JPS60154504A - Oxide permanent magnet - Google Patents

Oxide permanent magnet

Info

Publication number
JPS60154504A
JPS60154504A JP59010481A JP1048184A JPS60154504A JP S60154504 A JPS60154504 A JP S60154504A JP 59010481 A JP59010481 A JP 59010481A JP 1048184 A JP1048184 A JP 1048184A JP S60154504 A JPS60154504 A JP S60154504A
Authority
JP
Japan
Prior art keywords
cao
oxide
added
permanent magnet
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59010481A
Other languages
Japanese (ja)
Inventor
Masayoshi Kawamura
川村 昌芳
Mikio Yamamoto
幹夫 山本
Yasuji Suzuki
鈴木 保次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59010481A priority Critical patent/JPS60154504A/en
Publication of JPS60154504A publication Critical patent/JPS60154504A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the stabilized oxide permanent magnet having excellent magnetic characteristics by a method wherein the commonly known relation between the aditive SiO2 and CaO, including free metal oxide, is brought in the prescribed range, the established quantity of B2O3 is added, and the prescribed quantity of Al2O3 is also added as occasion demands. CONSTITUTION:When one or two kinds of Pb, Ba and Sr are used as metal M and an oxide permanent magnet having fundamental composition of Fe2O3MO of 5.3-6.0 in mol ratio is going to be formed, 0.1-1.0wt% of SiO2 and 0.1- 1.2wt% of CaO are used, 0.01-0.07% of B2O3 and 0-4% of Al2O3 are added thereon. At the same time, the range of mol ratio of CaO/SiO2 is set at 0.6-1.4, and the mol ratio of liberated MO and CaO (MO+CaO/SiO2) generated from the difference between the stoichiometric mol ratio and the actual value is selected in the range of 1-1.8. When an improvement is made on the conventional method in which attention is paid only on the quantity of additive as above-mentioned, the manufacture of the title magnet is stabilized, and the oxide permanent magnet having high coersive force and high residual magnetic flux density can be obtained.

Description

【発明の詳細な説明】 本発明はMO−n Fe 203 (MはPb 、 B
aS「の内の1種又は2種、n=5.3〜6.0)なる
基本組成を有する酸化物永久磁石に係り、特に添加物と
してSi 02、Ca O,A11203 (任意成分
)及びB2O3を含有づる酸化物永久11石に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to MO-n Fe 203 (M is Pb, B
It relates to an oxide permanent magnet having a basic composition of "one or two of the following, n = 5.3 to 6.0), particularly containing Si02, CaO, A11203 (optional components) and B2O3 as additives. This relates to 11 permanent oxides containing .

バリウムフェライト磁石やストロンチウムフェライト磁
石等の酸化物永久磁石においては、高い磁気特性を得る
為にSi 02とCaO及びAQ203(0を含む)を
複合添加することが従来より行なわれている(例えば米
国特許第2,980,617号明細書、特公昭49−4
716号公報、特公昭49−1575号公報参照)。そ
の場合において高い保磁力を得るFeめには、1200
℃以下の低い温度で焼結を行なうこと及び仮焼後の微粉
砕において単磁区臨界粒子径以下の粒径になるように粉
砕することを必要としていた。しかるに、焼結温度を低
くすることは焼結体密度を低下させることになり、焼結
体密度と密接な関係を有する残留磁束密度が低下してし
まうという問題があった。また微粉砕粒径を小さくする
ことは微粉砕に要する時間を長くせしめ、かつ成形性を
劣下させる原因となっていた。更にSi 02とCaO
のみの複合添加においてはその配合モル比のわずかな変
化により保磁力が著しく変化するため、厳密な製造管理
が要求されるという問題があった。
In oxide permanent magnets such as barium ferrite magnets and strontium ferrite magnets, in order to obtain high magnetic properties, composite addition of Si02, CaO, and AQ203 (including 0) has traditionally been carried out (for example, as described in the U.S. patent Specification No. 2,980,617, Special Publication No. 49-4
(See Japanese Patent Publication No. 716 and Japanese Patent Publication No. 1575/1983). In that case, for Fe to obtain a high coercive force, 1200
It is necessary to perform sintering at a low temperature of 0.degree. C. or lower, and to pulverize the material after calcination so that the particle size is less than the single magnetic domain critical particle size. However, lowering the sintering temperature lowers the density of the sintered body, resulting in a problem in that the residual magnetic flux density, which has a close relationship with the density of the sintered body, decreases. Further, reducing the finely pulverized particle size increases the time required for finely pulverizing and causes deterioration in moldability. Furthermore, Si02 and CaO
In the case of composite addition of 100% or more, the coercive force changes significantly due to a slight change in the blended molar ratio, so there is a problem in that strict manufacturing control is required.

本発明の目的は、上述の従来技術の問題点を解消し、安
定した製造が可能な高保磁力と高残留磁束密度を有する
酸化物永久磁石を提供することである。
An object of the present invention is to solve the problems of the prior art described above and to provide an oxide permanent magnet having high coercive force and high residual magnetic flux density that can be manufactured stably.

本発明の酸化物永久磁石は、モル比にてFe2O3/M
O(MはPb、、Ba 、Srの1種又は2種)、−5
,3〜6.0なる基本組成を有づる酸化物永久磁石にお
いて、重量比にて酸化ケイ素Si 02を0.1〜1.
0%、酸化カルシウムCaOを0.1〜1.2%、酸化
アルミニウムA(1203を4%以下(0%を含む)及
び酸化ホウ素B2O3を0.01〜0.07%含有Jる
と共に、モル比にてCa O/Si 02が0.5〜0
.4の範囲であり、かつ化学量論的なモル比と実際の製
造におけるモル比との差から生ずる遊離MOおよびCa
Oのモル数と3i02のモル数の比(MO+Ca O/
Si 02 )が1〜1.8の範囲Cあることを特徴と
づるものである。 。
The oxide permanent magnet of the present invention has a molar ratio of Fe2O3/M
O (M is one or two of Pb, Ba, Sr), -5
, 3 to 6.0, silicon oxide Si 02 is contained in a weight ratio of 0.1 to 1.
0%, calcium oxide CaO 0.1-1.2%, aluminum oxide A (1203 4% or less (including 0%)) and boron oxide B2O3 0.01-0.07%, and the molar The ratio of CaO/Si02 is 0.5 to 0
.. 4, and free MO and Ca resulting from the difference between the stoichiometric molar ratio and the molar ratio in actual production.
The ratio of the number of moles of O to the number of moles of 3i02 (MO+Ca O/
Si 02 ) is in the range C of 1 to 1.8. .

酸化物永久磁石においては、磁気特性を高めるために添
加物としてCa O,Si 02 、A(LO3、B2
O3等を複合添加(る(CaO−8i02、Ca 0−
A(L 203 、B203−8i 02 ) コトが
従来から行なわれていることは前述した通りである。し
かして従来は単に各添加物の添加量にのみ着目していた
ため高磁気特性を安定して得られないのが実情であった
In oxide permanent magnets, CaO, Si02, A(LO3, B2
Combined addition of O3 etc. (CaO-8i02, Ca0-
As mentioned above, A(L 203 , B203-8i 02 ) has been conventionally performed. However, in the past, attention was focused solely on the amount of each additive added, and the reality was that high magnetic properties could not be stably obtained.

これに対して本発明者等が種々検討した結果、公知の添
加物であるSi 02とCaOを用いた場合でも、これ
らの添加量を所定の範囲に収めることに加えて、遊離M
Oも含めて3i 02とCaOの添加量の関係を所定の
範囲に収めることと、B2O3を所定量添加し、必要に
応じAl2O3も所定量添加づることにより、高磁気特
性を安定して得られるのを見出した。
As a result of various studies conducted by the present inventors, we found that even when using the known additives Si02 and CaO, in addition to keeping the amount of these additives within a predetermined range, free M
High magnetic properties can be stably obtained by keeping the relationship between the amounts of 3i02 and CaO added, including O, within a predetermined range, and by adding a predetermined amount of B2O3 and, if necessary, a predetermined amount of Al2O3. I found out.

詳述するとフェライト磁石におい−Cは、Fe2O3と
MOとのモル比は化学量論的には6.0であるが、実際
の製造においてはこの化学ω論組成よりMOが多少多く
なる(通常はモル比が5.3以上、6.0未満)のよう
に原料を配合する。このように化学量論的なFe2O3
とMOのモル比との間に差異があることから、実際の製
造においてはその過程で遊離のMOが生じる。そこで本
発明者等はこの遊離MOに着目して検討した結果、Si
 02に対づる遊liIl1MOとCaOの和のモル比
(S「0−1−Ca O/Si 02 )を制御M+−
dることにより高保磁力(It−1G≧3000006
 )を得ることがテキルのを見出した。また添加物とし
て更にB2O3を含むことにより高保磁りが得られるモ
ル比(SrO+Ca O/Si 02 )の範囲が拡が
り、安定した生産ができるとともに焼結体密廓が向上し
そのことによって残留磁束密度が向上り−ることも見出
し lこ 。
To explain in detail, in ferrite magnet -C, the molar ratio of Fe2O3 and MO is stoichiometrically 6.0, but in actual production, MO is slightly larger than this stoichiometric composition (usually The raw materials are blended such that the molar ratio is 5.3 or more and less than 6.0. In this way, stoichiometric Fe2O3
Since there is a difference between the molar ratio of MO and MO, free MO is generated during the actual manufacturing process. Therefore, the present inventors focused on this free MO and found that Si
Control the molar ratio of the sum of free liIl1MO and CaO (S ``0-1-CaO/Si 02 ) with respect to 02M+-
High coercive force (It-1G≧3000006
) I found that it is possible to get a Tekiru. In addition, by including B2O3 as an additive, the range of molar ratio (SrO + Ca O / Si 02 ) at which high coercivity can be obtained is expanded, stable production is possible, and the density of the sintered body is improved, thereby increasing the residual magnetic flux density. It is also reported that the results are improved.

以下比較例および実施例により本発明を具体的に説明づ
る。
The present invention will be specifically explained below using comparative examples and examples.

比較例 炭酸スト【」ンヂウムSrCO3と酸化鉄Fe2O3を
S1゛0とFe2O3がモル比′c1:5.7ニなるよ
うに混合し、この混合物に酸化ケイ素3i02を0.3
重量%添加してから1270℃で1時間仮焼し、微粉砕
の際に総合での酸化ケイ素Si 02し、更にこれに酸
化アルミニウムAl2O3を0.8重饅%添加したもの
を湿式微粉砕機により平均粒径0.8μに微粉砕し、0
.4t 7cm2の圧力を加え約8KO(+の磁場中で
成形後1200℃で1時間焼結してSrフェライト磁石
を製造した。この時のCaOとSi 02のモル比と残
留磁束密度3r及び保磁)j工HCの関係を第1図に示
り。第1図より明らかなようにSi 02とCaOの複
合添加におい−〔は残留磁束密度の変化に比べて保磁力
の変化が極めて大きく、又保磁力の最大値を示゛り配合
比が1.0近傍にあることがわかる。更にこのことはS
i 02及びCa0g1A々の添加量によらずその配合
比を一定の範囲としなりばならないことを示している。
Comparative Example Carbonate carbonate SrCO3 and iron oxide Fe2O3 were mixed so that the molar ratio of S10 and Fe2O3 was 1:5.7, and 0.3 of silicon oxide 3i02 was added to this mixture.
After adding % by weight, it was calcined at 1270°C for 1 hour, and during pulverization, the total amount of silicon oxide Si02 was added, and then 0.8% of aluminum oxide Al2O3 was added to this, and the mixture was processed into a wet pulverizer. Finely pulverized to an average particle size of 0.8μ,
.. A Sr ferrite magnet was manufactured by applying a pressure of 4t 7cm2 in a magnetic field of about 8KO (+) and sintering it at 1200°C for 1 hour.At this time, the molar ratio of CaO and Si02, the residual magnetic flux density 3r, and the ) The relationship between J-works and HC is shown in Figure 1. As is clear from FIG. 1, in the case of composite addition of Si02 and CaO, the change in coercive force is extremely large compared to the change in residual magnetic flux density, and the coercive force shows the maximum value when the mixing ratio is 1. It can be seen that it is close to 0. Furthermore, this is S
This shows that the blending ratio must be within a certain range regardless of the amounts of i02 and Ca0g1A added.

実施例1 Sr CO:3とFe2O3をモル比にてFe2O3/
Sl’Oが5.5及び5.7となるように混合して2種
類の原料混0合物を準備した。これを各混合物について
1250℃で1時間仮焼し、ついで微粉砕の際に5iC
1+とCaO及びFe 20373r o=6の化学量
論的な組成比との差異により生ずる遊離のsroとがS
r O+Ca O/Si 02 ”C表わした場合にモ
ル比にて0.8〜2.0となり、又その更にA<L20
3を各々0.8重量%添加した。これに更に焼結過程に
おいFe2O3を形成しB2O3として0.03重量%
となるようにホウ1H3803を添加したものと838
03を添加しないbのを各々2種類針4種類の試料を作
製し、比較例と同様の条件で微粉砕、磁場中成形及び焼
結しでSrフェライト磁石を得た。第1表に各試料と添
留磁束密度、保磁力の関係を第2図に示す。第2e 2
03/St’ Oがそれぞれ5.5及び5.7の場合を
、曲線CとdはH3,B O3を添加し、F、e203
がそれぞれ5.5及び5.7の場合ぐある。第2図の曲
線a 、 bからも5102とCaOの複合添加におい
°Cはその配合比によっ−C保磁力が大きく変化覆るこ
とが明らかぐあり、単にその添加量のみひはなく遊離の
SrOをも含めた総体的な配合比の管理が重要であるこ
とがわかる。
Example 1 Sr CO:3 and Fe2O3 in molar ratio Fe2O3/
Two types of raw material mixtures were prepared by mixing so that Sl'O was 5.5 and 5.7. This was calcined for 1 hour at 1250°C for each mixture, and then 5iC
1+ and the free sro caused by the difference in the stoichiometric composition ratio of CaO and Fe 20373r o=6.
When expressed as rO+CaO/Si02''C, the molar ratio is 0.8 to 2.0, and further A<L20
3 was added in an amount of 0.8% by weight. In addition, Fe2O3 is formed in the sintering process to form 0.03% by weight of B2O3.
Hou 1H3803 was added and 838
Four types of samples were prepared, each having two types of needles (b) without the addition of 03, and were pulverized, formed in a magnetic field, and sintered under the same conditions as in the comparative example to obtain Sr ferrite magnets. Table 1 shows the relationship between each sample, the added magnetic flux density, and the coercive force in Fig. 2. 2nd e 2
03/St' O is 5.5 and 5.7, respectively, curves C and d are obtained by adding H3, B O3, F, e203
are 5.5 and 5.7, respectively. From curves a and b in Figure 2, it is clear that in the case of composite addition of 5102 and CaO, the -C coercive force changes greatly depending on the blending ratio; It can be seen that it is important to manage the overall blending ratio, including the

しかし、第2図における曲線Cとdのごとくこれに82
03を添加した場合には・ある程度3r 。
However, as shown in curves C and d in Figure 2, 82
When 03 is added, 3r is added to some extent.

+Ca O/Si 02の値により保磁力が変動Jる傾
向は認められるものの、極め−C広範囲に渡って保磁力
が向上しており B2O3の複合添加によって高保磁力を有づる酸化物永
久磁石を安定して製造ぐぎることがわがる。
Although it is recognized that the coercive force tends to fluctuate depending on the value of +CaO/Si02, the coercive force improves over a wide range of -C, and the combined addition of B2O3 stabilizes oxide permanent magnets with high coercive force. I understand that the manufacturing process is difficult.

実施例2 3r CO3とFe2O3を、モル比にてFe2O3/
SrOが5.65及び5.75となるように混合して2
種類の原料混合物を準備した。各混合物に添加物として
5102を各々0.3重量%添加したものを1250℃
′c1時間仮焼し、ついで微粉砕の際に総合でのSi 
02とCaO及び遊離のSrOとのモル比が3r o+
ca O/Si 02 = 1.4どなるようにSi 
02とCaOを添加し、これに8203として各々0(
無添加)、0.o2.0.04.0.06.0.08重
量%となるようにホウ素酸化物を添加したものを湿式微
粉砕機により平均粒径0.9μに微粉砕し、0.4t 
/cm2の圧力を加え約8KOeの磁場中ぐ成形後12
20℃で1時間焼結してフェライト磁石を得た。これら
のフェライト磁石にお【プるB2O3添加量と残留磁束
密度・保磁力及び焼結体密度の関係を第2表に示1゜明
細書の浄書(内容に変更なし) 第2表 B2O3添加量と磁気特性及び焼結体密この第
2表を図で表したものが第3図である。
Example 2 3r CO3 and Fe2O3 in a molar ratio of Fe2O3/
Mix 2 so that SrO is 5.65 and 5.75.
Various raw material mixtures were prepared. 0.3% by weight of 5102 as an additive was added to each mixture at 1250°C.
Calcined for 1 hour, then finely pulverized to remove the total Si
The molar ratio of 02 to CaO and free SrO is 3r o+
ca O/Si 02 = 1.4 How Si
02 and CaO were added to this, and 8203 and 0(
(no additives), 0. o2.0.04.0.06.0.08% by weight of boron oxide was added and pulverized to an average particle size of 0.9μ using a wet pulverizer, and 0.4t
After applying a pressure of /cm2 and molding in a magnetic field of approximately 8KOe,
A ferrite magnet was obtained by sintering at 20° C. for 1 hour. Table 2 shows the relationship between the amount of B2O3 added to these ferrite magnets, residual magnetic flux density, coercive force, and sintered body density. FIG. 3 is a graphical representation of Table 2, which shows the magnetic properties and density of the sintered body.

第2表及び第3図より8203添加にょっ(保磁力の著
しい向上が見られるが同時に焼結体密度も大きくなっで
おり、それにより焼結体密度と密接な関係を有りる残留
磁束密度の向上を得ることができることがわかる。しか
し8203がo、og虐量%以上eはオぜ1子の界堂釦
成城じトハI’d uk 4−+ +C著しく低下りる
ためB2O3の添加量としては0.01〜0.01重量
%の範囲、好ましくは0.01〜0.05重量%が適当
である。
From Table 2 and Figure 3, with the addition of 8203, a significant improvement in coercive force can be seen, but at the same time, the density of the sintered body also increases, which leads to an increase in the residual magnetic flux density, which has a close relationship with the density of the sintered body. It can be seen that an improvement can be obtained. However, if 8203 is o, og mass% or more, the amount of B2O3 added is A range of 0.01 to 0.01% by weight, preferably 0.01 to 0.05% by weight is suitable.

尚、添加物による複合効果を考えた場合におい−(、A
Q、203による複合効果も考えられるが、A<L20
3は主として酸化物永久磁石における主成分である所の
Fe2O3からくるFC3+と同価のイオンであるAα
3+とが置換固溶反応をすることからくる格子定数変化
に伴う保磁力変化であり、結晶粒界化合物を形成づるS
i 02、Ca O,B2O3の効果とは木質的に性質
を異にする。第4図に本実施例にJハノる8203を0
.02重量%添加したものに△Q、203を0〜5重量
%添加して)1ライト磁石を製造した時のA(1203
添加量と残留磁束密度及び保磁力との関係を示J0第4
図のようにAQpOs添加量と残留磁束密度及び保磁力
との関係はほぼ直線的な変化を承す゛が、AQ、203
添加量の増大は保磁ツノを向上させる反面残留磁束密1
褒を減少させるため、その添加量としくは4重量%以下
(0%を含む)が良い。
In addition, when considering the combined effect of additives, -(, A
A combined effect due to Q, 203 is also considered, but A<L20
3 is Aα, which is an ion equivalent to FC3+, which comes from Fe2O3, which is the main component in oxide permanent magnets.
This is a coercive force change due to a change in lattice constant caused by a substitution solid solution reaction with S3+, which forms grain boundary compounds.
The effect of i 02, Ca 2 O, and B 2 O 3 differs in wood quality. Figure 4 shows the J Hanoru 8203 in this example.
.. A (1203
J0 No. 4 shows the relationship between the addition amount, residual magnetic flux density, and coercive force.
As shown in the figure, the relationship between the amount of AQpOs added, residual magnetic flux density, and coercive force changes almost linearly, but AQ, 203
Increasing the amount of addition improves the coercive horn, but on the other hand, the residual magnetic flux density 1
In order to reduce the effects, the amount added should preferably be 4% by weight or less (including 0%).

以上のように本発明によれば、3i 02とCaOの配
合比を遊NIMOを含めたモル比(81・O+Ca O
/Si 02 >によって調整し、かつこれに8203
を0.01〜0.07重量%の範囲で添加づることで従
来より保磁力の高い酸化物永久磁石を第2表のどと<8
203無添加のものと比較して約0.4〜1%程度高い
焼結体密度と共に得ることができる。更に焼結体密度の
向上に伴いそれと密接な関係を有づる残留磁束密度をも
向上させることができ、それにより残留磁束密度と保磁
)j共従来より高いものが得られる為、高い磁気特性を
得るために要していた微粉砕のための時間を短縮するこ
とができる。すなわら、高い磁気特性を有する方法の一
つとして従来より微粉砕の粒径を小さくすることが行な
われできたが、本発明は微粉砕粉の粒径を従来と同じ程
度にしても上述した添加物の使用により高い磁気特性が
容易に得られるものであり、酸化物永久磁石の多くの用
途から従来と同程度の磁気特性を有するものを供給する
場合においてはそれに要づる微粉砕時間を大きく短縮C
きるものである。
As described above, according to the present invention, the blending ratio of 3i 02 and CaO is changed to the molar ratio including free NIMO (81.O+CaO
/Si 02 > and add 8203 to this
By adding 0.01 to 0.07% by weight of oxide permanent magnets with higher coercive force than conventional ones,
It is possible to obtain a sintered body with a density approximately 0.4 to 1% higher than that without the addition of 203. Furthermore, as the density of the sintered body improves, the residual magnetic flux density, which has a close relationship with it, can also be improved, and as a result, both the residual magnetic flux density and coercivity can be higher than before, resulting in high magnetic properties. It is possible to shorten the time required for fine grinding to obtain . In other words, one method of achieving high magnetic properties has conventionally been to reduce the particle size of the finely pulverized powder, but the present invention allows the above-mentioned method to be achieved even if the particle size of the finely pulverized powder is kept at the same level as before. High magnetic properties can be easily obtained through the use of additives, and in many applications of oxide permanent magnets, when supplying magnets with magnetic properties comparable to conventional ones, the required pulverization time is reduced. greatly shortened C
It is possible.

尚、本発明による酸化物永久磁石の製造方法は5102
とCaOを遊離のMOを含めたモル比により配合Jるも
のであり、各添加物の添加量は(MO+Ca O)/S
i 02が1〜1.8ノ範囲内r−設定づ−れば良い。
Incidentally, the method for manufacturing an oxide permanent magnet according to the present invention is 5102
and CaO are mixed according to the molar ratio including free MO, and the amount of each additive added is (MO+CaO)/S
It is sufficient if i02 is set within the range of 1 to 1.8.

但し、あまりに大量に添加物を添加すると、その酸化物
永久磁石におりる添加物りなわら粒界成分の占める割合
が増加りることにより逆に焼結体密度を低下させ、残留
磁束密度の低−Fを招いてしまう。従つUSi 02と
CaOの添加mどしCは3i 02を0.1〜1.0重
量%及びCaOを0.1〜1.2重量%(もしくは焼結
過程においてそれと同等となるCan!化物)とし、こ
の範囲においてその配合比をモル比で表わした場合にC
aO/SiO2が0.6〜1.4となり更ニMO+Ca
 O/Si 02が1〜1.8となるよウニするど良い
However, if too large a quantity of additives is added, the proportion of grain boundary components of the additives that fall into the oxide permanent magnet will increase, which will actually lower the density of the sintered body and cause a decrease in the residual magnetic flux density. -I invite F. Therefore, the addition of USi 02 and CaO is 0.1 to 1.0% by weight of 3i 02 and 0.1 to 1.2% by weight of CaO (or a Can! compound that becomes equivalent in the sintering process). ), and when the blending ratio is expressed as a molar ratio within this range, C
aO/SiO2 becomes 0.6 to 1.4 and further MO+Ca
It is best to keep the O/Si02 value between 1 and 1.8.

以上に記述の如く、本発明によれば、従来より^い保磁
力と高い焼結体密度を有するとともに、焼結体密度と密
接な関係を有する残留磁束密度をも向上した酸化物永久
磁石を安定して製造りることができる。
As described above, the present invention provides an oxide permanent magnet that has higher coercive force and higher sintered body density than conventional ones, and also has improved residual magnetic flux density, which has a close relationship with sintered body density. It can be manufactured stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCa O/Si 02配合モル比と磁気特性の
関係を示す図、第2図は(Srf)+Ca0)/SiO
2配合モル比と磁気特性の関係を示す図、第3図はB2
O3添加壷と磁気特性及び焼結体密度の関係を示づ一図
、第4図はAl2O3添加量と磁気特性の関係を示1図
である。 悴 / 図 CaO15i0zモル比 第 2 図 (,5rO+Ca0)15i0zモル比#、3 図 第4図 AlzOaも前景(重量%) づ31+11. (7)名(示 酸化物永久磁石袖11
−をする者 代入8河野 典夫 代 理 人 − 5a 明(1) 名称 酸イ、物永久磁石袖11:をす
る者 名 什 +sog+ l−l 、i7金属株式会社代#
六河野 典夫 代 理 人 − 補正命令の日付 昭和59年4月24日(発送日)補正
の対象
Figure 1 is a diagram showing the relationship between CaO/Si02 blend molar ratio and magnetic properties, Figure 2 is (Srf)+Ca0)/SiO
A diagram showing the relationship between the molar ratio of 2 and magnetic properties, Figure 3 is B2
Figure 4 shows the relationship between the O3 addition pot, magnetic properties and sintered body density, and Figure 4 shows the relationship between the amount of Al2O3 added and the magnetic properties. / Figure CaO15i0z molar ratio Figure 2 (,5rO+Ca0)15i0z molar ratio #, 3 Figure 4 AlzOa is also in the foreground (wt%) zu31+11. (7) Name (indication) Oxide permanent magnet sleeve 11
Substitution of the person who will do the work 8 Norio Kono Deputy representative person - 5a Akira (1) Name Acid, material permanent magnet sleeve 11: Name of the person who will do the work +sog+ l-l, i7 Metal Co., Ltd. representative #
Norio Mutsukono - Date of amendment order April 24, 1980 (shipment date) Target of amendment

Claims (1)

【特許請求の範囲】 1、 モル比に’CFe 203/MO(MはPb。 3a 、3rの1種又は2種)’=5.3及至6.0な
る基本組成を有する酸化物永久磁石におい゛C,重量比
にて酸化クイ素Si 02を0.1〜1.0%、酸化カ
ルシウムCaOを0.1〜1.2%、酸化アルミニウム
A<L 203を4%以下(0%を含む)及び酸化ホウ
素B2O3を0.01〜0.07%含有すると共に、モ
ル比にてCa O/Si 02が0.6〜1.4の範囲
であり、かつ化学量論的なモル比と実際の製造における
モル比との差から生ずる遊離のMOおよびCaOのモル
数の比(MO十CaO/5i02)が1〜1.8の範囲
であることを特徴とり−る酸化物永久磁石。
[Claims] 1. In an oxide permanent magnet having a basic composition with a molar ratio of 'CFe203/MO (M is Pb, one or both of 3a and 3r)' = 5.3 to 6.0.゛C, weight ratio of 0.1 to 1.0% of quartz oxide Si02, 0.1 to 1.2% of calcium oxide CaO, 4% or less of aluminum oxide A<L 203 (including 0%) ) and boron oxide B2O3 in an amount of 0.01 to 0.07%, the molar ratio of CaO/Si02 is in the range of 0.6 to 1.4, and the stoichiometric molar ratio and actual An oxide permanent magnet characterized in that the ratio of the number of moles of free MO and CaO resulting from the difference in the molar ratio in the production of the oxide (MO+CaO/5i02) is in the range of 1 to 1.8.
JP59010481A 1984-01-24 1984-01-24 Oxide permanent magnet Pending JPS60154504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59010481A JPS60154504A (en) 1984-01-24 1984-01-24 Oxide permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010481A JPS60154504A (en) 1984-01-24 1984-01-24 Oxide permanent magnet

Publications (1)

Publication Number Publication Date
JPS60154504A true JPS60154504A (en) 1985-08-14

Family

ID=11751351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010481A Pending JPS60154504A (en) 1984-01-24 1984-01-24 Oxide permanent magnet

Country Status (1)

Country Link
JP (1) JPS60154504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433058A (en) * 1987-07-29 1989-02-02 Kyushu Sumitoku Denshi Kk Ceramic vessel and its production
JPH0298106A (en) * 1988-10-04 1990-04-10 Hitachi Metals Ltd Oxide permanent magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891598A (en) * 1971-12-17 1973-11-28
JPS5416039A (en) * 1977-06-06 1979-02-06 Cummins Engine Co Inc Exhaust brake valve
JPS58156575A (en) * 1982-03-09 1983-09-17 東北金属工業株式会社 Manufacture of oxide permanent magnet
JPS59174573A (en) * 1983-03-18 1984-10-03 姫路電子株式会社 Oxide magnetic material for permanent magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891598A (en) * 1971-12-17 1973-11-28
JPS5416039A (en) * 1977-06-06 1979-02-06 Cummins Engine Co Inc Exhaust brake valve
JPS58156575A (en) * 1982-03-09 1983-09-17 東北金属工業株式会社 Manufacture of oxide permanent magnet
JPS59174573A (en) * 1983-03-18 1984-10-03 姫路電子株式会社 Oxide magnetic material for permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433058A (en) * 1987-07-29 1989-02-02 Kyushu Sumitoku Denshi Kk Ceramic vessel and its production
JPH0298106A (en) * 1988-10-04 1990-04-10 Hitachi Metals Ltd Oxide permanent magnet

Similar Documents

Publication Publication Date Title
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
JPS60154504A (en) Oxide permanent magnet
US3415751A (en) Manganese-zinc ferrites
US3492236A (en) Ferromagnetic core and process for its production
JPS58156575A (en) Manufacture of oxide permanent magnet
JPH01112705A (en) Manufacture of oxide permanent magnet
JP2727579B2 (en) Low loss ferrite
JP2938348B2 (en) Oxide magnetic material
JP2802839B2 (en) Oxide soft magnetic material
JP3236648B2 (en) Oxide magnetic material
US3117935A (en) Ferromagnetic material
JP2935219B1 (en) Method for producing Mn-Zn ferrite core
KR102357085B1 (en) Magnetic powder and manufacturing method of magnetic powder
JPH11307331A (en) Ferrite magnet
JPS59232965A (en) Low loss oxide magnetic material
JPS63186402A (en) Ferrite magnet
JPH0555024A (en) Manufacture of hard ferrite
JP3617070B2 (en) Low loss ferrite manufacturing method
JPS6177304A (en) Manufacture of mn-zn ferrite
JPH0661029A (en) Manufacture of oxide permanent magnet
JPS61101458A (en) Manganese base ferrite composition
JPH02260609A (en) Manufacture of anisotropic sr ferrite magnet
JPS5913306A (en) Anisotropic strontium ferrite magnet
JPH0562818A (en) Method of manufacturing oxide permanent magnet
CN112479697A (en) MnZn ferrite material with low temperature coefficient and low loss at high frequency and preparation method thereof