JPS60155359A - Holeless polishing method of ceramic material - Google Patents

Holeless polishing method of ceramic material

Info

Publication number
JPS60155359A
JPS60155359A JP59009043A JP904384A JPS60155359A JP S60155359 A JPS60155359 A JP S60155359A JP 59009043 A JP59009043 A JP 59009043A JP 904384 A JP904384 A JP 904384A JP S60155359 A JPS60155359 A JP S60155359A
Authority
JP
Japan
Prior art keywords
polishing
polished
grain
abrasive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59009043A
Other languages
Japanese (ja)
Other versions
JPH0346264B2 (en
Inventor
Toshiaki Wada
和田 俊朗
Yoshiaki Katsuyama
勝山 義昭
Yasuteru Kakimoto
柿本 安照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59009043A priority Critical patent/JPS60155359A/en
Publication of JPS60155359A publication Critical patent/JPS60155359A/en
Publication of JPH0346264B2 publication Critical patent/JPH0346264B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To prevent a microbore from being disclosed, by polishing a surface of ceramic material by abrasive fluid of Al2O3, SiO2, diamond of higher hardness in a grain size below the specific value using Sn, Pb, etc. as a polisher under a specific lapping load. CONSTITUTION:An abrasive grain of fine dust dispersed in abrasive fluid, selecting a king of the grain and its dispersed quantity from Al2O3, SiO2, diamond in accordance with the melting point and hardness of a ceramic material because the grain of hardness higher than that of a material to be polished effectively acts, is formed to a grain size of 0.5mum or less polishing the material to be polished to fine surface roughness and decreasing the thickness of its layer which changes quality by polishing. While the surface roughness is improved by preventing the grain from its secondary agglomeration and powder from melting to adhere to the material to be polished, if glycol, sulfonated oil, etc. of 5% or less are added in order to enhance a dispersion effect to pure water. Next, a polisher, selecting its material from Sn, Pb, solder in accordance with the material to be polished and the abrasive grain of fine dust, is used at a lapping pressure of 0.5-2kg for ensuring rigidity of a polishing device and holding its accuracy of rotation. In such way, a plastic fluidized layer is formed, crushing a microbore and enabling the material to be holelessly polished.

Description

【発明の詳細な説明】 この発明は、レラミックス材料表面の精密研摩方法に係
り、微細気孔、すなわち、直径1珊以下のマイクロポア
を右するセラミックス材料表面を無孔化できる(σ1摩
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a precision polishing method for the surface of a Reramix material, which can make the surface of a ceramic material containing micropores, that is, micropores with a diameter of 1 coral or less, non-porous (relating to a σ1 polishing method). .

今日、磁気ヘッドは、A−ディオ用、VTRJIJの各
テープレコーダー、データーレコーダー、コンピュータ
ー用ディスク、ドラム等の磁気記録再生用として多用さ
れており、さらに今後は、オーディA用、VTR用の磁
気記HIs体のメタルテープ化やPCM記録方式化、あ
るいはコンピューターの畠速、高記録密度化が進められ
ている。イこで、かかる要求に対処するため、従来の巻
線型バ −ルクヘッドにかえて、ICテクノロジーを用
い、容易にマルチ1〜ラツク化、狭トラツク化が可能な
薄膜磁気ヘッドが最適と考えられている。
Today, magnetic heads are widely used for magnetic recording and reproduction of A-dio and VTR tape recorders, data recorders, computer disks, drums, etc., and in the future, magnetic heads will be used for magnetic recording and reproduction of A-dio and VTR tape recorders. Progress is being made in converting HIs to metal tapes, to PCM recording systems, and to increasing the speed and recording density of computers. Therefore, in order to meet these demands, instead of the conventional wire-wound bulk head, a thin film magnetic head that uses IC technology and can easily be made into a multi-layer magnetic head with a narrower track is considered to be the most suitable. There is.

この薄膜磁気ヘッドに使用する基板材料には、ソフトフ
ェライト等の軟質磁性4J 1’31あるいはN203
−TLC系材系材上うな緻密化された非磁性材料が使用
され、熱間静水圧プレス法やホラl−プレス法ににり製
造されている。
The substrate material used for this thin film magnetic head is soft magnetic 4J1'31 or N203 such as soft ferrite.
- TLC-based materials A densified non-magnetic material is used, and is manufactured by hot isostatic pressing or Hola l-pressing.

薄膜磁気ヘッドの製造に際して、是板拐料はその上に所
定のパターンを形成する必要から、すぐれた表面粗度を
有すること、表面に気孔等の欠陥の少ないことが要求さ
れている。例えば、再生用に用いられるMR型型成膜磁
気ヘッドはX[レメント厚みが数100人であり、基板
表面粗度は50Å以下に研摩されていることが必要であ
る。
In the production of thin film magnetic heads, it is necessary to form a predetermined pattern on the plate material, so it is required to have excellent surface roughness and to have few defects such as pores on the surface. For example, an MR type film-forming magnetic head used for reproduction has an X element thickness of several hundreds of layers, and the substrate surface must be polished to a roughness of 50 Å or less.

また、かかる表面粗度まで研摩加工されたものでも、加
工に1゛1′なう加工変質層が存在すると、月利本来の
バルク特性が満足されず、磁性月利の磁気特性の劣化、
非磁性月別に被6された薄膜の特性劣化を来たりので、
加工変質層の少ないことが必要である1゜ さらに(よ、々Aわ1011において、表1工6粗匪が
良好で加工歪みの少ない基板月別であっても、研1?加
工にJ5り表面にマイク[1ボアが多数露出Jると、金
目の薄I+!、!磁気ヘッドのパターンの微細化やマル
チ1〜ラツク化に伴ない、製造上および磁気l\ラッド
性上の問題を生じる。刀なわら、マイクロポア部におい
て」ンタクターの断線や710絡の恐れがあり、MR型
磁気ヘッドではストライブ幅が数μm1程度であるため
再生出力の低下が懸念され、また、該ボア近傍では残留
歪が存在して不均一な応力場が形成され、その上に形成
される磁性IQへの歪み転写の恐れがある。
In addition, even if the surface has been polished to such a roughness, if there is a 1'1' degraded layer in the process, the original bulk properties of the magnetic material will not be satisfied, and the magnetic properties of the magnetic material will deteriorate.
Non-magnetic properties may lead to deterioration of the properties of the coated thin film.
It is necessary to have a small amount of processed damaged layer.1゜Furthermore, in Table 1, the roughness of Table 1 is good and there is little processing distortion. When a large number of microphone holes are exposed, problems arise in terms of manufacturing and magnetic rad properties as the patterns of magnetic heads become finer and multi-layers become easier. However, there is a risk of disconnection of the contactor or 710 circuit in the micropore area.In MR type magnetic heads, the stripe width is about several micrometers, so there is a concern that the playback output will decrease. The presence of strain creates a non-uniform stress field, which may be transferred to the magnetic IQ formed above.

従来、薄膜磁気ヘッド基板材料の研摩には、ダイヤモン
ドポリッシュ払、メカノケミカルポリッシュ法(以下M
CP法という)が適用されていた。
Conventionally, diamond polishing and mechanochemical polishing (hereinafter M) have been used to polish thin film magnetic head substrate materials.
CP law) was applied.

ダイA7モンドボリツシ]法は、粒仔1μmh程位のグ
イ)7モンドパウダーを用いラッピッグ加工するもので
あり、加工に際して端面だれ等がなく形状精度誤差の少
ない利点があるが、表面粗度が数100人程度しか得ら
れず、加工変YJI層も100Å以上残77りる問題が
あった。
The die A7 Mondoboritsushi method involves lapping processing using Gui)7mondo powder with a particle size of about 1 μmh, and has the advantage of no edge surface sagging during processing and less error in shape accuracy, but the surface roughness is several 100. There was a problem that only about 100 angstroms of YJI layer could be obtained, and that more than 100 Å of processed YJI layer remained.

また、M CP法は、被(σIy′F−祠利より軟質で
被研摩U料と固相反応が促進されやづい微細粉を純水に
!:J、濁させた(σ1厚液を用い、クロス等のポリシ
【・−でラップ加Imるもので、被1σII?i+Jへ
の加工歪を抑制し、表面粗1臭も2〇八へ度の1量子オ
ーダーで加工でさる利点があり、加工歪が著しく少4[
り、マイクロポアのされめて少ないガラス月利Aゝ〕転
位などの格子欠陥の少ないsi、GGG、フエライ]−
等の単結晶IJ斜には最適のu1摩方法である。
In addition, the M CP method converts fine powder, which is softer than the target material (σIy'F) and is more likely to promote solid phase reaction with the material to be polished, into pure water! , cloth, etc., which is lapped with [・-] has the advantage of suppressing processing distortion to the target 1σII?i+J, and processing the surface roughness to the order of 1 quantum of 208°. Significantly less processing distortion 4[
[Si, GGG, Ferrite] with fewer lattice defects such as dislocations] -
The U1 polishing method is most suitable for single crystal IJ diagonals such as.

ところが、このMCP法を、熱間静水圧プレス法やボッ
トプレス法で得られた多結晶レラミックス祠斜のどとさ
^密度ではあるがマイクロポアの存在づるす板に適用づ
ると、同ボア近傍は不均一な応力場が形成されているた
め、ケミカル効果により同ボア部が選択的にエツチング
されやすく、月別に内在するマイクロポアがバルク内部
と同程度に表面に露出し−(しまう問題があった。また
、りL1スをボリッシ17に用いると、ボア部のダレや
(ノイド1ツチを生じ易く、マイクロポアの寸法も実際
以上に拡大されるという問題すあつlこ。
However, when this MCP method is applied to a polycrystalline Relamix grindstone plate obtained by the hot isostatic pressing method or the Botto pressing method, which has micropores although the density is low, Since a non-uniform stress field is formed in the material, the chemical effect tends to selectively etch the same bore area, causing the problem that the internal micropores are exposed on the surface to the same extent as inside the bulk. In addition, if the lithium L1 is used for the borish 17, there is a problem that sagging of the bore part or nodule is likely to occur, and the size of the micropore is enlarged more than it actually is.

この発明は、直径17zm以上のマイクロポアを右りる
レラミックスltA料の′Ffi密(σfl*7j法を
1」的とし、表面IIJ瓜5o八以下、加]二変質層厚
み100Å以下の精密平面か得られ、かつ月利表面のフ
ィクロボアの露出を防止し、事実上無孔化できる研摩方
法を目的としている。
This invention targets micropores with a diameter of 17 zm or more, and uses the σfl * 7j method as a target, and has a surface IIJ of less than 5 o 8 and a thickness of 100 Å or less for the altered layer. The object of the present invention is to provide a polishing method that can obtain a flat surface, prevent the exposure of phycropores on the surface, and make the surface virtually non-porous.

すなわら、この発明は、マイクロポアの存在りるセラミ
ックス月利表面を該月利より高砂度で粒経が0.5AI
In以下のM2O3、5j02.ダイヤモンドの単独ま
たは混合微粉末を2次凝集しないように純水に分11に
さホ゛((σI厚液とし、Sn、Pb、は/vだのいず
れかをボリッシャとしてラップ荷Ez O,5r4〜2
kgJで加圧回転さゼて研摩を施し、該月利表面に塑性
流動層を形成さ「、基板表面のマイクロポアを低減させ
ることを特徴とづるセラミックス月利の無孔化(tll
ll法である。
In other words, this invention has a ceramic surface with micropores that has a grain size of 0.5 AI with a sandiness higher than that of the ceramic surface.
M2O3 below In, 5j02. To prevent secondary agglomeration of diamond powder alone or mixed fine powder, dilute it in pure water for 11 minutes. 2
The ceramics are rotated and polished under pressure to form a plastic fluidized layer on the surface of the substrate.
This is the ll method.

従来のM CP法は、上記した如く、被(ill摩祠料
月利軟質で被(d1摩月IIと固相反応が促進されやJ
い微m粉を純水に懸濁させた研摩液を用い、クロス等の
ポリシト−でラップ加工づるもので、被(IlF摩祠へ
の加工歪を抑制し、例えば多結晶ノコ。ライトの場合は
、50八以下に加工でさるが、ラミカル効果によって、
不均一な応力場が形成されたマイクロポア部が選択的に
エツチングされや4く、月利に内在り゛るマイクロポア
がバルク内部とJiil程度に表面に露出し−Cしよう
ものであった。
As mentioned above, in the conventional MCP method, the solid phase reaction with the abrasive material (d1 and the abrasive material II) is promoted by the soft abrasive material.
Using an abrasive liquid made by suspending fine powder in pure water, lapping with a polystyrene such as a cloth suppresses processing distortion to the target (IIF abrasive, for example, a polycrystalline saw. In the case of light can be processed to less than 508, but due to the lamical effect,
The micropores where a non-uniform stress field was formed were likely to be selectively etched, and the micropores inherent in the material were exposed to the inside of the bulk and to the surface to the extent that -C was expected.

これに対して、この発明は、マイクロボ、−′を右する
レラミックス月利のtI!l畜(σIFj!、:最適で
、加工歪が少なくMCP法と同程度の表面IJ瓜が1イ
られかつマイクロポアを減少させることができるもので
あり、本発明研摩方法は次の1il+摩機構によると考
えられる。
On the other hand, in this invention, the tI! The polishing method of the present invention has the following 1il + polishing mechanism: it is optimal, has less processing distortion, has the same level of surface IJ as the MCP method, and can reduce micropores. This is thought to be due to the following.

すなわら、一般に、セラミックス材料の引掻きによる破
壊現象は脆性破壊現象を伴なうもので、極微11i11
+パウターによるセラミックスの高圧ラップの場合IJ
、有効砥粒先端どワークの間は超高圧的な作用が鋤い゛
(いると思われ、接触部表面は脆性から延性的な挙動を
示J遷移点の状態になり、塑tη変形を仔な)破壊が進
1jシ、塑性流動層が存在する人血形成がイラなわれ、
研摩加工が進行リ−るものど考えられる。
In other words, the fracture phenomenon caused by scratching of ceramic materials is generally accompanied by a brittle fracture phenomenon, and the microscopic 11i11
+ IJ for high-pressure wrapping of ceramics using powder
It is thought that there is an extremely high pressure action between the tip of the effective abrasive grain and the workpiece, and the contact surface changes from brittle to ductile behavior and enters the state of the J transition point, causing plastic tη deformation. ) The destruction progresses, and the formation of human blood in which a plastic fluidized layer exists is irritated.
It is possible that the polishing process is progressing.

以上の作用にJ、す、表面層に存在づるマイクロポアは
圧壊された状態になり、til+摩表面のマイクI」ボ
アはバルクに比べて箸しく低減されるのである。
Due to the above action, the micropores existing in the surface layer are crushed, and the micropores on the tiled surface are significantly reduced compared to the bulk.

この発明にJ3い(゛、1tll摩液に分散ざUる微わ
)未砥粒は、上記の塑性流動の考えから、砥粒ど被仙摩
411′41の加工点の温1臭より高い融点を持し、そ
の温度にd月ノる強度、覆なわち硬度が被(ill摩月
料の硬度よりI&いものか効果的に作用するため、(σ
1摩4るレラミックスU料の融点ど硬度に応じて、AI
ao3.5LOp 、ダイヤモンドより、種別及び分散
mを適宜選定づる。
According to the above-mentioned idea of plastic flow, the temperature of the unabrasive grains is higher than the temperature of the machining point of the abrasive grains 411'41. It has a melting point, and its strength, or hardness, is more effective than the hardness of the coating (ill), so (σ
Depending on the melting point and hardness of the Relamix U material, the AI
ao3.5LOp, the type and dispersion m are selected appropriately from diamond.

また、上記砥粒の粒径が0.5)tn+を越えると、加
工時の加工除去単位が大きくなり、塑性流動層厚みが大
きくなるため、表17ij組度が粗く、加」二変貿層1
ワみも増Jので好ましくない。また、純水への分散効果
を高めるため、グリコール、L]−1−油あるいはへキ
リメタリン酸ソーダを5%以下添加づると、2次凝集や
被rJI摩lへのパウダーの溶着が防止されて表面粗度
が向−1−する。さらに、?IIl 1?液の1.)目
を6〜8に笛理して、被(σ[産月とのクミカル反応を
抑制づることにJ、す、マイクロポアの低減化が向上す
る。
Furthermore, if the grain size of the abrasive grains exceeds 0.5)tn+, the unit of processing removal during processing becomes large and the thickness of the plastic fluidized layer becomes large, resulting in a roughness in Table 17ij and a 1
It also increases wrinkles, which is not desirable. In addition, in order to enhance the dispersion effect in pure water, adding 5% or less of glycol, L]-1-oil, or sodium hekylymetaphosphate prevents secondary agglomeration and welding of the powder to the RJI polish. The surface roughness is improved. moreover,? IIl 1? Liquid 1. ) By adjusting the eyes to 6 to 8, the reduction of micropores will be improved by suppressing the cumical reaction with (σ).

ボリッシキ!−の祠質は、Sn、Pb、はん1.:の中
がら被(IIl摩I拐負d3.J、び微粉末砥粒種に応
じて適宜選定ずればよい。
Bolishki! The abrasive qualities of - are Sn, Pb, and 1. : It may be selected as appropriate depending on the type of fine powder abrasive grains.

また、この発明の(σ1摩おりるラップI]−ツノ条イ
′1は、従来のタイA7モンドボリツシユよりも高圧ぐ
行なうことを特徴とじ 0.5kl、J以上の圧力によ
って、ポリラシャ−への砥粒の埋め込み深さが0,5k
iJ未満の低荷車に比べて十分深くなり、埋め込みが均
一となり、砥粒の転勤性も安定し、表面は成域的な引掻
ぎきfの集積された状態となるが、きず深さの(fU 
1lIliが可能で、50八以下の表面粗度が得られる
。また、2ki4を越える荷重は、ポリッシング装置の
剛性確保、回転精度が4!j ff1lいことがら、0
.5〜2に34のラップ圧力と覆る。
In addition, the (σ1 polishing lap I)-horn strip I'1 of this invention is characterized by being polished at a higher pressure than the conventional tie A7 polishing. Grain embedding depth is 0.5k
Compared to a low cart of less than iJ, the depth is sufficiently deep, the embedding is uniform, the transferability of abrasive grains is stable, and the surface is in a state where regional scratches f are accumulated, but the flaw depth ( fU
1lIli is possible, and a surface roughness of 508 or less can be obtained. In addition, for loads exceeding 2ki4, the rigidity of the polishing device is ensured and the rotation accuracy is 4! j ff1l bad things, 0
.. 5 to 2 to 34 lap pressure and cover.

以−トに、実施例を説明覆る。Examples will now be explained.

実施例1 被り1摩ナイには、だ(17jj静水J」ニブレス払で
昌密度化した50X sox 1n+mの多結晶NL 
Zn〕Iライ1〜(融点1500・〜1600℃、硬度
7(1(l目V)を用いた。この力祐I産月のマイクロ
ポア数は、微分干渉式顕微鏡(X 400イF’s> 
C−rJIl察しlコどiX ’l、105り4 テl
h ’Iこ。
Example 1 Polycrystalline NL of 50X sox 1n+m increased in density by nibless brushing (17jj Shisui J)
[Zn] Irai 1 ~ (melting point 1500~1600℃, hardness 7 (l eye V) was used. >
C-rJIlIlKoDoiX'l,105ri4Tel
h'Iko.

(σI I!X 8’iは、享q径0.02;m(7)
JV203(2000″C9200011V )微粉末
を純水に0.2wt%分散さけ、さらに、ヘキリーメタ
リン酸ソータを2wt%添加した。
(σI I!X 8'i is q diameter 0.02; m(7)
JV203 (2000''C9200011V) fine powder was dispersed in pure water at 0.2 wt%, and 2 wt% of hexyl metaphosphoric acid sorter was added.

ボリッシャには350 nunφのSnWを用い、ボリ
ッシト表面【J被研;g月を当接させ、両者をIIJ対
的に回転させて研摩した。このとき、0.7kiJのラ
ップ荷重をか1ノ、40rpi+で回転させ、100c
c /l+rの割合で研摩液を連続添加した。(本発明
Δ)研摩後の01131表面を表1lIi段差測定’i
a (1−alys −Lep 、 5tylus O
,1a+R)で表面粗度を測″Iiニジ、偏光解析装置
を使用してMCP面との相対加工変質B厚みを測定し、
さらに、v/I粉−「洋式顕微鏡(・マイクロポア数を
カウントシた。イの結果は第1表に示J。
SnW of 350 nunφ was used as the borisher, and the borissher surface [J to be polished; At this time, the wrap load of 0.7 kiJ was rotated at 40 rpi+ for 1 knot, and 100 c
Polishing fluid was added continuously at a ratio of c/l+r. (According to the present invention) 01131 surface after polishing Table 1lIi step measurement'i
a (1-alys-Lep, 5tylus O
, 1a + R) to measure the surface roughness, use an ellipsometer to measure the relative machining alteration B thickness with the MCP surface,
Furthermore, the number of micropores was counted using a Western-style microscope for V/I powder. The results are shown in Table 1.

さらに、上記の本発明Ai向いL−Znハライl−を被
(ill産月とし、比0砥粒を使用して第1表のhll
 l!、”条件−rMcPr4.(比較1シリC)を行
なった場合と、負′目lやり条件で同月籾をタイ17モ
ン1〜ボリツシ1(比較例D)した場合の(ill摩結
果を、本発明Aと同条件で測定し、第1表の結果を得た
Furthermore, the above-mentioned Ai-oriented L-Zn grinder of the present invention was coated (ill), and the hll of Table 1 was applied using a specific 0 abrasive grain.
l! , ``Condition-rMcPr4.'' (Comparison 1 series C) and when the paddy of the same month was subjected to Thai 17 months 1 to Boritsushi 1 (Comparative example D) under the negative eye condition, the (ill-milling results) are shown in this book. Measurement was performed under the same conditions as Invention A, and the results shown in Table 1 were obtained.

実施例2 被IIII Jチェには、熱間静水hルメd1でハ畜度
化した50X 50x 1+nmの M z03(iM
’JVa2015°c、++m20(+011V )を
用いた。この被Jlll摩Hのフィクロボア数は、10
6ケ4であった。
Example 2 For the subject III J Che, 50X 50x 1+nm Mz03 (iM
'JVa2015°c, ++m20 (+011V) was used. The number of phyclobores of this Jllll friction H is 10
It was 6 4.

研摩液は、粒径0.1μ■のダイA7モンド(3700
℃、10000Ilv )微粉末を純水中に0.2wt
%分散さけ、さらに、ヘキリーメタリン酸ソーダを1w
t%添加しlこ。
The polishing liquid was Dai A7 Monde (3700) with a particle size of 0.1μ
℃, 10000Ilv) 0.2wt of fine powder in pure water
% dispersion, and further add 1w of hekyly sodium metaphosphate.
Add t%.

ポリッシVには350 mntφのPJfを用い、ポリ
ン21フ表面に被研1!i’i月を当接させ1両者を相
対的に回転さけ−((σ]1皐した。このとき、1 、
2 kg 4のラップ荷重を力田、40rl1mで回転
させ、200cc /brの割合でωll液液連続添加
した。(本発明[3)J、lこ、比較のため、上記の本
発明B、Cと同じレラミックを被(υ1摩祠とし、5L
O2(1610℃、 ioo。
PJf of 350 mntφ was used for the polish V, and the surface of the polish 21 was polished 1! I'i brought the moon into contact with each other and rotated them relatively -((σ)1. At this time, 1,
A wrap load of 2 kg 4 was applied to the rotor, rotating at 40 rl 1 m, and ωll liquid was continuously added at a rate of 200 cc/br. (Present invention [3) J, l For comparison, the same relamic as the above-mentioned present inventions B and C was applied (υ1 mill, 5L
O2 (1610℃, ioo.

HV)砥粒を使用して第1表のrtll摩条件でM C
Pγム(比較例[)を行なった。
HV) M C using abrasive grains under the rtll polishing conditions shown in Table 1.
Pγm (Comparative Example [)] was conducted.

上記2種の被研摩材の研摩状態を、実施例1と同条イ′
1で測定し、第1表に示す測定結果を441だ。
The polishing conditions of the above two types of materials to be polished were as shown in Example 1.
1, and the measurement results shown in Table 1 are 441.

第1表の(it厚結果比較表から明らかなように、この
発明による(σ1摩(本発明A、B)によって、セラミ
ックス月わ口よ従来のM CI)法(比較例C1E)と
同程瓜の表面粗1褪が得られでいる。また、加工変質層
厚法CP法より多いが、従来のダイX7モンドボリツシ
面(比較例D)に比べて茗しく減少している。さらに、
マイクロポア数は、MCI’法の場合がバルクのボア数
と同程瓜であるのに対して、桁数が1桁異なるほど署し
く低減されているのが分かる。
As is clear from the (IT thickness result comparison table) in Table 1, the σ1 machining (inventions A and B) of the present invention is equivalent to the conventional MCI method (comparative example C1E). One level of surface roughness of the melon was obtained.Although it is more than the processed altered layer thickness method CP method, it is significantly reduced compared to the conventional die X7 molded surface (comparative example D).Furthermore,
It can be seen that while the number of micropores is about the same as the number of bulk bores in the case of the MCI' method, it is significantly reduced as the number of micropores differs by one order of magnitude.

以上の如く、この発明による研摩方法は、マイクロポア
の存在するセラミックス月利を、表面粗1哀50Å以下
、加工変質層厚み100八以下の精密平面に加工でき、
しかも、表面のマイクロポアの露出が防止されζり実土
無孔状態が1!、1られる。したがって、この発明の?
IIl摩方法でril+摩した基板をスリ膜磁気l\ツ
ドに使用Jると、信頼性0歩留、電磁変換特性の向上に
大きな効果が寄られる。
As described above, the polishing method according to the present invention can process a ceramic material containing micropores into a precision flat surface with a surface roughness of 150 Å or less and a process-altered layer thickness of 100 Å or less,
What's more, the exposure of micropores on the surface is prevented, making the actual soil non-porous! , 1 will be given. Therefore, of this invention?
If a substrate polished by the IIl polishing method is used for a magnetic strip film, it will have a great effect on improving reliability, zero yield, and electromagnetic conversion characteristics.

以下余白 第1表 以下余白Below margin Table 1 Below margin

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロポアの存在JるLラミックス月料表面を該
材料より高硬度で粒径が0.5μm1以下の/V2O3
、5LO2,ダイ−2モンドの単独または混合微粉末を
2次凝集しないように純水に分散させて研摩液とし、S
n、Pb、はんだのいずれかをポリツシトとしてラップ
荷重0.5ki4”−2kgJで加圧回転ざi!て研摩
を施し、該材料表面に塑性流動層を形成させ、材料表面
のマイクロポアを低減させることを特徴とりるレラミッ
クス材料の無孔化U1摩方法。
1 Presence of micropores /V2O3 with higher hardness than the material and particle size of 0.5 μm or less
, 5LO2, Dai-2mond powder alone or mixed fine powder is dispersed in pure water to prevent secondary agglomeration to make a polishing liquid.
Using either n, Pb, or solder as a polish, polishing is performed by pressing and rotating with a lap load of 0.5ki4''-2kgJ to form a plastic fluid layer on the surface of the material and reduce micropores on the surface of the material. U1 polishing method to make Reramix material non-porous.
JP59009043A 1984-01-20 1984-01-20 Holeless polishing method of ceramic material Granted JPS60155359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59009043A JPS60155359A (en) 1984-01-20 1984-01-20 Holeless polishing method of ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009043A JPS60155359A (en) 1984-01-20 1984-01-20 Holeless polishing method of ceramic material

Publications (2)

Publication Number Publication Date
JPS60155359A true JPS60155359A (en) 1985-08-15
JPH0346264B2 JPH0346264B2 (en) 1991-07-15

Family

ID=11709611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009043A Granted JPS60155359A (en) 1984-01-20 1984-01-20 Holeless polishing method of ceramic material

Country Status (1)

Country Link
JP (1) JPS60155359A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375192A2 (en) * 1988-12-19 1990-06-27 Ngk Insulators, Ltd. Solid electrolyte tube for sodium sulfur cells and surface finishing process thereof
US5176424A (en) * 1988-06-10 1993-01-05 Mazda Motor Corporation Automobile seat assembly
JPH057510U (en) * 1991-07-12 1993-02-02 株式会社小松製作所 In-cabin air conditioner
JP2010070401A (en) * 2008-09-16 2010-04-02 Covalent Materials Corp Yag polycrystalline substrate and method for polishing the same
WO2016103575A1 (en) * 2014-12-26 2016-06-30 株式会社フジミインコーポレーテッド Polishing composition, polishing method, and method for manufacturing ceramic component
WO2016103576A1 (en) * 2014-12-26 2016-06-30 株式会社フジミインコーポレーテッド Polishing composition, polishing method, and method for manufacturing ceramic component
WO2022009990A1 (en) * 2020-07-09 2022-01-13 株式会社フジミインコーポレーテッド Polishing composition and polishing method
WO2023145597A1 (en) * 2022-01-28 2023-08-03 曙ブレーキ工業株式会社 Friction material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132964A (en) * 1981-02-06 1982-08-17 Sumitomo Special Metals Co Ltd Precision processing method of single crystal ferrite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132964A (en) * 1981-02-06 1982-08-17 Sumitomo Special Metals Co Ltd Precision processing method of single crystal ferrite

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176424A (en) * 1988-06-10 1993-01-05 Mazda Motor Corporation Automobile seat assembly
EP0375192A2 (en) * 1988-12-19 1990-06-27 Ngk Insulators, Ltd. Solid electrolyte tube for sodium sulfur cells and surface finishing process thereof
JPH057510U (en) * 1991-07-12 1993-02-02 株式会社小松製作所 In-cabin air conditioner
JP2588273Y2 (en) * 1991-07-12 1999-01-06 株式会社小松製作所 Cabin cooling system
JP2010070401A (en) * 2008-09-16 2010-04-02 Covalent Materials Corp Yag polycrystalline substrate and method for polishing the same
WO2016103575A1 (en) * 2014-12-26 2016-06-30 株式会社フジミインコーポレーテッド Polishing composition, polishing method, and method for manufacturing ceramic component
WO2016103576A1 (en) * 2014-12-26 2016-06-30 株式会社フジミインコーポレーテッド Polishing composition, polishing method, and method for manufacturing ceramic component
JP2016124047A (en) * 2014-12-26 2016-07-11 株式会社フジミインコーポレーテッド Polishing composition, polishing method and manufacturing method of ceramic component
US10626297B2 (en) 2014-12-26 2020-04-21 Fujimi Incorporated Polishing composition, polishing method, and method for manufacturing ceramic component
WO2022009990A1 (en) * 2020-07-09 2022-01-13 株式会社フジミインコーポレーテッド Polishing composition and polishing method
WO2023145597A1 (en) * 2022-01-28 2023-08-03 曙ブレーキ工業株式会社 Friction material

Also Published As

Publication number Publication date
JPH0346264B2 (en) 1991-07-15

Similar Documents

Publication Publication Date Title
US6270393B1 (en) Abrasive slurry and preparation process thereof
US4659606A (en) Substrate members for recording disks and process for producing same
JPS63195816A (en) Production of thin film head
JPS60155359A (en) Holeless polishing method of ceramic material
US5837392A (en) Soft magnetic thin film and thin film magnetic head using same
JP3284156B2 (en) Method of manufacturing thin-film magnetic head and thin-film magnetic head manufactured using such a method
US7279424B2 (en) Method for fabricating thin film magnetic heads using CMP with polishing stop layer
JP4453627B2 (en) Sintered body for magnetic head slider, magnetic head slider, and method for manufacturing sintered body for magnetic head slider
US6833175B2 (en) Glass substrate for magnetic recording medium, and magnetic recording medium
JPS6222747B2 (en)
JPS6331343B2 (en)
JPS6013786B2 (en) Precision polishing method for polycrystalline ferrite
JPS6013788B2 (en) Precision processing method for single crystal ferrite
JPS6247663B2 (en)
JPH08227813A (en) Soft magnetic thin film and thin-film magnetic head using this thin film
JPH06111227A (en) Manufacture for magnetic head, and whetstone used in execution of the manufacture
JP3097001B2 (en) Polishing composition for texturing of magnetic disk substrate
JPH11296844A (en) Substrate for magnetic disk and its manufacture
JPH11263968A (en) Polishing slurry and polishing method
JPH0628097B2 (en) Base substrate for magnetic disk
JPH11198028A (en) Abrasive for magnetic disc substrate and method of polishing
JPH04178910A (en) Perpendicular magnetic recording/reproducing thin film head and its manufacture
JPH05266464A (en) Magnetic recording medium
JP2001006162A (en) Manufacture for magnetic disk substrate
JPS63181120A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term