JPS60154208A - Photodetecting device - Google Patents

Photodetecting device

Info

Publication number
JPS60154208A
JPS60154208A JP954184A JP954184A JPS60154208A JP S60154208 A JPS60154208 A JP S60154208A JP 954184 A JP954184 A JP 954184A JP 954184 A JP954184 A JP 954184A JP S60154208 A JPS60154208 A JP S60154208A
Authority
JP
Japan
Prior art keywords
wavelength
waveguide
semiconductor
directional coupler
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP954184A
Other languages
Japanese (ja)
Inventor
Yuji Abe
雄二 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP954184A priority Critical patent/JPS60154208A/en
Publication of JPS60154208A publication Critical patent/JPS60154208A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a small-sized photodetecting device which suits to integration by extracting a light output with specific wavelength through a waveguide type directional coupler, and obtaining the output current of a semiconductor photodetecting element. CONSTITUTION:For example, optical waveguides 21 and 22 are arranged in parallel, the wavelength lambda of light made incident on the optical waveguide 21 is lambda0, and this light travels to the optical waveguide 22 completely. In this case, lambda0 is the center wavelength of the waveguide type directional coupler. The ratio of output currents I1 and I2 of semiconductor photodetecting elements D1 and D2 provided at end parts of the optical waveguides 21 and 22 has wavelength characteristics as shown in a graph when the semiconductor photodetecting elements are equal in quantum. Consequently, it is evident that I1/I2 is a function of the wavelength lambda within a wavelength range, so a wavelength signal is detected in the form of the ratio of the output currents of the semiconductor photodetecting elements.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特定波長の光出力を受光し電気信号に変換する
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for receiving optical output of a specific wavelength and converting it into an electrical signal.

従来技術 長波長帯において、直接変調時にも安定に単一軸姿態で
動作する、動的単一波長半導体レーザは。
Conventional technology A dynamic single-wavelength semiconductor laser that stably operates in a single-axis configuration even during direct modulation in the long wavelength band.

後述の文献1. 2. 3などにより紹介され、また前
記半導体レーザの発振波長を電気的に変化させることも
後述の文献4などにより成功するようになった。
References 1 below. 2. 3, etc., and electrically changing the oscillation wavelength of the semiconductor laser has also become successful as shown in Document 4, which will be described later.

このような波長町変截の動的単一波長半導体レーザの実
現により、高密贋な波長多重元通信や光ヘテロダイン通
信などに必要不可欠の特定単一波長で安定に動作する半
導体レーザー酸の実現が要望されている。
By realizing such dynamic single-wavelength semiconductor lasers that can change wavelengths, it is possible to realize semiconductor lasers that operate stably at a specific single wavelength, which is essential for high-density wavelength multiplexing communications and optical heterodyne communications. It is requested.

上述の半導体レーザ装置は、第1図に示すように波長町
変截動的単−波長半導体レーザlと、制御部Cと1発振
波長および光出力監視sMとからなり、半導体レーザl
め発振波長と光出力を常に監視し、変動が生じた場合に
、直ちにその修正を行う機能をMするものである。
As shown in FIG. 1, the above-mentioned semiconductor laser device consists of a wavelength variable single-wavelength semiconductor laser l, a control section C, and an oscillation wavelength and optical output monitor SM.
This function constantly monitors the oscillation wavelength and optical output and immediately corrects any fluctuations that occur.

従来、前記半導体レーザlについては種々報告があり、
制御部Cは電気的集積回路で容易に実現されるが、波長
と光出力との監視部Mについては冥用的な小形のものが
なく、実験には専ら大形の分光器と受光器とを合せて用
いなければならないという欠点があった。
Conventionally, there have been various reports regarding the semiconductor laser l.
The control section C can be easily realized with an electrical integrated circuit, but there is no conveniently small part for monitoring the wavelength and optical output, and experiments require only a large spectrometer and photoreceiver. The disadvantage is that they must be used together.

文献1 分布帰還型半導体レーザ(K 、Utakae
t al 、 Electron Lett 、PP9
61〜962 。
Reference 1 Distributed feedback semiconductor laser (K, Utakae
tal, Electron Lett, PP9
61-962.

1981 ) 文献2 分布反射壁半導体レーザ(Y、Abe eta
l 、Electron Le口、 PP410〜41
1 。
1981) Reference 2 Distributed reflection wall semiconductor laser (Y, Abe eta
l, Electron Le mouth, PP410~41
1.

1982 ) 文献3 C1eaved −Coupled −Cav
ity 半導体レーザ(W、T、Tsang et a
l、 100C’ 8329B5−4PD、 1983
 ) 文献4 l00C’83(29B−IPI)、29B−
3FD、29B−4PD) 発明の目的 本発明の目的は、上記の欠点を解決して、半導体レーザ
の発振波長と光出力を監視するための小形で実用的な受
光装置を提供することにある。
1982) Reference 3 C1eaved-Coupled-Cav
ity semiconductor laser (W, T, Tsang et a
l, 100C' 8329B5-4PD, 1983
) Reference 4 l00C'83 (29B-IPI), 29B-
3FD, 29B-4PD) OBJECTS OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and provide a small and practical light receiving device for monitoring the oscillation wavelength and optical output of a semiconductor laser.

発明の構成 本発明は上述の目的を達成するため、一定の長さの範囲
で平行に位置し、この一定の長さの平行な領吠において
特定の波長で伝搬定数が一致するような2本の光導波路
より構成される導波路型方向性結合器を同一基板上に少
なくとも1個以上組み合わせて設け、前記各光導波路の
一端に1個ずつの半導体受光素子を備える構成を採用、
するものである。
Structure of the Invention In order to achieve the above-mentioned object, the present invention has two wires located in parallel within a certain length range and whose propagation constants match at a specific wavelength in the parallel ranges of a certain length. At least one waveguide-type directional coupler composed of optical waveguides is provided in combination on the same substrate, and one semiconductor light-receiving element is provided at one end of each optical waveguide,
It is something to do.

発明の作用 本発明は特定波長の光出力をモニタするために。action of invention The present invention is used to monitor the optical output of a specific wavelength.

波長選択性を有する導波路型方向性結合器と半導体受光
素子の組合せを用いる。
A combination of a waveguide type directional coupler with wavelength selectivity and a semiconductor photodetector is used.

本発明の基本構成単位を示す第2図を参照して導波路置
方向性結合器の作用を説明する。
The operation of the waveguide-based directional coupler will be explained with reference to FIG. 2 showing the basic structural unit of the present invention.

光導波路21と22とが平行に配置された場合、光導波
路21に入射する光の波長λがλ=λOのとき、この元
が光導波路22に完全に移行する場合、このλOを導波
路型方向性結合器の中心波長よい、。 ( 各光導波路21.22の端部に設けられ九半導 ゛体受
光素子1)l、 Dxの出力電流II、 I2の比は。
When the optical waveguides 21 and 22 are arranged in parallel, when the wavelength λ of the light incident on the optical waveguide 21 is λ = λO, if this element completely transfers to the optical waveguide 22, this λO is the waveguide type. The center wavelength of the directional coupler is good. The ratio of the output currents II and I2 of (the nine semiconductor light receiving elements 1 provided at the ends of each optical waveguide 21 and 22) I and Dx is:

各半導体受光素子の量子効率が等しい場合には第3図に
示すような線長特性を示し、これより明らかなように波
長範囲でI 1 / I sが波長λの関数となるため
、波長信号を半導体受光素子の出力電流の比で検出可能
である。、、、。
When the quantum efficiency of each semiconductor photodetector is equal, the line length characteristic shown in Fig. 3 is shown, and as is clear from this, I 1 / I s is a function of the wavelength λ in the wavelength range, so the wavelength signal can be detected by the ratio of the output current of the semiconductor photodetector. ,,,.

また同時に、工1とI3の合計によ9元出力が検出され
るため、この特定波長の光出力が検出できる。 ・ この基本構成における出力電流I2の波長特性は、導波
路截方向性結eiの理論より次式のようになる。
At the same time, since the nine-element output is detected by the sum of I and I3, the optical output of this specific wavelength can be detected. - The wavelength characteristic of the output current I2 in this basic configuration is expressed by the following equation based on the theory of waveguide truncated directivity ei.

ここに Δneq :導波路構造で決まる定数 e :結合部の長さ λ ;波長 したがって、波長感度を高める丸めには、Δneqが、
大きくなるような導波路構造にすることと。
Here, Δneq: Constant determined by the waveguide structure e: Length of the coupling part λ; Wavelength Therefore, for rounding to increase wavelength sensitivity, Δneq is
Creating a waveguide structure that increases the size.

結合部長lを長くすることが効果がある。しかしながら
、このようにすると、sin関数の波長周期5− が小さくなるため、l対lとなる波長範囲が挟まり、結
果的に測定可能な波長帯域が小さくなってしまうという
問題が生じる。
It is effective to lengthen the joint length l. However, in this case, since the wavelength period 5- of the sin function becomes small, the wavelength range of 1 to 1 is narrowed, resulting in a problem that the measurable wavelength band becomes small.

しかしながら、この問題は、中心波長の異なる導波路型
方向性結合器を用いた基本構成単位を複数個組み合せる
ことや、中心波長が微小に異なる導波路置方向性結合器
を組み會せである範囲の波長を3個以上の半導体受光素
子の出力電流の比で検出することなどにより、さらに波
長感度を高めることが出来る。。
However, this problem can be solved by combining multiple basic structural units using waveguide type directional couplers with different center wavelengths, or by combining waveguide type directional couplers with slightly different center wavelengths. The wavelength sensitivity can be further increased by detecting a range of wavelengths based on the ratio of output currents of three or more semiconductor light receiving elements. .

要するに1本発明は導波路型方向性結合器と半導体受光
素子とを組合せて用い、各半導体受光素子の出力電流の
比で波長を識別し、出力電流の合計値で光出力を検出す
ることを基本原理としている。
In short, the present invention uses a combination of a waveguide type directional coupler and a semiconductor light receiving element, identifies a wavelength based on the ratio of output currents of each semiconductor light receiving element, and detects optical output based on the total value of the output currents. This is the basic principle.

実施例 次に本発明の実施例について図面を、参照して説明する
Embodiments Next, embodiments of the present invention will be described with reference to the drawings.

本発明による受光装置の第一の実施例を示す第4図を参
照すると、この実施例は同一半導体基板6− 上に波長町変敲動的単−波長半導体レーザ1と。
Referring to FIG. 4, which shows a first embodiment of a light receiving device according to the present invention, this embodiment includes a wavelength variable dynamic single-wavelength semiconductor laser 1 on the same semiconductor substrate 6.

5個の異なる中心波長λ4.λ5.λ6.ハ、λδをそ
れぞれもつ導波路型方向性結合器4. 5. 6゜7.
8と、6個の半導体受光素子Da、 D4. D5゜D
o、D7.D@とを集積した構成をもうている。
Five different center wavelengths λ4. λ5. λ6. C. Waveguide type directional coupler with λδ, respectively 4. 5. 6゜7.
8, and six semiconductor light receiving elements Da, D4. D5゜D
o, D7. It also has a configuration that integrates D@.

このように構成することによって、波長町変蟹動的単−
波長半導体レーザlの出力光は、中心波長の異なる導波
路型方向性結合器4〜8を経て半導体受光素子D4〜D
8と光導波路3の端部にある同じく半導体受光素子D3
とに達してその出力電流が識別され、この識別された出
力電流によってその光出力と波長とが検出でき、半導体
レーザlを希望の光出力と波長に制御することが出来る
By configuring in this way, the wavelength-cho-hen-kani dynamic mono-
The output light of the wavelength semiconductor laser l passes through waveguide type directional couplers 4 to 8 having different center wavelengths to semiconductor light receiving elements D4 to D.
8 and the semiconductor light receiving element D3 at the end of the optical waveguide 3.
The output current is identified, and the optical output and wavelength can be detected based on the identified output current, and the semiconductor laser l can be controlled to the desired optical output and wavelength.

なお、この実施例では導波路型方向性結合器は被測定光
が入射される光導波路3だけに直接的に設けられるはか
りでなく、一度導波路型方向性結f器5を介して更に導
波路型方向性結合器6が設けられており、このような構
成でも匣用されることを示している。
Note that in this embodiment, the waveguide type directional coupler is not a scale that is directly installed only in the optical waveguide 3 into which the light to be measured is incident, but a scale that is once further guided through the waveguide type directional coupler 5. A wave-type directional coupler 6 is provided, indicating that such a configuration can also be used.

本発明の第二の実施例を示す第5図を参照すると、この
実施例は導波路型方向性結合器9およびIOを集積した
基板11と、半導体受光素子D9゜DIO,Dlst−
集積した基板12とを組合せた構成をもち、被測定光1
3を受光する受光装置を示している。なお、この2つの
基板11および12の間にレンズ、光ファイバなどのf
t、伝送媒体を設けること、半導体受光素子をもつ基板
12を複数に分割してこれらに素子を1個ずつ設けるこ
とも出来ることほぎうまでもない。
Referring to FIG. 5 showing a second embodiment of the present invention, this embodiment includes a substrate 11 on which a waveguide type directional coupler 9 and an IO are integrated, and semiconductor photodetectors D9°DIO, Dlst-
It has a configuration in which the integrated substrate 12 is combined, and the light to be measured 1
3 shows a light receiving device that receives light. In addition, between these two substrates 11 and 12, a lens, optical fiber, etc.
It goes without saying that it is also possible to provide a transmission medium and to divide the substrate 12 having the semiconductor light-receiving elements into a plurality of parts and provide one element to each of them.

本発明は波長町変賊動的単−[長生導体レーザと組合せ
ることによって上述の第1の実施例と全く同じ効果を有
すると共に、必要な場合に必要な基板、媒体などを組合
せて使用することができるものである。
The present invention has exactly the same effect as the above-mentioned first embodiment by combining it with a wavelength-machi dynamic single-layer conductor laser, and can also be used in combination with necessary substrates, media, etc. when necessary. It is something that can be done.

発明の効果 以上に説明したように、本発明によれば、4’ili+
定 10波長の光出力を導波路型方向性結合器を用いて
取り出し、半導体受光素子の出力電流を得ることにより
、車載で集積化に適した実用的受光装置が得られるとい
う効果がある。
Effects of the Invention As explained above, according to the present invention, 4'ili+
By extracting the optical output of a fixed 10 wavelengths using a waveguide type directional coupler and obtaining the output current of the semiconductor light receiving element, there is an effect that a practical light receiving device suitable for integration on a vehicle can be obtained.

更に本発明を用いることによって%特定単一波長で安定
に動作する半導体レーザ装置の小我化。
Furthermore, by using the present invention, a semiconductor laser device that operates stably at a specific single wavelength can be made smaller.

実用化が可能になるという大過な効果がある。This has the great effect of making it possible to put it into practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特定単一波長で安定動作する半導体レーザ装置
の構成図、第2図は本発明における受光装置の基本構成
単位図、第3図は第2図の出力電流の波長特性、第4図
、第5図は本発明の第一および第二の実施例であり、第
4図は不発明装置を波長可変截動的単−波長動作レーザ
と同一基板上に集積した構成を示し、第5図は導波路型
方向性結合器部を集積した基板と半導体受光素子を集積
した基板とを組み合せた構成を示している。 l・・・・・・波艮可変駿動的単−波長半導体レーザ、
2・・・・・・光出力、3・・・・・・被測定光が入射
される光導波路、4〜10・・・・・・導波路型方向性
結合器、11・・・・・・導波路型方向性結合器を集積
し九基板、12・・・・・・半導体受光素子を集積した
基板、13・・・・・・被測定光、21.22・・・・
・・光導波路、 D1〜D10゜9− 1)111−・・・・・半導体受光素子、Il、Iz−
・・・・・出力電流、λ・・・・・・波長、λO,ハ〜
λ10・・・・・・導波wr威方向性結合器の中心波長
、C・・・・・・制#部、M・・・・・・波長および光
出力監視部。 l O− lJx+ 察4−1i21 峯l固
Fig. 1 is a block diagram of a semiconductor laser device that operates stably at a specific single wavelength, Fig. 2 is a basic structural unit diagram of a light receiving device according to the present invention, Fig. 3 is the wavelength characteristic of the output current shown in Fig. 2, and Figures 5 and 5 show first and second embodiments of the present invention, and Figure 4 shows a configuration in which the inventive device is integrated on the same substrate as a wavelength tunable truncated single-wavelength operating laser; FIG. 5 shows a configuration in which a substrate on which a waveguide type directional coupler section is integrated and a substrate on which a semiconductor light receiving element is integrated are combined. l... Wave-tunable dynamic single-wavelength semiconductor laser,
2... Optical output, 3... Optical waveguide into which the light to be measured is incident, 4 to 10... Waveguide type directional coupler, 11...・Nine substrates with integrated waveguide type directional couplers, 12... Substrate with integrated semiconductor light receiving elements, 13... Light to be measured, 21.22...
...Optical waveguide, D1 to D10゜9-1) 111-...Semiconductor photodetector, Il, Iz-
...Output current, λ...Wavelength, λO, ha~
λ10... Center wavelength of the waveguide directional coupler, C... Control section, M... Wavelength and optical output monitoring section. l O- lJx+ Sensei 4-1i21 Minelgao

Claims (1)

【特許請求の範囲】[Claims] 一定の長さの範囲で平行に位皺し、この一定の長さの平
行な領賦において特定の波長で伝搬定数が一致するよう
な2本の光導波路より構成される導波路型方向性結合器
を同一基板上に少なくとも1個以上組み合わせて設け、
・前記各光導波路の一端に1個ずつの半導体受光素子を
備えることを特徴とする受光装置。
A waveguide-type directional coupling consisting of two optical waveguides that are wrinkled in parallel within a certain length range, and whose propagation constants match at a specific wavelength in this parallel area of a certain length. At least one or more devices are provided in combination on the same substrate,
- A light receiving device comprising one semiconductor light receiving element at one end of each of the optical waveguides.
JP954184A 1984-01-24 1984-01-24 Photodetecting device Pending JPS60154208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP954184A JPS60154208A (en) 1984-01-24 1984-01-24 Photodetecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP954184A JPS60154208A (en) 1984-01-24 1984-01-24 Photodetecting device

Publications (1)

Publication Number Publication Date
JPS60154208A true JPS60154208A (en) 1985-08-13

Family

ID=11723126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP954184A Pending JPS60154208A (en) 1984-01-24 1984-01-24 Photodetecting device

Country Status (1)

Country Link
JP (1) JPS60154208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685498A1 (en) * 1991-12-23 1993-06-25 Corning Inc OPTICAL DEVICE WITH PROXIMITY COUPLING BETWEEN TWO INTEGRATED WAVEGUIDES WITH REDUCED DIMENSIONS AND INTEGRATED OPTICAL COMPONENT BY APPLYING THEM.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685498A1 (en) * 1991-12-23 1993-06-25 Corning Inc OPTICAL DEVICE WITH PROXIMITY COUPLING BETWEEN TWO INTEGRATED WAVEGUIDES WITH REDUCED DIMENSIONS AND INTEGRATED OPTICAL COMPONENT BY APPLYING THEM.
EP0548770A2 (en) * 1991-12-23 1993-06-30 Corning Incorporated Integrated optical proximity coupler
US5448658A (en) * 1991-12-23 1995-09-05 Corning Incorporated Integrated optical proximity coupler
US5521993A (en) * 1991-12-23 1996-05-28 Corning Incorporated Process for manufacturing an integrated optical proximity coupler

Similar Documents

Publication Publication Date Title
US6909826B2 (en) Multiple grating optical waveguide monitor
US6445477B1 (en) Self-monitored light source for stable wavelength optical communications
US7061610B2 (en) Photonic integrated circuit based planar wavelength meter
US6389201B1 (en) Arrayed waveguide grating having arrayed waveguide employing taper structure
CN113169517A (en) Two-section DBR laser and monolithic integrated array light source chip
US6512618B1 (en) Broadcast optical communication system employing waveguide having grating normal to sources and detectors
CN107611777A (en) The narrow linewidth semiconductor outside cavity gas laser and control method of a kind of flexible wavelength
CA2108213C (en) Optical semiconductor amplifier
JP2940946B2 (en) Method and apparatus for optical filtering and optical detection of optical signals
JPS60154208A (en) Photodetecting device
US6055345A (en) Multi-wavelength channel transmission-type optical filter
JPS63205611A (en) Dual balance type photodetector
US20040033021A1 (en) Wavelength stabilized module, stable wavelength laser beam generating device and optical communication system
JP2000147275A (en) Optical fiber
GB2170322A (en) Integrated optical device with wavelength-selective reflection
JP2002181861A (en) Electric field sensor unit
JPH06232814A (en) Semiconductor amplifier
JPS62121409A (en) Optical module
JPH05100255A (en) Wavelength demultiplexing photodetector
KR100334791B1 (en) Photodetector and fabrication method thereof for wavelength division multiplexing systems
JPH01113708A (en) Optical multiplexing/demultiplexing module
JPS581859B2 (en) Hikari Chiyu Keiki
KR100239793B1 (en) Optical wavelength division demultiplexer using the optical circulator
JP2001228021A (en) Optical signal measuring circuit
JP2763344B2 (en) Optical inverter device