂等の合成樹脂を含浸させて製
造されるものである。そして、一般には前記ファイバー
クロスを金型内にセットして同金型内をほぼ真空にし、
前記合成樹脂をファイバークロスに含浸させるという方
法が行われている。この場合、たとえほぼ真空の金型内
で含浸を行っても合成樹脂内あるいはファイバー間にボ
イド(気泡)が混入されるおそれがある。当然、ボイド
の混入はFRPの電気特性等の低下の原因になる。
2. Description of the Related Art FRP is manufactured by impregnating fiber cloth such as glass fiber with synthetic resin such as epoxy resin. Then, generally, the fiber cloth is set in a mold and the inside of the mold is almost evacuated.
A method has been used in which fiber cloth is impregnated with the synthetic resin. In this case, even if impregnation is performed in a nearly vacuum mold, voids (bubbles) may be mixed into the synthetic resin or between the fibers. Naturally, the inclusion of voids causes deterioration of the electrical characteristics, etc. of FRP.

【0003】0003

【発明が解決しようとする課題】このため、従来は金型
内の真空度を可能な限り高くするための手段を講じたり
、合成樹脂の含浸に時間をかけたりしていた。従って、
従来のFRPの製造方法においては、製造設備が複雑に
なったり、製造に時間がかかったりするという問題があ
った。
[Problems to be Solved by the Invention] Conventionally, therefore, measures have been taken to increase the degree of vacuum within the mold as high as possible, or it has taken time to impregnate the mold with synthetic resin. Therefore,
Conventional FRP manufacturing methods have had problems in that manufacturing equipment is complicated and manufacturing takes time.

【0004】0004

【課題を解決するための手段】以上の目的を達成するた
め、請求項1の発明では、ファイバークロスを成形金型
内にセットし、そのファイバークロスに液状のレジンを
含浸させるのに際し、毛細管現象によりファイバークロ
ス上を上昇するレジン液面の初期の上昇速度の0.5〜
2.5倍の上昇速度をもってレジン液面を上昇させるよ
うにした。
[Means for Solving the Problems] In order to achieve the above object, in the invention of claim 1, a fiber cloth is set in a molding die, and when the fiber cloth is impregnated with liquid resin, capillary action is applied. 0.5 to 0.5 of the initial rate of rise of the resin liquid level on the fiber cloth due to
The resin liquid level was raised at a rising speed of 2.5 times.

【0005】[0005]

【作用】従って、この発明では、毛細管現象によりレジ
ン液面が均一に上昇し、ボイドが発生することはない。 従って、金型内の真空度がそれほど高くなくても、ある
いは時間をかけなくても、ボイドのない含浸を行うこと
が出来る。
[Operation] Therefore, in this invention, the resin liquid level rises uniformly due to capillary action, and no voids are generated. Therefore, void-free impregnation can be performed even if the degree of vacuum in the mold is not so high or without taking much time.

【0006】[0006]

【実施例】以下、この発明を具体化した実施例を図1〜
図6に基づいて詳細に説明する。一般に、ファイバーク
ロスは、5〜20μの単繊維を50〜800本集束しヤ
ーンを構成する。そして、このヤーンを織機にかけてク
ロスに加工される。含浸に用いるこれらのファイバーク
ロスはレジンとの接着性、含浸性を考慮して表面処理が
なされるのが一般的である。
[Example] Below, an example embodying this invention will be shown in Figs.
This will be explained in detail based on FIG. 6. Generally, fiber cloth is made up of 50 to 800 single fibers of 5 to 20 μm bundled together to form a yarn. The yarn is then run on a loom and processed into cloth. These fiber cloths used for impregnation are generally surface-treated in consideration of adhesion with resin and impregnability.

【0007】従って、表面処理剤の種類、含浸させる樹
脂の種類及び粘度等により、ファイバークロスに対する
レジンの含浸性は変化する。このため発明者は、毛細管
現象に基づくレジン含浸性の試験を行い、図3〜図5の
試験結果を得た。そこで、この試験と、その結果につい
て説明する。図3(a)〜図3(c)は、大気圧の下で
シャーレ(図示せず)にファイバークロスよりなる各試
料4を立設保持するとともに、同シャーレ内にエポキシ
樹脂液5(粘度:20cpoise)を所定深さまで流
し込み、毛細管現象を観察した試験結果を示している。 ここで、図3(a)の試料4はポリエステルファイバー
からなる平織りクロス、図3(b)の試料はガラスファ
イバーからなる平織りクロス、図3(c)の試料はガラ
スファイバーからなる目抜き平織りクロスである。
[0007] Therefore, the impregnability of the resin into the fiber cloth changes depending on the type of surface treatment agent, the type and viscosity of the resin to be impregnated, etc. Therefore, the inventor conducted a resin impregnation test based on capillarity, and obtained the test results shown in FIGS. 3 to 5. Therefore, this test and its results will be explained. 3(a) to 3(c), each sample 4 made of fiber cloth is held upright in a Petri dish (not shown) under atmospheric pressure, and an epoxy resin liquid 5 (viscosity: 20 cpoise) was poured to a predetermined depth and the capillary phenomenon was observed. Here, sample 4 in Fig. 3(a) is a plain weave cloth made of polyester fibers, the sample in Fig. 3(b) is a plain weave cloth made of glass fibers, and the sample in Fig. 3(c) is a plain weave cloth made of glass fibers. It is.

【0008】これによると、各試料4共に液面から上方
の約5mmまではボイド6の形成が見られない。この理
由は、毛細管現象で上昇するレジンのスピードは、ヤー
ン内とヤーン間とでは異なるものの、液面近傍ではその
スピード差が少ないため、レジンの上昇速度が比較的均
一になり、かつレジンが毛細管現象の作用だけで上昇す
るため、クロス上の空気は押し上げられるのみで、クロ
ス上には滞留しないためであると考えられる。
[0008] According to this, in each sample 4, the formation of voids 6 is not observed up to about 5 mm above the liquid surface. The reason for this is that although the speed of the resin rising due to capillary action is different between yarns and yarns, the speed difference is small near the liquid surface, so the rising speed of the resin is relatively uniform, and the resin rises due to the capillary action. This is thought to be because the air above the cloth is only pushed up and does not stay on the cloth because it rises only by the action of the phenomenon.

【0009】一方、液面から5mm以上の部位ではボイ
ドが形成された状態でレジンが含浸されている。これは
上昇するに従って、ヤーン内の上昇速度とヤーン間の上
昇速度との差が大きくなるため、これに伴って、早く上
昇したレジンが未含浸部分を取り囲み、ここに気泡が閉
じ込められるためと考えられる。また、図3(a)(b
)の試料のボイドは小さく、同図(c)の試料のボイド
は大きい。これは、目抜き平織りは平織りに比べヤーン
間の空間が大きいため、この大きな空間では特に樹脂の
上昇速度遅くなり、大きな気泡が閉じ込められ易くなる
ためであると考えられる。
On the other hand, the resin is impregnated with voids formed in areas 5 mm or more from the liquid level. This is thought to be because as the yarn rises, the difference between the rising speed within the yarn and the rising speed between the yarns increases, and as a result, the resin that rises quickly surrounds the unimpregnated area, trapping air bubbles here. It will be done. In addition, Fig. 3(a)(b)
The voids in the sample shown in ) are small, and the voids in the sample shown in (c) are large. This is thought to be because the open plain weave has a larger space between the yarns than the plain weave, and in this large space, the rising speed of the resin is particularly slow, making it easier for large air bubbles to be trapped.

【0010】この試験結果からクロスの種類に影響され
ること無く、毛細管現象によりレジンを含浸させた場合
には、レジン液面から上方5mm以内ではボイドが発生
しないことを確認した。また、図4,図5は、図3に示
した試験条件と同様の試験を行い、毛細管現象により上
昇するエポキシ樹脂液の上昇高さと時間との関係を表し
たものである。図4、図5は、ポリエステルよりなるフ
ァイバークロス及びガラスよりなるファイバークロスに
エポキシ樹脂液を含浸させ、10分経過するまでのエポ
キシ樹脂液の含浸する上昇高さを示すとともに、各試料
における初期の液面の上昇速度を求めたものである。
[0010] From the results of this test, it was confirmed that voids do not occur within 5 mm above the resin liquid level when resin is impregnated by capillary action, regardless of the type of cloth. Further, FIGS. 4 and 5 show the relationship between the rising height of the epoxy resin liquid rising due to capillary action and time after conducting a test similar to the test conditions shown in FIG. 3. Figures 4 and 5 show the rising height of the epoxy resin solution until 10 minutes have passed when a fiber cloth made of polyester and a fiber cloth made of glass are impregnated with the epoxy resin solution, as well as the initial height of each sample. This is the rate at which the liquid level rises.

【0011】さらに、発明者は、大気圧の下でガラス製
シリンダに長さ10cmの各試料を立てて保持し、毛細
管現象により上昇するエポキシ樹脂液と、流し込んだエ
ポキシ樹脂液の液面との差が生じないようにエポキシ樹
脂を流し込む試験を行った。この結果、長さ10cmの
各試料のいずれもボイドを発生すること無く含浸するこ
とを確認した。
Furthermore, the inventor held each sample with a length of 10 cm in a glass cylinder under atmospheric pressure, and measured the difference between the epoxy resin liquid rising due to capillary action and the liquid level of the poured epoxy resin liquid. A test was conducted in which epoxy resin was poured to ensure that no difference occurred. As a result, it was confirmed that each sample having a length of 10 cm was impregnated without generating any voids.

【0012】以上の試験から、 A  毛細管現象のみによる含浸では、液面から上方5
mm以下ではボイドを生じることが無い。 B  毛細管現象による含浸速度に合わせて、液面を上
昇させるとボイドを生じることがない。 以上の二つの知見が得られた。
[0012] From the above tests, it was found that A. In impregnation only by capillary action, the
If the thickness is less than mm, voids will not occur. B: Voids will not occur if the liquid level is raised to match the impregnation rate due to capillary action. The above two findings were obtained.

【0013】以下、この知見に基づいた実施例を図1,
図2により説明する。図1は成形金型11と、芯材12
と、この成形金型11及び芯材12により成形されたF
RP13とを示す。成形金型11は、円筒部14と、そ
の下部及び上部に螺合された下キャップ15及び上キャ
ップ16とからなる。この成形金型11は図示しない加
熱装置内に立設される。下キャップ15には、レジンを
注入するための注入管17が、下キャップには空気を排
出するための排気管18が接続されている。両キャップ
15、16の内側中心には芯材18の端部を収納する凹
部19、20がそれぞれ形成されている。
Examples based on this knowledge are shown in FIG.
This will be explained with reference to FIG. Figure 1 shows a molding die 11 and a core material 12.
The F formed by this molding die 11 and core material 12
RP13 is shown. The molding die 11 includes a cylindrical portion 14, and a lower cap 15 and an upper cap 16 screwed to the lower and upper portions of the cylindrical portion 14. This molding die 11 is installed upright in a heating device (not shown). An injection pipe 17 for injecting resin is connected to the lower cap 15, and an exhaust pipe 18 for discharging air is connected to the lower cap. Recesses 19 and 20 for accommodating the ends of the core material 18 are formed at the centers of the inner sides of both caps 15 and 16, respectively.

【0014】注入管17にはレジンを送り出すためのレ
ジンタンク21が連結され、また排気管18には真空ポ
ンプ22の吸入側が連結されている。レジンタンク21
内には液状の熱硬化性エポキシ樹脂からなるレジンが貯
留される。また、レジンタンク21にはレジンに混入さ
れた空気を排出するための真空ポンプ23と、レジンの
撹拌装置24が設けられている。前記注入管17の中間
にはチューブポンプ25が配置され、レジンを成形金型
11内に一定量ずつ供給可能としている。また、排気管
18の途中には、成形金型11からオーバーフローした
レジンを補集する溜26が配置されている。32〜36
はバルブである。
A resin tank 21 for delivering resin is connected to the injection pipe 17, and a suction side of a vacuum pump 22 is connected to the exhaust pipe 18. Resin tank 21
A resin made of liquid thermosetting epoxy resin is stored inside. Further, the resin tank 21 is provided with a vacuum pump 23 for discharging air mixed in the resin, and a resin stirring device 24. A tube pump 25 is disposed in the middle of the injection pipe 17, and is capable of supplying a constant amount of resin into the molding die 11. Further, a reservoir 26 is arranged in the middle of the exhaust pipe 18 to collect resin overflowing from the molding die 11. 32-36
is a valve.

【0015】次に、前記のように構成された装置により
FRPを製造する方法について説明する。まず、円筒状
の芯材12の外周にこれより幅の狭い長尺のクロス31
を所定数巻付ける。このクロス31としては、ポリエス
テルファイバークロスやガラスファイバークロスが用い
られる。このクロス31は、厚さ0、21ミリメートル
、質量206グラム平方センチメートルの平織りガラス
ファイバーで、表面処理はシランカップリング処理した
ものである。
Next, a method for manufacturing FRP using the apparatus configured as described above will be explained. First, a long cross 31 with a narrower width is attached to the outer periphery of the cylindrical core material 12.
Wrap it around the specified number of times. As this cloth 31, polyester fiber cloth or glass fiber cloth is used. This cloth 31 is made of plain-woven glass fiber with a thickness of 0.21 mm and a mass of 206 grams square centimeter, and its surface is subjected to silane coupling treatment.

【0016】次に、このように形成されたコア41は、
図1に示すように、上下のキャップ15、16の凹部1
9、20に芯材12の上下両端部がそれぞれ嵌め込まれ
ることにより、成型金型11内に立設されてセットされ
る。以上のようにしたら、バルブ35が閉じた状態で真
空ポンプ22が駆動されて、成形金型内の空気が排出さ
れるとともに、図示しない加熱装置により成形金型11
が加熱される。また、レジンタンク21内に液状レジン
が溜められた状態で、撹拌装置24及び真空ポンプ23
が駆動されて、レジンが真空撹拌脱泡される。真空撹拌
脱泡終了後にバルブ32が閉じられ撹拌装置24及び真
空ポンプ23が停止され、バルブ34及びバルブ36が
開けられる。
Next, the core 41 formed in this way is
As shown in FIG. 1, the recesses 1 of the upper and lower caps 15 and 16
Both upper and lower ends of the core material 12 are fitted into the upper and lower ends of the core material 12, respectively, so that the core material 12 is erected and set within the molding die 11. After doing the above, the vacuum pump 22 is driven with the valve 35 closed to exhaust the air inside the mold, and a heating device (not shown) is used to remove the mold from the mold.
is heated. In addition, with the liquid resin stored in the resin tank 21, the stirring device 24 and the vacuum pump 23
is driven to vacuum agitate and defoam the resin. After the vacuum stirring and defoaming is completed, the valve 32 is closed, the stirring device 24 and the vacuum pump 23 are stopped, and the valves 34 and 36 are opened.

【0017】次いで、チューブポンプ25が駆動されて
所定量の液状レジンが成形金型11内に供給される。成
型金型11内に液状レジンが充填された後、チューブポ
ンプ25を停止してバルブ34、36を閉じる。そして
、真空ポンプ22が停止され、バルブ35が開放され、
この状態で液状レジンが硬化される。十分に熱硬化され
た後、上キャップ16を取り外し、コア41を成形金型
11から取り出して、ボイドの有無を調べた。
Next, the tube pump 25 is driven to supply a predetermined amount of liquid resin into the molding die 11. After the liquid resin is filled into the molding die 11, the tube pump 25 is stopped and the valves 34 and 36 are closed. Then, the vacuum pump 22 is stopped, the valve 35 is opened,
In this state, the liquid resin is cured. After sufficient heat curing, the upper cap 16 was removed, the core 41 was taken out from the mold 11, and the presence or absence of voids was examined.

【0018】上記した方法により、試料1〜試料3の含
浸試験を行った。その各試料は、図6に示す通りである
。ここで、供給されるレジンはエポキシ樹脂の分子量の
異なるジグリシジルエーテル型樹脂を混合して粘度を調
整し、これに酸無水物硬化剤を加えたものを含浸樹脂と
した。また、初期の毛細管上昇速度は、図5のデータを
求めた場合と同様にして、各試料の毛細管上昇高さと経
過時間との関係から求めた。
An impregnation test was conducted on Samples 1 to 3 using the method described above. Each sample is as shown in FIG. Here, the supplied resin was a mixture of epoxy resins of diglycidyl ether type resins having different molecular weights to adjust the viscosity, and an acid anhydride curing agent was added thereto to form an impregnated resin. In addition, the initial capillary rise speed was determined from the relationship between the capillary rise height and the elapsed time for each sample in the same manner as when the data in FIG. 5 was obtained.

【0019】また、含浸された各試料1〜3を観察し、
ボイドの存在を調査した。この結果、液面上昇速度(B
)と初期の毛細管上昇速度(A)との比B/Aが3.0
の試料1,9では、筒状のボイドが発生していた。また
比B/Aが0.5未満の試料5,13では球状のボイド
が発生していた。一方、比B/Aが0.5〜3.0未満
の範囲にある試料2〜4,6〜8,10〜12では、ボ
イドの発生が見られなかった。
[0019] Also, each impregnated sample 1 to 3 was observed,
We investigated the existence of voids. As a result, the liquid level rise rate (B
) and the initial capillary rising speed (A), the ratio B/A is 3.0
In Samples 1 and 9, cylindrical voids were generated. In addition, spherical voids were generated in samples 5 and 13 in which the ratio B/A was less than 0.5. On the other hand, no voids were observed in samples 2 to 4, 6 to 8, and 10 to 12 in which the ratio B/A was in the range of 0.5 to less than 3.0.

【0020】これから、クロス中を毛管現象により上昇
する毛管液面の上昇速度の0.5〜3.0の範囲内の上
昇速度をもってレジン液面を上昇した試料試料2〜4,
6〜8,10〜12では、ボイドを発生させること無く
含浸できることが判明した。この実施例では、レジン含
浸の際に成形金型11内を真空とした例を示したが、必
ずしも真空とする必要はなく、上キャップ14の上部に
エア抜きを設ける構成としてもよい。
From now on, samples 2 to 4, in which the resin liquid level rose at a rising rate within the range of 0.5 to 3.0 of the rising rate of the capillary liquid level rising in the cloth due to capillary action,
It was found that samples Nos. 6 to 8 and 10 to 12 could be impregnated without generating voids. Although this embodiment shows an example in which the inside of the molding die 11 is evacuated during resin impregnation, it is not necessarily necessary to evacuate the interior, and an air vent may be provided at the top of the upper cap 14.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、この発
明では、成形金型内を可及的に真空にする複雑な構成の
手段を設けなくても、あるいは含浸に長時間をかけなく
てもクロスに対して合成樹脂をボイドが生じることなく
含浸させることが可能になるという効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention does not require the provision of a complicated means for evacuating the inside of the mold as much as possible, or the need to spend a long time on impregnation. Also, it is possible to impregnate the synthetic resin into the cloth without creating voids.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】クロスを装着した状態の成形金型の断面図であ
る。
FIG. 1 is a sectional view of a molding die with a cloth attached thereto.

【図2】製造装置の管路図である。FIG. 2 is a pipeline diagram of the manufacturing device.

【図3】レジンの含浸状態を示す説明図である。FIG. 3 is an explanatory diagram showing a state of resin impregnation.

【図4】毛細管現象により上昇するレジン液面と時間と
の関係を示す表図である。
FIG. 4 is a table showing the relationship between the resin liquid level rising due to capillary action and time.

【図5】毛細管現象により上昇するレジン液面と時間と
の関係を示すグラフ図である。
FIG. 5 is a graph showing the relationship between the resin liquid level rising due to capillary action and time.

【図6】試料の含浸試験を示す表図である。FIG. 6 is a table showing a sample impregnation test.

【符号の説明】[Explanation of symbols]

11  成形金型 13  FRP 31  クロス 11 Molding mold 13 FRP 31 Cross

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ファイバークロスを成形金型内にセッ
トし、そのファイバークロスに液状のレジンを含浸させ
るのに際し、毛細管現象によりファイバークロス上を上
昇するレジン液面の初期の上昇速度の0.5〜2.5倍
の上昇速度をもってレジン液面を上昇させることを特徴
とする繊維強化プラスチックスの製造方法。
Claim 1: When a fiber cloth is set in a mold and the fiber cloth is impregnated with liquid resin, the initial rate of rise of the resin liquid level rising above the fiber cloth due to capillary action is 0.5. A method for producing fiber-reinforced plastics, characterized in that the resin liquid level is raised at a rising speed of ~2.5 times.
JP3062135A 1991-03-26 1991-03-26 Manufacturing method of fiber reinforced plastics Expired - Lifetime JPH0767751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062135A JPH0767751B2 (en) 1991-03-26 1991-03-26 Manufacturing method of fiber reinforced plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062135A JPH0767751B2 (en) 1991-03-26 1991-03-26 Manufacturing method of fiber reinforced plastics

Publications (2)

Publication Number Publication Date
JPH04296538A true JPH04296538A (en) 1992-10-20
JPH0767751B2 JPH0767751B2 (en) 1995-07-26

Family

ID=13191338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062135A Expired - Lifetime JPH0767751B2 (en) 1991-03-26 1991-03-26 Manufacturing method of fiber reinforced plastics

Country Status (1)

Country Link
JP (1) JPH0767751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565162A (en) * 1994-09-30 1996-10-15 Composite Manufacturing & Research Inc. Method for manufacturing a fiber reinforced composite article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155438A (en) * 1984-01-26 1985-08-15 Toshiba Corp Manufacture of fiber-reinforced plastic container
JPH01237124A (en) * 1988-03-18 1989-09-21 Nissei Plastics Ind Co Molding method for fiber reinforced resin molded product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155438A (en) * 1984-01-26 1985-08-15 Toshiba Corp Manufacture of fiber-reinforced plastic container
JPH01237124A (en) * 1988-03-18 1989-09-21 Nissei Plastics Ind Co Molding method for fiber reinforced resin molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565162A (en) * 1994-09-30 1996-10-15 Composite Manufacturing & Research Inc. Method for manufacturing a fiber reinforced composite article

Also Published As

Publication number Publication date
JPH0767751B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US6565792B2 (en) Apparatus and method for use in molding a composite structure
US3530212A (en) Method of making glass resin laminates
US5248467A (en) Injection of molding material into molds that may contain cores and/or fibers
US5039465A (en) Method and apparatus for forming fiber reinforced plastic preforms from a wet slurry
JP3904833B2 (en) Vacuum assisted resin impregnation method for reinforcing materials using uniform pressure
US3480499A (en) Method of making low-void filament wound structures
US3674581A (en) Production of fiber reinforced composites
CN112912236B (en) Pouring device and method for producing fiber-reinforced composite parts
EP0725719B1 (en) Introducing a fluid into a cavity
CN103003057A (en) Mold for producing fiber-reinforced components
Evans et al. Vacuum pressure impregnation process in superconducting coils: Best practice
KR20170081341A (en) Frp boat and a manufacturing infusion metehod thereof
BR112012028259B1 (en) method for making a composite material part with a hollow core
JPH04296538A (en) Manufacture of fiber reinforced plastics
CN109060318A (en) A kind of ring encapsulating encapsulation experimental rig and process test method
CN104159725A (en) Device and method for producing a moulded part from a composite material
JP4170546B2 (en) Insulating coil, resin impregnation apparatus and resin impregnation method
CN212603544U (en) Equipment for manufacturing insulating rod
JP2606973B2 (en) Manufacturing method of capacitor bushing.
CN108017796A (en) A kind of prepreg and its manufacture method
JP2533340B2 (en) Method for producing RIM of thermosetting fiber reinforced composite
Rajkumar et al. Permeability and mechanical property correlation of bio based epoxy reinforced with unidirectional sisal fiber mat through vacuum infusion molding technique
CN108891042A (en) A kind of preparation method of processable solid buoyancy material
CN208688780U (en) A kind of ring encapsulating encapsulation experimental rig
US3473513A (en) Roving impregnator for making lowvoid filament wound articles