JPS6247663B2 - - Google Patents

Info

Publication number
JPS6247663B2
JPS6247663B2 JP58155178A JP15517883A JPS6247663B2 JP S6247663 B2 JPS6247663 B2 JP S6247663B2 JP 58155178 A JP58155178 A JP 58155178A JP 15517883 A JP15517883 A JP 15517883A JP S6247663 B2 JPS6247663 B2 JP S6247663B2
Authority
JP
Japan
Prior art keywords
fine powder
polishing
polished
less
crystallized glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58155178A
Other languages
Japanese (ja)
Other versions
JPS6048254A (en
Inventor
Toshiaki Wada
Yoshiaki Katsuyama
Yasuteru Kakimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58155178A priority Critical patent/JPS6048254A/en
Publication of JPS6048254A publication Critical patent/JPS6048254A/en
Publication of JPS6247663B2 publication Critical patent/JPS6247663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 この発明は、薄膜磁気ヘツド用の結晶化ガラス
基板表面を表面粗度50Å以下に精密研摩仕上する
研摩方法に関する。 現在、磁気ヘツドは、オーデイオ用テープレコ
ーダー、ビデオ用テープレコーダー、データーレ
コーダー、コンピユーター用デイスク、ドラム等
の磁気記録の書き込み読み取りに、広く用いられ
ているが、さらに、磁気テープのメタルテープ
化、蒸着テープ化、あるいは記録方式のPCM
化、コンピユータの高速化、高記録密度化が進め
られている。 磁気ヘツドは、これらの高記録密度化に対応す
るため、従来の巻線法バルクヘツドからI・Cテ
クノロジーを用いて作製され、比較的容易にマル
チトラツク化、狭トラツク化が達成できる薄膜磁
気ヘツドへと変換されつつある。 この薄膜磁気ヘツド用基板の1つとして、フオ
トエツチングが容易で、熱膨張係数をセンダスト
やパーマロイ等の軟磁性薄膜のそれに容易に合致
させることができ、組織が実質的に結晶化されい
る結晶化ガラスが多用されている。また、薄膜磁
気ヘツド用基板はその表面に多種の薄膜パターン
を被着形成する必要から、基板表面はできるだけ
精密平面に仕上げなければならない。 再生用に用いる磁気抵抗型薄膜磁気ヘツドの場
合、基板上に形成する素子の薄膜パターン厚みは
数100Åであり、基板仕上表面に突起、凹部ある
いは結晶段差、小孔等の欠陥が点在して露出する
と、磁気ヘツドパターンの微細化やマルチトラツ
ク化に伴ない、製造工程あるいは磁気ヘツド特性
上に下記の多くの問題を生じるため、基板表面粗
度を50Å以下に精密研摩する必要がある。 例えば、基板表面上の該欠陥部において、コン
ダクターの断線の恐れがあり、磁気抵抗型の場
合、素子幅が数μm程度であるので再生出力の低
下を来たしたり、また、該欠陥部近傍には残留歪
が存在して不均一な応力場が形成されており、こ
の上に磁性薄膜を被着すると残留歪が転写する恐
れがある等、種々の問題があつた。 この薄膜磁気ヘツドは、I・Cテクノロジーに
より量産製造されるため、上述した表面欠陥のあ
る基板を使用すると、製造歩留の低下のみなら
ず、磁気ヘツドとしての信頼性低下、電磁変換特
性の低下を招来することになり、かかる基板表面
の精密研摩方法が特に重要になつてくる。 従来、結晶化ガラスの精密研摩方法として、フ
オトマスク、レンズ等に適用されていた溶融型非
晶質ガラス研摩法が採用されていた。この研摩方
法は、酸化セリウムやベンガラを砥粒とし、レン
ズ等の表面を50Å以下の粗度に仕上げることがで
きる。ところが、結晶化ガラスに適用しても、材
質が実質的に結晶化されているため、研摩面に微
細突起や凹部が生成し、250Å程度の表面粗度し
か得られない問題があつた。 この発明は、かかる現状に鑑み、従来研摩方法
で生成する微細突起や凹部を防止し、50Å以下の
表面粗度が得られる結晶化ガラスの精密研摩方法
を目的としている。 すなわち、この発明は、粒径500Å以下の含水
アルミナ微粉末を0.1wt%〜5wt%で純水中に懸
濁させた液に、分散剤として粒径300Å以下のシ
ラノール基を有する無水シリカ微粉末または無水
アルミナ微粉末の1種または2種を0.1wt%〜
2wt%添加した液を研摩液とし、ラツプ定盤にマ
イクロビツカース硬度3Kg/cm2〜15Kg/cm2の軟質
金属を用い、該研摩液中で被研摩結晶化ガラスと
ラツプ盤を対向させて、ラツプ荷重0.1Kg/cm2
5Kg/cm2を加えながら相対回転させ研摩すること
を特徴とする結晶化ガラスの精密研摩方法であ
る。 この発明の精密研摩方法は、含水アルミナ微粉
末をラツプ定盤に均一に埋め込み、含水アルミナ
微粉末の切削作用により、被研摩面の精密研摩を
行なうもので、本発明方法を行なう前に、従来研
摩方法等で前研摩しておいてもよい。 研摩対象の結晶化ガラスは、材質が実質的に結
晶化されたガラスでいずれの成分のものでもよい
が、Li2O、SiO2、Ag、Ceを主成分とするものが
好ましい。 純水中に懸濁させる含水アルミナ微粉末は、含
水アルミナ微粉末をラツプ定盤のSn等の軟質金
属に均一に埋め込み、含水アルミナ微粉末の切削
作用により、被研摩面の精密研摩するため、その
粒径が500Åを越えると、ラツプ時に研摩面に対
する切削・引掻作用が強く、得られる表面粗度が
劣化し、研摩面に微細突起、凹部が発生し易くな
るので、粒径は500Å以下であることが必要であ
る。 純水中に懸濁させる含水アルミナ微粉末量は、
5wt%を越えると、ラツプ定盤への埋め込み数が
飽和してしまい、研摩能率の向上が望めず、ま
た、0.1wt%未満では微粉末の埋め込み状態が不
均一で、研摩能率が安定せず、スクラツチの発生
が見られるので、0.1wt%〜5wt%とする。 また、一般に、500Å以下の含水アルミナ微粉
末を砥粒に使用する場合、二次凝集した砥粒もあ
るため、実用段階では、500Å以上になり、結晶
化ガラスの被研摩面に疵を発生させてしまう。そ
こで、含水アルミナ微粉末の分散性を向上させる
のに、粒径300Å以下のシラノール基を有する無
水シリカ微粉末または無水アルミナ微粉末の1種
または2種の分散剤添加が有効で、含水アルミナ
微粉末の二次凝集を防止し、被研摩面の疵の防止
が可能になる。 すなわち、該分散剤の添加により、500Å以下
の含水アルミナ微粉末の二次凝集が防止され、ラ
ツプ定盤に埋め込まれる有効作用砥粒の粒径が均
一に保たれるため、二次凝集砥粒による被研摩面
の疵発生がなくなる。さらには、分散剤の添加に
より、研摩時の被研摩面とラツプ定盤間の摩擦抵
抗も増加し、研摩能率の向上及び表面粗度50Å以
下の精密表面の形成が可能となる。 この発明による研摩方法において、分散剤の粒
径を300Å以下としたのは、500Å以下の含水アル
ミナ微粉末が、研摩時にラツプ定盤に埋め込まれ
てその先端部が切削刃として有効に作用させるこ
とができるためである。また、PH4〜5のシラノ
ール基を有することにより、ケミカル効果が得ら
れ、研摩効率が向上する。 また、分散剤の添加量が、0.1wt%未満では、
加工時の二次凝集防止効果が少なく、2wt%を越
えると二次凝集防止効果は飽和し、コスト上昇を
来たすので、添加量は0.1wt%〜2wt%とする。
該分散剤の添加により、ラツプ作業時の被研摩表
面とラツプ盤間の摩擦抵抗も増加し、ラツプ効率
の向上と表面粗度50Å以下の表面形成が可能とな
る。 ラツプ盤材質には、Sn、Pb、Sn/Pb系はんだ
材等のマイクロビツカース硬度3Kg/cm2〜15Kg/
cm2の種々の軟質金属板が使用できる。 ラツプ盤のマイクロビツカース硬度が、3Kg/
cm2未満では加工時に盤が変形し易く、平坦度の管
理が困難となり、表面粗度、精度が一定しない。 また、15Kg/cm2を超えると、含水アルミナ微粉
末が500Å以下の粒径であつても、埋め込み深さ
が浅く不均一となり表面精度の低下を来たし好ま
しくない。 研摩条件として、ラツプ荷重は、0.1Kg/cm2
満では含水アルミナ微粉末のラツプ定盤への埋め
込みが不均一となり、所要の表面粗度が得られ
ず、かつ加工能率が低く、また、5.0Kg/cm2を越
えると加工効率の点では好ましいが、ラツプ装置
の大規模化に伴なうコスト高と、研摩精度が悪化
するので好ましくない。 以下に、実施例を説明する。 被研摩結晶化ガラスには、フオトセラム(商品
名、コーニング社製造)を使用し、その試料は長
さ25mm×幅25mm×厚み1mm寸法で、被研摩面粗度
300Åであつた。 研摩液は、粒径500Å以下の含水アルミナ微粉
末を、純水中に2wt%分散させ、分散剤として、
粒径200Åのシラノール基を有する無水アルミナ
微粉末(本発明A)または無水シリカ微粉末(本
発明B)を0.5wt%添加した懸濁液を使用した。 ポリツシヤーには、350mmφのマイクロビツカ
ース硬度6Kg/cm2のSn盤を用い、このポリツシ
ヤー表面にフオトセラムの被研削面を当接させ、
回転数60rpm、ラツプ荷重0.5Kg/cm2の荷重負荷
の加工条件で、両者を相対的に回転させ、研摩加
工中、100c.c./hの割合で研摩液を連続滴下しな
がら、30分間の研摩を実施した。 また、比較のため、砥粒にCeO2を使用した研
摩液を使用した場合(比較例C)、本発明と同等
の含水アルミナ微粉末を使用し分散剤のなしの場
合(比較例D)、さらに分散剤を添加して本発明
条件外のラツプ荷重の場合(比較例E)の種々の
加工条件で研摩した。この際の研摩条件並びに被
研摩材料の表面粗度を測定し、本発明方法で得ら
れた表面粗度測定結果と共に、第1表に示す。 被研摩面の表面粗度は、表面段差測定器(Tal
−ystep装置、スタイラス、0.5μm、針圧7mg)
を使用して測定し、表面部の突起及び凹部状態は
ノマルスキー微分干渉顕微鏡を使用して測定し
た。 第1表から明らかな如く、従来のガラス研摩方
法による比較例Cの場合は、結晶化ガラスに対し
ては300Åの表面粗度しか得られず、また、分散
剤を使用しない比較例Dの場合は砥粒粒径が大き
いため、切削や引掻き作用が大で表面粗度が劣化
しており、さらに、比較例Eの如く、本発明方法
の研摩液を使用しても、ラツプ荷重が本発明の範
囲外であると、表面粗度は250Åしか得られず、
いずれの場合も結晶化ガラスの精密研摩には不適
であるのに対し、本発明方法の場合は、結晶化ガ
ラス表面には突起や凹部の発生がなく、40Å以下
のすぐれた表面粗度が得られたことが分る。 なお、本発明Aと比較D、Eの被研摩表面とラ
ツプ盤との摩擦係数を測定したところ、Aは
0.9、Dは0.58、Eは.31と、本発明Aに比べ、
比較D、Eは摩擦係数が小さくなり、ラツプ能率
が悪くなつた。これに対して、本発明Aの場合、
分散剤の添加と所定ラツプ荷重範囲内で加工する
ことにより、ラツプ作業時の摩擦抵抗が増加しラ
ツプ能率が向上した。 すなわち、この発明による結晶化ガラスの精密
研摩方法により、薄膜磁気ヘツドの信頼性、電磁
変換特性及び歩留の向上に極めて有効なことが分
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polishing method for precision polishing the surface of a crystallized glass substrate for a thin film magnetic head to a surface roughness of 50 Å or less. Currently, magnetic heads are widely used for reading and writing magnetic recording in audio tape recorders, video tape recorders, data recorders, computer disks, drums, etc., but they are also being used to convert magnetic tapes into metal tapes, vapor-deposited magnetic tapes, etc. Tape or recording PCM
Computers are becoming faster and faster, and recording densities are increasing. In order to accommodate these higher recording densities, magnetic heads have changed from conventional wire-wound bulk heads to thin film magnetic heads, which are manufactured using IC technology and can relatively easily achieve multi-track and narrow tracks. It is being converted into As one of the substrates for this thin film magnetic head, it is easy to photoetch, the coefficient of thermal expansion can be easily matched to that of soft magnetic thin films such as sendust or permalloy, and the structure is substantially crystallized. Glass is often used. Further, since it is necessary to form various thin film patterns on the surface of a substrate for a thin film magnetic head, the surface of the substrate must be finished as precisely and flatly as possible. In the case of magnetoresistive thin film magnetic heads used for playback, the thin film pattern of the element formed on the substrate is several hundred angstroms thick, and the finished surface of the substrate is dotted with defects such as protrusions, recesses, crystal steps, and small holes. If exposed, many of the following problems will occur in the manufacturing process or in the characteristics of the magnetic head as magnetic head patterns become finer and more multitrack. Therefore, it is necessary to precisely polish the substrate surface to a roughness of 50 Å or less. For example, there is a risk of the conductor breaking at the defective part on the substrate surface, and in the case of a magnetoresistive type, the element width is about several micrometers, which may cause a drop in the reproduction output. The presence of residual strain forms a non-uniform stress field, and when a magnetic thin film is deposited thereon, there are various problems such as the possibility that the residual strain will be transferred. Since this thin film magnetic head is mass-produced using I/C technology, if a substrate with the above-mentioned surface defects is used, not only will the manufacturing yield decrease, but also the reliability of the magnetic head will decrease, and the electromagnetic conversion characteristics will decrease. Therefore, a precision polishing method for the substrate surface becomes particularly important. Conventionally, as a precision polishing method for crystallized glass, a fused amorphous glass polishing method, which is applied to photomasks, lenses, etc., has been adopted. This polishing method uses cerium oxide or red iron abrasive grains and can finish the surface of lenses, etc. to a roughness of 50 Å or less. However, even when applied to crystallized glass, since the material is substantially crystallized, fine protrusions and depressions are generated on the polished surface, resulting in a problem that only a surface roughness of about 250 Å can be obtained. In view of the current situation, the present invention aims to provide a precision polishing method for crystallized glass that prevents the formation of minute protrusions and recesses that are produced by conventional polishing methods and provides a surface roughness of 50 Å or less. That is, this invention provides a solution in which 0.1 wt% to 5 wt% of hydrated alumina fine powder with a particle size of 500 Å or less is suspended in pure water, and anhydrous silica fine powder having a silanol group with a particle size of 300 Å or less as a dispersant. Or 0.1wt% or more of one or two types of anhydrous alumina fine powder
A liquid containing 2wt% is used as a polishing liquid, a soft metal with a microvitkers hardness of 3Kg/cm 2 to 15Kg/cm 2 is used as a lapping plate, and the crystallized glass to be polished and the lapping plate are placed opposite each other in the polishing liquid. , lap load 0.1Kg/cm 2 ~
This is a precision polishing method for crystallized glass, which is characterized by polishing by relative rotation while applying 5 kg/cm 2 . In the precision polishing method of the present invention, fine water-containing alumina powder is uniformly embedded in a lap surface plate, and the surface to be polished is precisely polished by the cutting action of the fine water-containing alumina powder. It may be pre-polished using a polishing method or the like. The crystallized glass to be polished may be substantially crystallized glass and may be made of any component, but it is preferably one whose main components are Li 2 O, SiO 2 , Ag, and Ce. The hydrated alumina fine powder suspended in pure water uniformly embeds the hydrated alumina fine powder into the soft metal such as Sn on the lap surface plate, and the cutting action of the hydrated alumina fine powder allows precision polishing of the polished surface. If the particle size exceeds 500 Å, the cutting and scratching action on the polished surface during lapping will be strong, the resulting surface roughness will deteriorate, and fine protrusions and depressions will easily occur on the polished surface, so the particle size should be 500 Å or less. It is necessary that The amount of hydrated alumina fine powder suspended in pure water is
If it exceeds 5wt%, the number of embeddings in the lap surface plate will be saturated and no improvement in polishing efficiency can be expected.If it is less than 0.1wt%, the state of embedding of the fine powder will be uneven and the polishing efficiency will not be stable. Since the occurrence of scratches is observed, the content is set at 0.1wt% to 5wt%. Additionally, in general, when hydrated alumina fine powder with a diameter of 500 Å or less is used as abrasive grains, some of the abrasive grains are secondary agglomerated, so in the practical stage, the diameter becomes 500 Å or more, which may cause scratches on the surface of the crystallized glass to be polished. I end up. Therefore, in order to improve the dispersibility of hydrated alumina fine powder, it is effective to add one or two types of dispersant such as anhydrous silica fine powder or anhydrous alumina fine powder having a silanol group with a particle size of 300 Å or less. This prevents secondary agglomeration of powder and prevents scratches on the surface to be polished. In other words, the addition of the dispersant prevents secondary agglomeration of hydrated alumina fine powder of 500 Å or less, and maintains a uniform particle size of the effective abrasive grains embedded in the lap surface plate, resulting in secondary agglomeration of the abrasive grains. This eliminates the occurrence of scratches on the surface to be polished. Furthermore, the addition of a dispersant increases the frictional resistance between the surface to be polished and the lap surface plate during polishing, making it possible to improve polishing efficiency and form a precision surface with a surface roughness of 50 Å or less. In the polishing method according to the present invention, the particle size of the dispersant is set to 300 Å or less because the hydrated alumina fine powder of 500 Å or less is embedded in the lap surface plate during polishing, and its tip effectively acts as a cutting edge. This is because it can be done. Further, by having a silanol group with a pH of 4 to 5, a chemical effect is obtained and polishing efficiency is improved. In addition, if the amount of dispersant added is less than 0.1wt%,
The effect of preventing secondary agglomeration during processing is small, and if it exceeds 2 wt%, the effect of preventing secondary agglomeration is saturated and costs increase, so the amount added is set at 0.1 wt% to 2 wt%.
Addition of the dispersant also increases the frictional resistance between the surface to be polished and the lapping disk during lapping, making it possible to improve lapping efficiency and form a surface with a surface roughness of 50 Å or less. Lapping board materials include Sn, Pb, Sn/Pb solder materials, etc. with a microvits hardness of 3Kg/cm 2 to 15Kg/
cm 2 various soft metal plates can be used. The microvits hardness of the lap disc is 3Kg/
If it is less than cm 2 , the plate will easily deform during processing, making it difficult to control flatness, resulting in inconsistent surface roughness and accuracy. Moreover, if it exceeds 15 Kg/cm 2 , even if the hydrated alumina fine powder has a particle size of 500 Å or less, the embedding depth becomes shallow and non-uniform, resulting in a decrease in surface precision, which is not preferable. As for the polishing conditions, if the lap load is less than 0.1 kg/ cm2 , the embedding of the hydrated alumina fine powder into the lap surface plate will be uneven, the required surface roughness will not be obtained, and the processing efficiency will be low. If it exceeds Kg/cm 2 , it is preferable in terms of processing efficiency, but it is not preferable because it increases the cost due to the large-scale lapping device and deteriorates the polishing accuracy. Examples will be described below. Photoceram (trade name, manufactured by Corning Inc.) is used as the crystallized glass to be polished, and the sample size is 25 mm long x 25 mm wide x 1 mm thick, and the surface roughness to be polished is
It was 300Å. The polishing liquid is made by dispersing 2wt% of hydrated alumina fine powder with a particle size of 500Å or less in pure water, and using it as a dispersant.
A suspension containing 0.5 wt % of anhydrous alumina fine powder (invention A) or anhydrous silica fine powder (invention B) having a silanol group with a particle size of 200 Å was used. For the polisher, a 350 mm diameter Sn disc with a micro-Vickers hardness of 6 kg/cm 2 is used, and the surface of the photoceram to be ground is brought into contact with the polisher surface.
Under the machining conditions of a rotation speed of 60 rpm and a lap load of 0.5 Kg/ cm2 , the two were rotated relative to each other, and during the polishing process, the polishing liquid was continuously dripped at a rate of 100 c.c./h for 30 minutes. Polishing was carried out. For comparison, a case where a polishing liquid using CeO 2 as the abrasive grains was used (Comparative Example C), a case where a water-containing alumina fine powder equivalent to that of the present invention was used without a dispersant (Comparative Example D), Furthermore, a dispersant was added and polishing was performed under various processing conditions in the case of a lap load other than the conditions of the present invention (Comparative Example E). The polishing conditions at this time and the surface roughness of the material to be polished were measured, and are shown in Table 1 together with the surface roughness measurement results obtained by the method of the present invention. The surface roughness of the surface to be polished is measured using a surface step measuring device (Tal).
-ystep device, stylus, 0.5μm, stylus force 7mg)
The state of protrusions and recesses on the surface was measured using a Nomarski differential interference microscope. As is clear from Table 1, in the case of Comparative Example C using the conventional glass polishing method, a surface roughness of only 300 Å was obtained for crystallized glass, and in the case of Comparative Example D without using a dispersant. Since the abrasive grain size is large, the cutting and scratching action is large and the surface roughness deteriorates.Furthermore, as in Comparative Example E, even when the polishing liquid of the present invention is used, the lap load is lower than that of the present invention. If it is outside the range, a surface roughness of only 250 Å can be obtained,
In either case, it is unsuitable for precision polishing of crystallized glass, whereas in the case of the method of the present invention, there are no protrusions or depressions on the surface of crystallized glass, and an excellent surface roughness of 40 Å or less can be obtained. I can see that it was done. In addition, when the friction coefficient between the surface to be polished and the lapping machine of Invention A and Comparative D and E was measured, A was
0.9, D is 0.58, E is . 31, compared to the present invention A,
Comparisons D and E had a small friction coefficient and poor wrap efficiency. On the other hand, in the case of present invention A,
By adding a dispersant and processing within a predetermined lapping load range, the frictional resistance during lapping work was increased and lapping efficiency was improved. That is, it can be seen that the precision polishing method for crystallized glass according to the present invention is extremely effective in improving the reliability, electromagnetic conversion characteristics, and yield of thin film magnetic heads. 【table】

Claims (1)

【特許請求の範囲】 1 粒径500Å以下の含水アルミナ微粉末を0.1wt
%〜5wt%で純水中に懸濁させた液に、 分散剤として粒径300Å以下のシラノール基を
有する無水シリカ微粉末または無水アルミナ微粉
末の1種または2種を0.1wt%〜2wt%添加した
液を研摩液とし、 ラツプ盤に、マイクロビツカース硬度3Kg/cm2
〜15Kg/cm2の軟質金属を用い、 該研摩液中で被研摩結晶化ガラスとラツプ盤を
対向させて、 ラツプ荷重0.1Kg/cm2〜5Kg/cm2を加えながら
相対回転させ研摩することを特徴とする結晶化ガ
ラスの精密研摩方法。
[Claims] 1. 0.1wt of hydrated alumina fine powder with a particle size of 500Å or less
% to 5 wt% of the suspension in pure water, add 0.1 wt% to 2 wt% of one or two types of anhydrous silica fine powder or anhydrous alumina fine powder having silanol groups with a particle size of 300 Å or less as a dispersant. The added liquid was used as a polishing liquid, and the microvits hardness was 3Kg/ cm2.
Using a soft metal of ~15Kg/cm 2 , the crystallized glass to be polished and a lapping disk are placed opposite each other in the polishing solution, and polished by relative rotation while applying a lapping load of 0.1Kg/cm 2 to 5Kg/cm 2 . A precision polishing method for crystallized glass characterized by:
JP58155178A 1983-08-24 1983-08-24 Fine polishing of crystallized glass Granted JPS6048254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58155178A JPS6048254A (en) 1983-08-24 1983-08-24 Fine polishing of crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58155178A JPS6048254A (en) 1983-08-24 1983-08-24 Fine polishing of crystallized glass

Publications (2)

Publication Number Publication Date
JPS6048254A JPS6048254A (en) 1985-03-15
JPS6247663B2 true JPS6247663B2 (en) 1987-10-08

Family

ID=15600194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58155178A Granted JPS6048254A (en) 1983-08-24 1983-08-24 Fine polishing of crystallized glass

Country Status (1)

Country Link
JP (1) JPS6048254A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68915219T2 (en) * 1988-07-26 1994-08-18 Nippon Telegraph & Telephone Method and device for forming curved surfaces.

Also Published As

Publication number Publication date
JPS6048254A (en) 1985-03-15

Similar Documents

Publication Publication Date Title
JP3284156B2 (en) Method of manufacturing thin-film magnetic head and thin-film magnetic head manufactured using such a method
JP4293389B2 (en) Manufacturing method of magnetic disk
JPH0346264B2 (en)
JPS6222747B2 (en)
JPS6247663B2 (en)
JP2002237008A (en) Thin-film magnetic head
JPS61199224A (en) Magnetic recording medium
JPS6331343B2 (en)
US7851076B2 (en) Method of fabricating silicon substrate for magnetic recording media, and magnetic recording medium
JPH0568771B2 (en)
US7237323B2 (en) Method for manufacturing a magnetic head
JP4484162B2 (en) Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
JPS5996539A (en) Magnetic recording disc
JP4484160B2 (en) Manufacturing method of glass substrate for magnetic disk
JP3206701B2 (en) Manufacturing method of magnetic recording medium
JPS6134570Y2 (en)
JP2534014B2 (en) Floating magnetic head
US20060151436A2 (en) Methodology of chemical mechanical nanogrinding for ultra precision finishing of workpieces
JPS6013786B2 (en) Precision polishing method for polycrystalline ferrite
JPH0554171B2 (en)
JP3404772B2 (en) Manufacturing method of floating magnetic head
JP3237154B2 (en) Floating magnetic head
JPH0628097B2 (en) Base substrate for magnetic disk
JPS61199236A (en) Magnetic recording medium
JPS61199233A (en) Magnetic recording medium