JPS6015452A - Polyether ketone resin composition - Google Patents

Polyether ketone resin composition

Info

Publication number
JPS6015452A
JPS6015452A JP12369983A JP12369983A JPS6015452A JP S6015452 A JPS6015452 A JP S6015452A JP 12369983 A JP12369983 A JP 12369983A JP 12369983 A JP12369983 A JP 12369983A JP S6015452 A JPS6015452 A JP S6015452A
Authority
JP
Japan
Prior art keywords
polyetherketone
hot water
polyether ketone
examples
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12369983A
Other languages
Japanese (ja)
Other versions
JPH0456861B2 (en
Inventor
Teruo Tsumato
照夫 妻藤
Haruo Hayashida
林田 晴雄
Kazuo Hinobeta
比延田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP12369983A priority Critical patent/JPS6015452A/en
Publication of JPS6015452A publication Critical patent/JPS6015452A/en
Publication of JPH0456861B2 publication Critical patent/JPH0456861B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the titled compsn. having excellent hot water resistance, mechanical strength and low shrinkage, consisting of a polyether ketone and a specified inorg. filler. CONSTITUTION:30-95wt% polyether ketone having an intrinsic viscosity of 0.3- 2.6 is mixed with 70-5wt% inorg. filler contg. at least 40wt% powdered, acicular, fibrous or scaly alumina or zirconia having a particle size of 20mu or below, or a fiber diameter of <=20mu and a fiber length of <=3mm..

Description

【発明の詳細な説明】 本発明は、良好な耐熱水性と低収縮性、高い機械的強度
を有するポリエーテルケトン樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyetherketone resin composition having good hot water resistance, low shrinkage, and high mechanical strength.

ポリエーテルケトン樹脂は、耐熱性、耐熱水性、件燃性
、耐薬品性などのすぐれたエツジ0アリングプラスチツ
クスとして電気、電子、自動車、航空機、原子力分野な
どの幅広い用途分野において注目されている。
Polyetherketone resins are attracting attention as edge-wearing plastics with excellent heat resistance, hot water resistance, flammability, and chemical resistance in a wide range of application fields such as electricity, electronics, automobiles, aircraft, and nuclear power fields.

しかし、該樹脂は、結晶性樹脂であるが故に溶融状態か
ら固化する際の収縮、いわゆる成形収縮率が大きいとい
う特性を有する。また、結晶化速度が遅いため、成形直
後では最高結晶化度に達しておらず、高温下ないしは熱
水、スチーム雰囲気等の中で結晶化度が徐々にヒ昇し、
それに伴い収縮が進行する。特に、該樹脂は200℃以
上の熱水、スチーム下でも化学的劣化を起さないすぐれ
た耐熱水、耐スチーム性を有するため、厳しい耐熱水条
件を要求される原子力、原油採掘、化学機器等の分野で
その適用が期待されているが゛、上記成形収縮および後
収縮が大きいため、精密な寸法精度を要する部品や、金
1.・へ等低収縮材料との組み合わせや貼り合わせ、被
覆等の用途ではその適用が制限されていた。
However, since this resin is a crystalline resin, it has a characteristic that it shrinks when solidifying from a molten state, that is, it has a large molding shrinkage rate. In addition, because the crystallization rate is slow, the maximum crystallinity is not reached immediately after molding, and the crystallinity gradually increases under high temperatures or in hot water, steam atmosphere, etc.
As a result, contraction progresses. In particular, this resin has excellent hot water and steam resistance that does not cause chemical deterioration even under hot water of 200°C or higher and steam, so it is especially suitable for nuclear power, crude oil mining, and chemical equipment that require severe hot water resistance conditions. However, due to the large molding shrinkage and post-shrinkage mentioned above, it is expected to be applied to parts that require precise dimensional accuracy, and metal parts. - Its application has been limited in combination with low-shrinkage materials such as hemlock, bonding, coating, etc.

一般に、成形収縮、後収諸を低下させる方法としては、
ガラス繊維などの繊維状強化材、また、タルク、炭酸カ
ルシウム、炭酸マグネシウム、亜硫酸カルシウム、水酸
化アルミニウム、マイカ、二硫化モリブデン、ウオラス
トナイト、グラファイト、チタン白、ガラスビーズなど
の粉末状、針状もしくは薄片状の無機充填材等を樹脂に
配合することが有効であることが知られている。
In general, methods for reducing molding shrinkage and post-recovery are as follows:
Fibrous reinforcement materials such as glass fiber, powdered and acicular materials such as talc, calcium carbonate, magnesium carbonate, calcium sulfite, aluminum hydroxide, mica, molybdenum disulfide, wollastonite, graphite, titanium white, and glass beads. Alternatively, it is known that it is effective to blend a flaky inorganic filler or the like into the resin.

ポリエーテルケトン樹脂においても、上記強化材や充填
材を配合した場合、その配合量に応じて、成形収縮率、
後収縮率は低下するが、機械的強度が低かったり、また
該樹脂のすぐれた特性である耐熱水性について低下が太
きかっtこすし、そのため、厳しい熱水、スチーム雰囲
気下での使用は制限を受けている。
Even in polyetherketone resin, when the above-mentioned reinforcing materials and fillers are blended, the molding shrinkage rate and
Although the post-shrinkage rate is reduced, the mechanical strength is low and the hot water resistance, which is an excellent property of this resin, is significantly reduced, so its use in severe hot water and steam atmospheres is restricted. Is receiving.

該樹脂の良好な耐熱水性を維持し、成形収縮率、後収縮
率を改良し、高い機械的強度を有することが多くの用途
分野で強く要求されている。
In many application fields, it is strongly required that the resin maintain good hot water resistance, improve molding shrinkage rate and post-shrinkage rate, and have high mechanical strength.

本発明者は上記の状況に鑑み、鋭意研究した結果ポリエ
ーテルケトンにアルミナもしくはジルコニアを主成分と
する無機充填材を配゛合することにより、前記要求を満
足する組成物を得ることが出来ることを見い出し、本発
明に達した。
In view of the above circumstances, the present inventor has conducted extensive research and found that it is possible to obtain a composition that satisfies the above requirements by incorporating an inorganic filler containing alumina or zirconia as a main component into polyetherketone. They discovered this and arrived at the present invention.

本発明は、ポリエーテルケトン80〜95wt%とアル
ミナもしくはジルコニアを主成分とする無機充填材70
〜5 wt%とからなることを粕徴とするポリエーテル
ケトン樹脂組成物である。
The present invention uses an inorganic filler 70 containing 80 to 95 wt% of polyetherketone and alumina or zirconia as main components.
This is a polyetherketone resin composition having a characteristic that it consists of ~5 wt%.

本発明で用いるポリエーテlレケトンは反復単位 を単独でまtコは他の反復単位と一緒に含み、かっ固有
粘度が0.3ないし2.6が好ましく、さらに0.5な
いし1.8がより好ましい。
The polyether ketone used in the present invention contains repeating units alone or together with other repeating units, and has an intrinsic viscosity of preferably 0.3 to 2.6, more preferably 0.5 to 1.8. preferable.

他の反復単位としては ぺ>30□(ゲ〇− などを25%vt%未満含み得るが25 wt%以上含
有した重合体は該ポリエーテルケトンの前記特性が失な
われ好ましくない。また固有粘一度は溶液10〇−当り
重合体0.11を含む密度1.84 F/、4の濃硫酸
中の重合体溶液について25℃で測定した固有粘度のこ
とである。
Other repeating units may include less than 25% vt% of pe>30□(Ge〇-), but polymers containing 25 wt% or more are not preferable because the above-mentioned properties of the polyetherketone are lost. Once refers to the intrinsic viscosity measured at 25°C for a solution of the polymer in concentrated sulfuric acid having a density of 1.84 F/4 containing 0.11 polymer per 100 mm of solution.

固有粘度の測定には溶媒流出時間が約2分である粘度計
を用いて行った。この固有粘度は重合体の分子量と一義
的に対応する値である。
The intrinsic viscosity was measured using a viscometer with a solvent flow time of about 2 minutes. This intrinsic viscosity is a value that uniquely corresponds to the molecular weight of the polymer.

本発明にかかるポリエーテルケトンの固有粘度は0.8
ないし2.6が好ましく、さらに好ましくは0.5ない
し1.8であるが、固有粘度が0.8未満では分子量の
低さ故に、耐熱性、耐熱水性が低く、脆弱であり前記ア
ルミナもしくはジルコニアを主成分とする無機充填材の
配合によっても十分な強度、耐熱水性を有する組成物が
得られない。固有粘度が2.6を越えると溶融粘度が高
いため溶融成形時の流動性が不十分であり、良好な成形
品が得られない。固有粘度が0.8から2.6の範囲の
ものが良好な表面外観とすぐれた物性、加工性が得られ
好ましい。
The intrinsic viscosity of the polyetherketone according to the present invention is 0.8
It is preferably from 2.6 to 2.6, more preferably from 0.5 to 1.8. However, if the intrinsic viscosity is less than 0.8, the heat resistance and hot water resistance are low due to the low molecular weight, and the alumina or zirconia is brittle. Even by blending an inorganic filler containing as a main component, a composition having sufficient strength and hot water resistance cannot be obtained. If the intrinsic viscosity exceeds 2.6, the melt viscosity is high, resulting in insufficient fluidity during melt molding, making it impossible to obtain a good molded product. It is preferable that the intrinsic viscosity is in the range of 0.8 to 2.6 because it provides good surface appearance and excellent physical properties and processability.

該ポリエーテルケトンは特開昭54−90296などに
開示された方法により得られる。
The polyetherketone can be obtained by the method disclosed in JP-A-54-90296.

ナ(Al120* ) もしくはジtレコ= 7 (Z
r02)を40%以と、好ましくは50%以上含有す也
7無機物である。アルミナもしくはジルコニアを40%
以り含有する無機物をポリエーテlレケトンに配合した
時、良好な耐熱水性、耐スチーム性を示すが、該無機物
がアルミナもしくはジルコニアを50%以り含有したも
のである時、より一囮高い耐熱水性、耐スチーム性を示
し、好ましい。
Na (Al120*) or zit record = 7 (Z
It is an inorganic substance containing 40% or more, preferably 50% or more of r02). 40% alumina or zirconia
When an inorganic substance containing the following is blended into polyether-reketone, it exhibits good hot water resistance and steam resistance, but when the inorganic substance contains 50% or more of alumina or zirconia, it exhibits even higher hot water resistance. , which exhibits steam resistance and is preferred.

該無機充填材の形状については特に限定されない。粉末
状、針状、繊維状、鱗片状いずれの形状も適用可能であ
るが、20μ以下の粒径を有するもの、もしくは20μ
以下の繊維径で8−以下の繊維長を有するものが、分散
性、作業性の面からは好ましい。3間以上−の長い繊維
やロービング、ヤーンを用いても、樹脂組成物中で35
131以下の繊維長で均一な分散状態を得れば同様のす
ぐれた特性が得られる。
The shape of the inorganic filler is not particularly limited. Powder-like, needle-like, fibrous, or scale-like shapes are applicable, but particles with a particle size of 20μ or less, or 20μ
Those having the following fiber diameters and fiber lengths of 8 or less are preferable from the viewpoint of dispersibility and workability. Even if long fibers, rovings, or yarns with a length of 35 or more are used, 35
Similar excellent properties can be obtained by obtaining a uniform dispersion state with a fiber length of 131 or less.

該無機充填材は、通常無処理でも使用し得るが、ポリエ
ーテルケトンと親和性をもたせるために、アミノシラン
、エポキシシラン等のシランカップリング剤、クロミッ
ククロライド、その他目的に応じた表面処理剤を使用す
ることができる。
The inorganic filler can normally be used without treatment, but in order to have an affinity with polyetherketone, a silane coupling agent such as aminosilane or epoxysilane, chromic chloride, or other surface treatment agent depending on the purpose is used. can do.

アルミナもしくはジルコニアを主成分とする無機充填材
をポリエーテルケトンへ配合する量は、ポリエーテルケ
トンと該無機充填材の合計檄に対して、ポリエーテルケ
トン3゜〜95V1t%、該無機充填材70〜5 wL
%が適当であり、ポリエーテルケトンが95wL%を越
え、該充填材が5 wt%未満の場合には、目的とする
成形収縮、後収縮の改良が不十分であり、またポリエー
テルケトンが3 Q wt%未満、該充填材が7QwL
%を越えた場合には、溶融混合機での分散が不十分であ
り、また溶融粘度の上昇が著しいため、流動性が低く、
通常の条件による成形が困難となり、好ましくない。
The amount of inorganic filler containing alumina or zirconia as a main component to be blended into polyetherketone is 3% to 95V1t% of polyetherketone, 70% of the inorganic filler, based on the total amount of polyetherketone and the inorganic filler. ~5 wL
% is appropriate, and if the polyetherketone exceeds 95 wL% and the filler is less than 5 wt%, the desired improvement in molding shrinkage and post-shrinkage will be insufficient; less than Q wt%, the filler is 7QwL
%, the dispersion in the melt mixer is insufficient and the melt viscosity increases significantly, resulting in low fluidity.
Molding under normal conditions becomes difficult, which is not preferable.

本発明の組成物の配合手段は特に限定されない。ポリエ
ーテルケトン、該充填材を各々別々に溶融混合機に供給
することが可能であり、またあらかじめこれら原料類を
乳鉢、ヘンシェルミキサー、ボールミル、リボンブレン
ダーなどを利用して予備混合してから溶融混合機に供給
することもできる。
The means of blending the composition of the present invention is not particularly limited. It is possible to feed polyetherketone and the filler separately to a melt mixer, or these raw materials are premixed in a mortar, Henschel mixer, ball mill, ribbon blender, etc. and then melt mixed. It can also be supplied to machines.

なお、本発明組成物に対して、本発明の目的をそこなわ
ない範囲で、酸化防止剤および熱安定剤、紫外線吸収剤
、滑剤、離型剤、染料、顔料などの着色剤、難燃剤、難
燃助剤、帯電防止剤などの通常の添加剤を1種以と添加
することができる。
The composition of the present invention may contain antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, mold release agents, colorants such as dyes and pigments, flame retardants, One or more conventional additives such as flame retardant aids and antistatic agents can be added.

以下、実施例により本発明を説明するが、これらは単な
る例示であり、本発明はこれに限定されるものではない
The present invention will be described below with reference to Examples, but these are merely illustrative and the present invention is not limited thereto.

実施例1〜8 を有し、固有粘度が0.8であるポリエーテルケトンと
、IC1製アルミナ繊維、サフ4 ル(Ad203.9
5%、 、 5i02 5%* ta維径径3μ繊維長
2〜3 Q ex )を第1表に示し jた組成で混合
し、二軸押出機(池貝鉄工製PCM−ao) により、
860℃の温度で溶融混練した後、ストランドを水冷、
切断してペレットを得た。
Examples 1 to 8 Polyetherketone having an intrinsic viscosity of 0.8, alumina fiber manufactured by IC1, Saf 4 (Ad203.9)
5%;
After melt-kneading at a temperature of 860°C, the strands are water-cooled,
Pellets were obtained by cutting.

得られたペレットを射出成形(住友−ネスタール47/
28射出成形機、シリンダ一温度370℃、金型温度1
60℃)し、曲 上げ試験片を得た。
The obtained pellets were injection molded (Sumitomo-Nestal 47/
28 injection molding machine, cylinder temperature 370℃, mold temperature 1
60°C) to obtain a bent test piece.

曲げ試験片を用いて、曲げ強度、破断歪、成形収縮率を
測定するとともに1.250℃の熱水に500時間浸漬
後の収縮率、曲げ強度、破断歪を測定した。
Using a bending test piece, the bending strength, breaking strain, and molding shrinkage rate were measured, and the shrinkage rate, bending strength, and breaking strain after being immersed in hot water at 1.250°C for 500 hours were also measured.

曲げ強度はAS’rM D−790に準拠して測定した
The bending strength was measured according to AS'rM D-790.

比較例1−2 実施例1〜3に用いたポリエーテルケトンとアルミfM
&維を第1表に示した割合で混合し、実施例1〜3と同
様の加工を行い、物性を測定した。
Comparative Example 1-2 Polyetherketone and aluminum fM used in Examples 1 to 3
& fibers were mixed in the proportions shown in Table 1, processed in the same manner as in Examples 1 to 3, and measured for physical properties.

叱較例8 実施例1〜8に用いたポリエーテルケトンとガラス繊維
(旭ファイバーグラス製C5Q 3−MA497、Si
O252〜56 % 、 A1120812〜16%、
ZrO□ 0% )を第1表に示した割合で混合し、実
施例1〜3と同様の加工を行い、物性を測定した。
Comparison Example 8 The polyetherketone and glass fiber used in Examples 1 to 8 (Asahi Fiberglass C5Q 3-MA497, Si
O252-56%, A1120812-16%,
ZrO□0%) was mixed in the proportions shown in Table 1, processed in the same manner as in Examples 1 to 3, and measured for physical properties.

ヒ較例4〜5 実施例1〜3に用いたポリエーテルケトンとウオラスト
ナイト(長面産業製NYAD−G、 Ca S iol
、針状)、非晶質シリカ(電気化学製L−44,5in
2、球状)ヲソレソれ第1表に示した割合で混合し、実
施例1〜3と同様の加工を行い、物性を測定した。
Comparative Examples 4 to 5 Polyetherketone and wollastonite used in Examples 1 to 3 (NYAD-G manufactured by Chomen Sangyo, Ca Siol
, acicular), amorphous silica (Denki Kagaku L-44, 5in
2. Spherical) They were mixed in the proportions shown in Table 1, processed in the same manner as in Examples 1 to 3, and measured for physical properties.

実施例4〜5 実施例1〜3に用いたポリエーテルケトンとジルコニア
(第−稀珠元素化学製5OPTZ r02 99.6%
)、アルミナ゛−シリカ繊維(イソライト工業製力オウ
ール、A420147%、5i0252%)をそれぞれ
第1表に示した割合で混合し、実施例1〜3と同様の加
工を行い、物性を測定した。
Examples 4 to 5 Polyetherketone and zirconia used in Examples 1 to 3 (5OPTZ r02 99.6% manufactured by Rare Genso Kagaku Co., Ltd.)
) and alumina-silica fiber (Isolite Industrial Co., Ltd., 147% A420, 252% 5i0) were mixed in the proportions shown in Table 1, processed in the same manner as in Examples 1 to 3, and measured for physical properties.

第1表の結果にみられるように、アルミナもしくはジル
コニアを40W【%以上含有する充填材を70〜5wL
%配合したもの(実施例1〜5)は、成形収縮率熱水浸
漬後の収縮率が小さく、寸法麦作性が高く、かつ高い強
度をもち、厳しい熱水処理後も強度維持率が高いことが
わかる。
As seen in the results in Table 1, 70 to 5 wL of filler containing 40W% or more of alumina or zirconia was used.
% (Examples 1 to 5) have low molding shrinkage and shrinkage after hot water immersion, high dimensional wheat productivity, high strength, and high strength retention even after severe hot water treatment. I understand.

一方、ポリエーテルケトン単体(比較例1)では熱水処
理後の強度維持率は高いが、成形収恢心水処理後の収縮
とも大きく、寸法安定性が悪い。
On the other hand, polyetherketone alone (Comparative Example 1) has a high strength retention rate after hot water treatment, but also has a large shrinkage after molding convergence and water treatment, and has poor dimensional stability.

また、本発明組成物以外の充填材を配合した系(比較例
3〜4)では、寸法安定性は良好であるが、熱水処理後
の強閘低下が大きく、厳しい熱水条件には耐えないこと
がわかる。
In addition, systems containing fillers other than the compositions of the present invention (Comparative Examples 3 and 4) had good dimensional stability, but the strength decreased significantly after hot water treatment, and they were resistant to severe hot water conditions. It turns out that there isn't.

Claims (1)

【特許請求の範囲】[Claims] ポリエーテルケトン80−95wt%とアルするポリエ
ーテルケトン樹脂組成物。
A polyetherketone resin composition containing 80-95 wt% of polyetherketone.
JP12369983A 1983-07-06 1983-07-06 Polyether ketone resin composition Granted JPS6015452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12369983A JPS6015452A (en) 1983-07-06 1983-07-06 Polyether ketone resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12369983A JPS6015452A (en) 1983-07-06 1983-07-06 Polyether ketone resin composition

Publications (2)

Publication Number Publication Date
JPS6015452A true JPS6015452A (en) 1985-01-26
JPH0456861B2 JPH0456861B2 (en) 1992-09-09

Family

ID=14867146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12369983A Granted JPS6015452A (en) 1983-07-06 1983-07-06 Polyether ketone resin composition

Country Status (1)

Country Link
JP (1) JPS6015452A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1866368B1 (en) 2005-04-06 2016-10-19 Victrex Manufacturing Limited Polymeric materials
EP2366728B1 (en) 2003-09-26 2016-11-02 Victrex Manufacturing Limited Polymeric material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756500A (en) * 1980-09-22 1982-04-05 Otsuka Pharmaceut Co Ltd Novel bufadienolide-type steroid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756500A (en) * 1980-09-22 1982-04-05 Otsuka Pharmaceut Co Ltd Novel bufadienolide-type steroid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366728B1 (en) 2003-09-26 2016-11-02 Victrex Manufacturing Limited Polymeric material
EP1866368B1 (en) 2005-04-06 2016-10-19 Victrex Manufacturing Limited Polymeric materials

Also Published As

Publication number Publication date
JPH0456861B2 (en) 1992-09-09

Similar Documents

Publication Publication Date Title
EP0376616B1 (en) Fiber-reinforced thermoplastic resin composition
JPS6023448A (en) Aromatic polysulfone resin composition
JPS6367503B2 (en)
US4699944A (en) Polyetherketone resin composition
JPS6015452A (en) Polyether ketone resin composition
JPH0518352B2 (en)
JP3034335B2 (en) Polyarylene sulfide resin composition
US5079290A (en) Poly(arylene sulfide) composition
JPH05112657A (en) Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material
EP0401502B1 (en) Glass-filled poly(arylene sulphide) compositions
EP0375170B1 (en) Process for producing aromatic polysulfone molding compositions improved in mold-release characteristics and the compositions obtained by this process.
CN112552677B (en) Modified nylon 66 composition and preparation method thereof
JPH0415825B2 (en)
CN113789043A (en) Heat-conducting junction box material and preparation method and application thereof
JPH0587541B2 (en)
JP3674163B2 (en) Polyphenylene sulfide resin composition
JPS61195156A (en) Wholly aromatic copolyester resin composition
JPS59191761A (en) Polyarylene sulfide resin composition
CA2084333A1 (en) Poly(arylene sulfide) compositions containing graphite powder
JPS6251981B2 (en)
CN110698832A (en) Nano particle reinforced flame-retardant aging-resistant PC composite material and preparation method thereof
EP0184936A2 (en) Aromatic polysulfone resin compositions
JPS60124649A (en) Fully aromatic polyester resin composition
JPH05279562A (en) Glass fiber reinforced polycarbonate resin composition
JPH02292365A (en) Glass-filled aromatic sulfide/sulfone polymer composition and its manufacture