JPS60154152A - Investigating method of corrosion state of buried pipe - Google Patents

Investigating method of corrosion state of buried pipe

Info

Publication number
JPS60154152A
JPS60154152A JP1024184A JP1024184A JPS60154152A JP S60154152 A JPS60154152 A JP S60154152A JP 1024184 A JP1024184 A JP 1024184A JP 1024184 A JP1024184 A JP 1024184A JP S60154152 A JPS60154152 A JP S60154152A
Authority
JP
Japan
Prior art keywords
item
corrosion
measurement point
distance
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1024184A
Other languages
Japanese (ja)
Inventor
Masashi Suekane
末包 正志
Yujiro Koshimizu
越水 雄二郎
Jitsuo Koyabu
小籔 実雄
Michiya Yoshida
吉田 美智也
Tatsuo Kashiwagi
柏木 達夫
Shigeru Suganuma
菅沼 茂
Takao Yamamura
山村 隆男
Masanobu Higuchi
樋口 雅信
Hideaki Wakabayashi
若林 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
JFE Engineering Corp
Osaka Gas Co Ltd
Original Assignee
Nippon Kokan Koji KK
Osaka Gas Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK, Osaka Gas Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Kokan Koji KK
Priority to JP1024184A priority Critical patent/JPS60154152A/en
Publication of JPS60154152A publication Critical patent/JPS60154152A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Pipeline Systems (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To obtain a method for investigating the corrosion state of an urban buried pipe which is influenced by a stray current from an electric car track effectively without digging by employing a statistical method. CONSTITUTION:Three items, i.e. (1) the number and positions (item 1) of electric cars running in a section, (2) the distance (item 2) between a measurement point and a substation, and (3) the distance (item 3) between the measurement point and track are employed, the current direction of a conduit at the measurement point to the environmental soil ring is regarded as a target variable by digitizing logic II, etc., and discriminants of the inflow (corrosion prevention) and outflow (electrolytic corrosion) of the stray current are generated to investigate the corrosion state of the conduit buried along the electric car track. Then, the buried pipe laid along the railway shown in figure is investigated to obtain the cumulative probability distribution of the investigated sample as shown in the figure.

Description

【発明の詳細な説明】 本発明は迷走電流の影響を受ける市街地埋設管を対象と
して、その腐蝕の状態を掘削することなく効果的に調査
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively investigating the state of corrosion of underground pipes in urban areas, which are affected by stray currents, without excavating the pipes.

迷送電流は正規の回路以外のところを流れる電流であり
、この種の電流が埋設管等の金属体に流入すると、電流
が再び土壌または水中に流出する個所で、金属体が激し
く侵食される。この迷送電流の発生源の一つとして電車
軌道からの漏れ電流が考えられる。電車は多くの場合、
軌道を電車電流の帰路として利用しているが1、軌道の
大地に対する絶Rが不充分なため、レールを流れる電流
の一部が近在する埋設管に流入し、負給電点である変電
所附近で流出し、帰流する。しかし流入、流出個所は経
時的に複雑に変化し、またその程度も一足ではない。こ
のため、定期的に埋設管の腐蝕状態を調査し、事故を未
然に防ぐ必要がある。
Stray current is a current that flows in a place other than the normal circuit, and when this type of current flows into a metal object such as a buried pipe, the metal object can be severely eroded at the point where the current flows out again into the soil or water. . Leakage current from train tracks is considered to be one of the sources of this stray current. Trains are often
The track is used as a return path for train current, but because the track's absolute radius with respect to the ground is insufficient, a portion of the current flowing through the rail flows into nearby underground pipes, causing damage to the substation, which is the negative power supply point. It flows out nearby and flows back. However, the locations of inflow and outflow change in complex ways over time, and the extent of this change is not constant. For this reason, it is necessary to periodically investigate the corrosion state of buried pipes to prevent accidents from occurring.

この場合の調査方法として、飽和硫酸銅電極を用いて管
対地電位(P/S)を測定する方法が採用されている。
The investigation method used in this case is to measure the pipe-to-ground potential (P/S) using a saturated copper sulfate electrode.

すなわち、管の自然電位、を−500〜−600mVと
し、これより責であれば流出(電食)、卑であれば流入
(防食)側にあると判定する。しかし、この電位は土壌
の抵抗、酸素含有率等によって変動するため、測定精度
が低く、また測定結果から腐蝕状態を判断する豊富な経
験と熟練を要するものである。また迷送電流は、電車の
走行状態により大きな影響を受けるため、種々の状態に
ついてデータをとる必要があり、長時間に亘り測定しな
ければならない。更に、電車走行に伴う時系列的な変化
状況を把握するため、連続した8〜10個所の測定ター
ミナルで同時測定を、また必要に応じて24時間測定を
実施する必要があるほか全線に対しては8〜10個所ご
とに1点重ねの計測を行い、相互の相関をとって同一時
刻における電位分布を推定しなければならない 等の問
題がある。
That is, the natural potential of the tube is set to -500 to -600 mV, and if the potential is negative, it is determined that it is on the outflow (electrolytic corrosion) side, and if it is negative, it is determined that it is on the inflow (corrosion protection) side. However, since this potential varies depending on soil resistance, oxygen content, etc., the measurement accuracy is low, and extensive experience and skill are required to judge the corrosion state from the measurement results. Furthermore, since the stray current is greatly affected by the running condition of the train, it is necessary to collect data regarding various conditions, and measurement must be carried out over a long period of time. Furthermore, in order to understand the time-series changes that occur as trains run, it is necessary to carry out simultaneous measurements at 8 to 10 consecutive measurement terminals, as well as 24-hour measurements as necessary. However, there are problems such as the need to measure one point at a time at every 8 to 10 locations and estimate the potential distribution at the same time by correlating them.

本発明は、上記のような実情に鑑みなされたものであり
、統計的手法により、従来に比し簡便な埋設管の腐蝕状
態を調査できるようにした方法を提供することを目的と
するものである。
The present invention was made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method that makes it possible to investigate the corrosion state of buried pipes using a statistical method that is simpler than conventional methods. be.

本発明の埋設管の腐蝕状態調査方法は、電車軌道に沿っ
て埋設された管路の腐蝕状態を、イ)調査区間内を走行
している電車の数及び位置、口)測定点と変電所との距
離及びハ)測定点と軌道までの距離を説明変数として採
用し、数量化理論■類により、測定点での管路の周囲土
基環に対する電流方向を目的変数として、迷送電流の流
入(防食)、流出(電食)の判別式を作成して調査する
ことを特徴とするものである。
The method for investigating the corrosion state of buried pipes of the present invention measures the corrosion state of pipes buried along train tracks by measuring (i) the number and location of trains running within the investigation section, (a) measurement points and substations; c) Distance between the measurement point and the track are adopted as explanatory variables, and according to quantification theory (III), the direction of the current with respect to the soil ring surrounding the pipe at the measurement point is used as the objective variable, and the stray current is calculated. This method is characterized by creating and investigating discriminants for inflow (corrosion protection) and outflow (electrolytic corrosion).

以下、本発明方法の一実施例を詳細に説明する。第1図
に調査対象管路と電車軌道との関係位置を示す。埋設管
は鉄道にそって布設されたアスファルト塗覆装管で調査
区間の延長は約13鳩である。この管路に、200〜4
00m間隔で、63箇所の測定タニミナルが設置されて
いる。A−Fは駅で、各駅間を図示の如く、区画I−■
とした。Tは変電所で、D駅の所にある。
Hereinafter, one embodiment of the method of the present invention will be described in detail. Figure 1 shows the relationship between the pipeline to be investigated and the train tracks. The buried pipes are asphalt-coated pipes laid along the railway, and the length of the survey section is approximately 13 pipes. In this conduit, 200 to 4
There are 63 measuring terminals installed at 00m intervals. A-F are stations, and the sections between each station are I-■ as shown in the diagram.
And so. T is a substation, located near D station.

電車軌道に清って埋設された管路の迷送電流による腐蝕
を解析、検討する場合、その要因として次の事項を考慮
すべきものと思われる。
When analyzing and examining the corrosion caused by stray current in conduits buried under electric train tracks, the following factors should be considered.

l)調査区間内の電車の位置合数と変電所位置これは、
軌道の電位勾配と帰流電流の大きさ、即ち迷送電流の大
きさに関係がある。
l) Total number of train locations and substation locations within the survey section.
There is a relationship between the potential gradient of the track and the magnitude of the return current, that is, the magnitude of the stray current.

2)測定点と変電所及び軌道との距離 軌道の帰流電流が軌道より最短距離にある埋設管に入り
、また変電所に一番近い点から地中に流出するものと思
われる。
2) Distance between the measurement point and the substation and track The return current from the track enters the buried pipe located at the shortest distance from the track, and is thought to flow underground from the point closest to the substation.

そこで、解析に際し、説明変数(以下アイテムと呼ぶ)
として、1)区間内を走行している電車の数及び位置(
アイテム7)、2)測定点と変電所との距離(アイテム
2)、3)測定点と軌道までの距離(アイテム3)の3
アイテムを採用することにしだ。
Therefore, during analysis, explanatory variables (hereinafter referred to as items)
1) The number and location of trains running within the section (
Item 7), 2) Distance between measurement point and substation (Item 2), 3) Distance between measurement point and track (Item 3)
I decided to adopt the item.

アイテム1については、電車の走行ダイヤグラムで、前
記区画■〜V内にある電車の台数を調査し、これを21
のt+ターンに分け、21カテゴリーに分類した。また
アイテム2,3については次表によりそれぞれ7.4カ
テプリーに分類した。
Regarding item 1, use the train running diagram to check the number of trains in the sections ■ to V, and calculate this as 21
It was divided into t+ turns and classified into 21 categories. Items 2 and 3 were classified into 7.4 categories according to the table below.

一方、目的変数として、測定点での管路からの電流 方
向を採った。すなわちグローブ電極をターミナル近くの
ボーリング孔に挿入し、グローブ電流の方向を測定し、
流入、流出の2グループに分けた。
On the other hand, the objective variable was the direction of the current flowing from the pipe at the measurement point. That is, insert a globe electrode into a borehole near the terminal, measure the direction of the globe current,
It was divided into two groups: inflow and outflow.

そして、次の判別式により解析を行った。Then, analysis was performed using the following discriminant.

但し、Y:サンゾル・スコア atiy azi+asi :それぞれアイテムl、2
.3のiカテゴリーのスコア δ11’+δ21.δ31:該肖カテゴリー1゜非該当
カテゴリー0 次に、解析用のグローブ電流データは、次表に示す様に
測点22個所で測定時間を適宜変化させ、1分間隔で採
取し、合計248サングルとした。この場合の同時測定
点は3〜6箇所であり、また累積測定時間は1時間余で
ある。
However, Y: Sanzor score atiy azi+asi: Item 1, 2 respectively
.. 3 i category score δ11'+δ21. δ31: Applicable Category 1° Not Applicable Category 0 Next, the globe current data for analysis was collected at 1 minute intervals at 22 measurement points, changing the measurement time as shown in the table below, for a total of 248 samples. And so. In this case, the number of simultaneous measurement points is 3 to 6, and the cumulative measurement time is over 1 hour.

測定データの一部を次表に示す。Some of the measured data is shown in the table below.

以下、解析結果について説明する。群間分散と全分散と
の比である相関比は0.5761であった。
The analysis results will be explained below. The correlation ratio, which is the ratio between the between-group variance and the total variance, was 0.5761.

また各アイテム、カテゴリーのスコアは、アイテム1に
ついては0〜1.9552の範囲内にあり、アイテム2
,3については次表に示す値となった。
In addition, the scores for each item and category are within the range of 0 to 1.9552 for item 1, and for item 2.
, 3, the values are shown in the table below.

各サンプルのスコア(至)は、前述の判別式に各アイテ
ム・カテがリ一のスコアを入れてめられる。例えばす/
7°ル1の各アイテムのカテゴリーは前述のようにそれ
ぞれ1,4.3であり、(アイテム1のカテゴリー1の
スコアは0D552)Y = (10552−3,71
64+[72= −25892とめられる。こうして各
サンダルのスコアをめ累積確率分布図に示すと、第2図
のようになる。流入グループのデータ数は133、平均
は1、標準偏差は0.9898 、また流出グループの
データ数は115、平均は−1,1565、標準偏差0
.8381であり、判別点は一部、1678である。従
ってサンプルスコアがこの判別点の値より太きければ流
入と判断し、この値より小さければ流出と判断する。こ
の場合の判別式の的中率(ミニマックス的中率)は、確
率シグマが11798であり、88.1%である。
The score of each sample is determined by entering the score of each item/category into the above-mentioned discriminant. For example,
As mentioned above, the categories of each item in 7° Le 1 are 1 and 4.3, respectively (the score of category 1 of item 1 is 0D552) Y = (10552-3,71
64+[72=-25892 is stopped. When the scores of each sandal are thus calculated and shown in a cumulative probability distribution diagram, the result is as shown in Fig. 2. The number of data for the inflow group is 133, the average is 1, and the standard deviation is 0.9898, and the number of data for the outflow group is 115, the average is -1,1565, and the standard deviation is 0.
.. 8381, and some of the discrimination points are 1678. Therefore, if the sample score is thicker than the value of this discrimination point, it is determined to be an inflow, and if it is smaller than this value, it is determined to be an outflow. The accuracy rate (minimax accuracy rate) of the discriminant in this case is 88.1% with a probability sigma of 11798.

そこで解析に用いた測定点以外の測定点について、前記
判別式による流入、流出の予測と、実測値とを95サン
ゾルについて対比したところ、誤判別は10個であった
。しかし時系列的に連続3分以上に亘っての誤判別は無
かった。
Therefore, for measurement points other than the measurement points used in the analysis, the inflow and outflow predictions based on the discriminant were compared with the actual measured values for 95 Sansols, and 10 misclassifications were found. However, there was no misjudgment that occurred for more than three consecutive minutes in chronological order.

従って充分実用に耐える確度を有することが確められた
Therefore, it was confirmed that the accuracy was sufficient for practical use.

尚、アイテム1のカテゴリーをスコアの大きさの順に並
べて検討すると、中央区画Iにある変電所Tを中心にし
て電車の位置、数がいずれか一方に片寄ったとき、特に
A、B駅寄りに集中したときが一番腐蝕電流が流出し易
い状態となることが分った。即ち区間内に平均的に電車
が位置しているときは互に干渉しあって必ずしも悪い状
態ではない。
Furthermore, when considering the categories of item 1 in order of score size, when the location and number of trains are biased to one side around substation T in central section I, especially toward stations A and B, It was found that the corrosion current is most likely to flow out when it is concentrated. That is, when trains are located on average within a section, they interfere with each other, which is not necessarily a bad situation.

また、アイテム2とアイテム3のクロス集計表に、該当
するカテゴリーのスコアの和を記入して示すと次表とな
る。
In addition, if you enter the sum of the scores of the corresponding categories in the cross-tabulation table of Item 2 and Item 3, the following table will be obtained.

ここで、アイテム1の各カテゴリーのスコアはθ〜1.
95の範囲内で正の値であり、判別点の値は−0,16
78であることがら、上表のスコア(7) 和に◎印を
つけた測定点では、アイテム1即ち電車退行のノfター
/と関係なく常に流入サイドで腐蝕の心配はない1.こ
れに反し※印をつけた測定点ではアイテム1のカテゴリ
ーの最大値1.95を考慮に入れても常に流出丈イドで
ある。
Here, the score for each category of item 1 is θ~1.
It is a positive value within the range of 95, and the value of the discriminant point is -0,16
78, so the score in the table above is (7) At the measurement points marked with a ◎, there is always no fear of corrosion on the inflow side, regardless of item 1, that is, nofter/of train regression.1. On the other hand, at the measurement points marked *, even if the maximum value of the category of item 1, 1.95, is taken into account, the length of the leakage is always id.

残りの測定点では電車ダイヤのパターン(アイテムlの
カテゴリーのスコア0〜x、9s)によっては、流入す
ることもあるが傾向としては流出側と解釈される。これ
を測定点で要理すると次式のように、する。
At the remaining measurement points, depending on the train schedule pattern (item l category score 0 to x, 9s), there may be an inflow, but the trend is interpreted as an outflow side. This can be summarized in terms of measurement points as shown in the following equation.

そこで、腐蝕のおそれの多い測定点40〜41間に針電
極を用い塗膜損傷探査を行った結果、6個所に反応がみ
られた。そこで外的条件等を考慮し、その内4個所の掘
削調査を実施した。
Therefore, a needle electrode was used to investigate paint film damage between measurement points 40 and 41, which were likely to be corroded, and as a result, reactions were observed at six locations. Therefore, taking external conditions into consideration, excavation surveys were conducted at four of the locations.

この結果、全個所に孔食が確認され、早速補修を行った
As a result, pitting corrosion was confirmed in all locations, and repairs were made immediately.

この発明の埋設管の腐蝕状態調量方法は上記のようなも
のであるから、解析に必要な測定時間及びサンプル数は
従来に比し極めて少なくてよく、調査用人員2機材を大
幅に低減することができる。まだ、適切な説明変数(ア
イテム)の採用により、腐蝕状態の推定精度も極めて高
く、充分実用性のあるものである。
Since the method for measuring the corrosion state of buried pipes according to the present invention is as described above, the measurement time and number of samples required for analysis are extremely small compared to the conventional methods, and the number of personnel and two pieces of equipment required for investigation is significantly reduced. be able to. However, by using appropriate explanatory variables (items), the accuracy of estimating the corrosion state is extremely high, and the method is sufficiently practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で調査の対象とした鉄道に活っ
て布設された埋設管の説明図、第2図は調査サンプルの
累積確率分布図である。
FIG. 1 is an explanatory diagram of a buried pipe installed on a railway that was investigated in an embodiment of the present invention, and FIG. 2 is a cumulative probability distribution diagram of the survey sample.

Claims (1)

【特許請求の範囲】[Claims] 電車軌道11CGって埋設された管路の腐蝕状態を、イ
)調査区間内を走行している電車の数及び位置、口)測
定点と変電所との距離及びハ)測定点と軌道までの距離
を説明変数として採用し、数量化理論■類により、測定
点での管路から流出入する電流方向を目的変数として判
別式を作成して調査することを特徴とする埋設管の腐蝕
状態調査方法。
Corrosion status of underground conduit (train track 11CG) is determined by a) the number and location of trains running in the survey section, a) distance between the measurement point and the substation, and c) distance between the measurement point and the track. Corrosion status investigation of buried pipes, which uses distance as an explanatory variable and uses quantification theory type II to create a discriminant formula using the direction of current flowing in and out of the pipe at the measurement point as the objective variable. Method.
JP1024184A 1984-01-25 1984-01-25 Investigating method of corrosion state of buried pipe Pending JPS60154152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1024184A JPS60154152A (en) 1984-01-25 1984-01-25 Investigating method of corrosion state of buried pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024184A JPS60154152A (en) 1984-01-25 1984-01-25 Investigating method of corrosion state of buried pipe

Publications (1)

Publication Number Publication Date
JPS60154152A true JPS60154152A (en) 1985-08-13

Family

ID=11744805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024184A Pending JPS60154152A (en) 1984-01-25 1984-01-25 Investigating method of corrosion state of buried pipe

Country Status (1)

Country Link
JP (1) JPS60154152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200460A (en) * 2015-04-08 2016-12-01 株式会社クボタ Behavior estimation method of fault traversal underground buried pipeline and behavior estimation device of fault traversal underground buried pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200460A (en) * 2015-04-08 2016-12-01 株式会社クボタ Behavior estimation method of fault traversal underground buried pipeline and behavior estimation device of fault traversal underground buried pipeline

Similar Documents

Publication Publication Date Title
Penna et al. Towards a tracer-based conceptualization of meltwater dynamics and streamflow response in a glacierized catchment
Allahkaram et al. Investigation on corrosion rate and a novel corrosion criterion for gas pipelines affected by dynamic stray current
US6912472B2 (en) Method of estimating location of abnormality in fluid feed pipeline network
CN108470246A (en) A kind of planning distribution network reliability index evaluating method of feature based parameter
JP2006145492A (en) Measurement evaluation method and device for stray current corrosion risk of cathode-protected burial metal
CN108256234A (en) A kind of method and system for being used to assess transformer DC magnetic bias influence
CN105137289B (en) Suitable for the traveling wave fault positioning method of high voltage overhead lines-cable hybrid line
CN113505471B (en) River section pollutant concentration prediction calculation method
CN108732464A (en) Submarine observation network extra large cable on-line fault diagnosis and localization method
CN109239456B (en) Harmonic tracing method based on dynamic programming time series similarity algorithm
Mujezinović et al. Estimating harmful effect of dynamic stray currents on pipeline by simultaneous multiparametric field measurements, continuous wavelet cross‐correlation analysis, and frequency plots
CN109490685B (en) Early defect early warning method of transformer based on-line monitoring of dissolved gas in oil
Zakowski et al. Electrolytic corrosion of water pipeline system in the remote distance from stray currents—Case study
CN105114821B (en) Embedded metal pipeline leakage detection method
CN105699858B (en) A kind of aerial-cable hybrid line fault distance-finding method considering connection resistance
KR20110115707A (en) The return current ratio measurement system for real time leakage current monitoring on the dc railway system
JPS60154152A (en) Investigating method of corrosion state of buried pipe
CN108663408A (en) A kind of steel oil-gas pipeline Directional Drilling erosion resistant coating breakage rate determines method
KR20200103179A (en) a Pipe Precision Safety Diagnosis System
JP2005091191A (en) Method of detecting defective part in coating of embedded metal pipe
CN111898656B (en) Abnormal data identification method for measuring balance detection
Kowalski The close interval potential survey (CIS/CIPS) method for detecting corrosion in underground pipelines
Park et al. Evaluation of stray current effect on the cathodic protection of underground pipeline
Kandaev et al. Determination of Electrical Quantities in the Traction Rail Network and Buried Pipelines Located Under the Influence of Stray Currents from Electrified Railway Transport
Krissa et al. A Different Approach to High Resolution CP Evaluation