JPS60153903A - Ultrafiltration membrane and its preparation - Google Patents

Ultrafiltration membrane and its preparation

Info

Publication number
JPS60153903A
JPS60153903A JP59009884A JP988484A JPS60153903A JP S60153903 A JPS60153903 A JP S60153903A JP 59009884 A JP59009884 A JP 59009884A JP 988484 A JP988484 A JP 988484A JP S60153903 A JPS60153903 A JP S60153903A
Authority
JP
Japan
Prior art keywords
hydrophobic polymer
ultrafiltration membrane
hydrophilic silica
membrane
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59009884A
Other languages
Japanese (ja)
Other versions
JPH042291B2 (en
Inventor
Takeshi Yanagimoto
剛 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP59009884A priority Critical patent/JPS60153903A/en
Publication of JPS60153903A publication Critical patent/JPS60153903A/en
Publication of JPH042291B2 publication Critical patent/JPH042291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To enhance water permeability without lowering membrane strength, by using a hydrophobic polymer in which hydrophilic silica is substantially uniformly dispersed. CONSTITUTION:Hydrophilic silica is dispersed in an aprotic polar solvent and a hydrophobic polymer is added to and dissolved in the resulting dispersion to prepare a spinning stock solution. As the hydrophobic polymer, polyvinylidene halide or polyvinyl halide is used and hydrophilic silica is dispersed in the solvent in a ratio of 1-30wt% of the hydrophobic polymer. Generally, hydrophilic silica with a particle size of about 1mum or less is used but it is pref. to use said silica after treating the surface thereof with a coupling agent for enhancing compatibility with the hydrophobic polymer. A membrane is formed by a usual method but drying and the heat treatment in an acidic aqueous solution are pref. applied.

Description

【発明の詳細な説明】 本発明は、限外口過膜およびその製造法に関する。更に
詳しくは、多孔質膜の膜強度を低下させることなく、膜
性能、特に透水性などを向上せしめた限外口過膜および
その製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrafiltration membrane and a method for producing the same. More specifically, the present invention relates to an ultrafiltration membrane that improves membrane performance, particularly water permeability, without reducing the membrane strength of the porous membrane, and a method for producing the same.

従来用いられている限外口過膜、特に中空糸状の限外口
過膜は、ポリフッ化ビニリデンによって代表されるポリ
ハロゲン化ビニリデン、ポリフッ化ビニルによって代表
されるポリハロゲン化ビニルなどの疎水性本合体を用い
、一般に乾湿式紡糸法などによって製造される。乾湿式
紡糸法では、疎水性重合体を溶媒に溶解し、約1〜30
爪量%の濃度の紡糸原液を調製し、これを中空環状ノズ
ルから吐出させ、約1〜100 cm程度自然落下させ
た後、疎水性重合体の非溶媒よりなるゲル隼浴中に導き
凝固ぎせて中空糸を製造している。この際、膜に中空構
造を維持させるために、環状ノズルの中心から芯液が同
時に注入され、中空糸状膜の多孔質構造とスキン層とは
、ノズルから吐出され、ゲル化浴中に浸漬され、そこを
通過して最終的に巻取られる間に形成される。
Conventionally used ultrafiltration membranes, especially hollow fiber ultrafiltration membranes, are made of hydrophobic membranes such as polyvinylidene halides, typified by polyvinylidene fluoride, and polyvinyl halides, typified by polyvinyl fluoride. It is generally produced by a dry-wet spinning method. In the dry-wet spinning method, a hydrophobic polymer is dissolved in a solvent and the
A spinning stock solution with a concentration of 1% is prepared, and it is discharged from a hollow annular nozzle and allowed to fall naturally for about 1 to 100 cm, and then introduced into a gel bath made of a non-solvent of a hydrophobic polymer for coagulation. The company manufactures hollow fibers. At this time, in order to maintain the hollow structure of the membrane, a core liquid is simultaneously injected from the center of the annular nozzle, and the porous structure and skin layer of the hollow fiber membrane are discharged from the nozzle and immersed in a gelling bath. , which are formed during the final winding.

このようにして製造される中空糸状の膜は、多孔質構造
を形成しているためその膜強度の低下は避けられず、一
方この膜が限外口過膜として使用される場合には、中空
糸状膜の内部あるいは外部から、運転中宮に約3〜4り
程度の圧力が口過圧として負荷されるので、このような
負荷圧力に耐え得る膜強度を有しかつ高い透水率の膜が
要請されている。
Since the hollow fiber membrane produced in this way has a porous structure, a decrease in membrane strength is unavoidable.On the other hand, when this membrane is used as an ultrafiltration membrane, hollow Since a pressure of about 3 to 4 degrees is applied to the operating chamber from inside or outside the filamentous membrane as overpressure, a membrane with membrane strength that can withstand such load pressure and high water permeability is required. has been done.

中空糸状限外口過膜の透水率を高めるためには、次のよ
うな2つの方法が考えられるが、いずれも問題があり、
好ましい方法とはいえないのである。
There are two possible methods to increase the water permeability of hollow fiber ultrafiltration membranes, but both have their own problems.
This is not a desirable method.

(り紡糸原液の疎水性重合体濃度を低下させる方法ニー この方法で製造された中空糸膜は、構造が粗となり、透
水率は向上するが膜強度が著しく低下し、所望め強度を
到底得ることができない。
(Method of reducing the concentration of hydrophobic polymer in the spinning stock solution) The hollow fiber membrane produced by this method has a coarse structure, and although the water permeability improves, the membrane strength decreases significantly, making it impossible to obtain the desired strength. I can't.

(2)中空糸膜の膜厚(壁厚)を薄くする方法ニー透水
率は、膜厚にほぼ反比例するため、これを薄くすること
が望ましいが、実際には紡糸可能な内、外径がほぼ決ま
っているので、あまり膜厚を薄くすることができず、ま
たあまり薄くすると口過圧に耐えられなくなる。
(2) How to reduce the membrane thickness (wall thickness) of hollow fiber membranes Since the knee water permeability is almost inversely proportional to the membrane thickness, it is desirable to reduce it, but in reality, the inner and outer diameters that can be spun are Since the thickness is almost fixed, the film thickness cannot be made too thin, and if it is made too thin, it will not be able to withstand oral overpressure.

本発明者は、多孔質膜の膜強度を低下させることなく、
あるいは膜強度を向上せしめると共に、膜性能、特に透
水性などを向上せしめた限外口過膜をめて種々検討の結
果、親水性シリカを実質的に均一に分散させた疎水性重
合体の多孔質膜よりなる限外口過膜が、このような課題
を十分に解決させるものであることを見出しだ。従って
、本発明は、かかる限外口過膜に関する。
The present inventor has realized that without reducing the membrane strength of the porous membrane,
Alternatively, as a result of various studies to develop an ultra-porous membrane that improves membrane strength and membrane performance, especially water permeability, we have developed a porous membrane made of hydrophobic polymer with hydrophilic silica substantially uniformly dispersed. It was discovered that an ultrafiltration membrane made of a diaphragm can sufficiently solve these problems. Accordingly, the present invention relates to such an ultraporous membrane.

かかる限外口過j俟は、平面状のものであってもよいが
、一般には中空糸状のものとして製造され、使用される
。本発明は贅だ、このような中空糸状の限外口過膜の製
造法t(=係り、それの製造は、親水性シリカおよび疎
水性重合体を非プロトン性極性溶媒中に溶解および分散
させて調製した紡糸原液を中空環状ノズルから吐出させ
た後、前記疎水性重合体の非溶媒よりンヨるゲル化洛中
に導き凝固さ−Uることにより行われ、更に好ましくは
得られた多孔II膜を約50〜110℃の温度条件下で
処理することにより行われる。
Although such ultraviolet filters may be planar, they are generally manufactured and used in the form of hollow fibers. The present invention is a method for producing such a hollow fiber-like ultrafiltration membrane. The spinning stock solution prepared by the method is discharged from a hollow annular nozzle, and then introduced into a gelatinizer containing a non-solvent of the hydrophobic polymer and coagulated. More preferably, the resulting porous II membrane is It is carried out by treating at a temperature of about 50 to 110°C.

親水性シリカは、その表面に水酸基を有するため、疎水
性重合体であるポリハロゲン化ビニリデン、ポリハロゲ
ン化ビニルなどの多孔質膜の透水性を改善させる。親水
性シリカは、疎水性正合体に対して一般に約1〜30爪
量%の割合になるように紡糸原液中に分散せしめる。こ
れ以下の割合では親水性シリカ添加の効果が得られず、
一方これ以上の割合で用いられると親水性シリカの分数
不良がひき起こされる。
Since hydrophilic silica has hydroxyl groups on its surface, it improves the water permeability of porous membranes made of hydrophobic polymers such as polyvinylidene halide and polyvinyl halide. Hydrophilic silica is generally dispersed in the spinning dope in a proportion of about 1 to 30% by weight relative to the hydrophobic polymer. If the ratio is lower than this, the effect of adding hydrophilic silica cannot be obtained,
On the other hand, if it is used in a proportion higher than this, a defective fraction of hydrophilic silica will be caused.

親水性シリカとしては、一般に約1μm以下の一次粒子
径を有するものが用いられるが、それ単独では疎水性本
合体の親和性が必すしも十分ではない面もあるので、親
水性シリカの表面を疎水性重合体との親和性を高めるカ
ップリング剤で処理して用いることがきわめて好ましい
。カップリング剤としては、シラン系カップリング剤、
チタン系カップリング剤などが用いられ、これらのカッ
プリング剤は一分子中に互いに異なる反応性基を2種類
以上有するため、親水性シリカと疎水性重合体との界面
に作用し、両者間を橋渡しし“C1強い補強効果tもた
らすのである。
Hydrophilic silica with a primary particle size of about 1 μm or less is generally used, but if it is used alone, the affinity of the hydrophobic main body is not always sufficient, so the surface of the hydrophilic silica is It is highly preferable to use it after treatment with a coupling agent that increases its affinity with hydrophobic polymers. As a coupling agent, a silane coupling agent,
Titanium-based coupling agents are used, and since these coupling agents have two or more types of mutually different reactive groups in one molecule, they act on the interface between hydrophilic silica and hydrophobic polymer, and create a bond between the two. As a bridge, C1 brings about a strong reinforcing effect.

シラン系カップリング剤としては、通常一般式R′−s
:+、(On)、で示される化合物が用いられ、ここで
R′はアミノ基、メルカプト基、ビニル基、メエオS タクリルオキシ基、轟彬十キシ基など有機官能性基であ
り、0PIU、アルコキシ基、アセトキシ基などの加水
分解性基であり、例えば次のような化合物を列挙するこ
とができ、また他の特定のシラン化合物も同様に用いら
れる。
As a silane coupling agent, the general formula R'-s is usually
:+, (On), where R' is an organic functional group such as an amino group, a mercapto group, a vinyl group, a MeeoS tacryloxy group, or a Todoroki Juxy group; group, acetoxy group, etc., and the following compounds can be enumerated, and other specific silane compounds can also be used in the same way.

r−クロルプロピルトリメトキシシランビニルI−IJ
エトキシシラン ビニルトリス(β−メトキシエトキシ)シランr−メタ
クリルオキシグロビルトリメトキシシラン β−(3’、4−エポキシクロルヘキシル)エチルトリ
メトキシシラン l−グリシドキシグロビルトリメトキシシランビニルト
リアセトキシシラン l−メルカプトプロピルトリメトキシシランr−アミノ
プロピルトリメトキシシランN−β−(アミノエチル)
−r−了ミノプロピルトリメトキシシラン ビニルトリクロルシラン また、チタン系カップリング剤としては、例えば次のよ
うな化合物を列挙することができる。
r-chloropropyltrimethoxysilane vinyl I-IJ
Ethoxysilane Vinyltris(β-methoxyethoxy)silane r-methacryloxyglobiltrimethoxysilane β-(3',4-epoxychlorohexyl)ethyltrimethoxysilane l-glycidoxyglobiltrimethoxysilane vinyltriacetoxysilane l -Mercaptopropyltrimethoxysilane r-Aminopropyltrimethoxysilane N-β-(aminoethyl)
-r-Minopropyltrimethoxysilane Vinyltrichlorosilane In addition, examples of the titanium-based coupling agent include the following compounds.

イソプロビルトリイソステアロイルチタネートイソプロ
ビルトリドデシルベンセンスルホニルチタ゛ネート イソプロピルトリス(ジオクチルピロホスフェート)チ
タネート テトライソプロピルビス(ジメタチルホスファイト)チ
タネリ・ テトラオクチルビス(ジトリデシルホスファイト)チタ
ネート テトラ(2,2−ジアリルオキシメチル−1−ブチル)
ビス(ジ−トリデシル)ホスファイトチタネート ビス(ジオクチルピロホス7エート)オキシアセテート
チタネート トリス(ジオクチルピロホスフェート)エチレンチタネ
ート 紡糸原液の調製は、非プロトン性極性溶媒、一般には経
済性の観点から選択される水性のゲル化浴との関係で水
溶性)η媒、例えばジメチルホルムアミド、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジエチルアセトア
ミド、トリエチルホスフェート、N−メチルピロリドン
、ヘキサメチルホスポルアミド、テトラメチル尿素など
に親水性シリカケ分散させた後、カップリング剤を用い
る場合には、親水性シリカに対して約0.05〜5爪鼠
%程度のカップリング剤をそこに1挙加し、攪拌して分
散ざぜなから、疎水性重合体をτ水加し、溶解させるこ
とにより竹わ几る。この調製に際し、非プロトン性極・
注溶に1、以外の・自1幾溶媒が月jいらJしると、ゲ
ル化浴として一般に用いらノJ7る水1プこは水性媒体
と混和しないためゲル化を生じ値い。
Isoprobyl triisostearoyl titanate Isoprobyl tridodecyl benzene sulfonyl titanate Isopropyl tris(dioctylpyrophosphate) Titanate Tetraisopropyl bis(dimethyl phosphite) Titanelli Tetraoctyl bis(ditridecyl phosphite) Titanate Tetra(2,2- diallyloxymethyl-1-butyl)
Bis(di-tridecyl) phosphite titanate bis(dioctylpyrophos-7ate) oxyacetate titanate tris(dioctylpyrophosphate) ethylene titanate The spinning stock solution is prepared using an aprotic polar solvent, generally chosen from an economic standpoint. Hydrophilic silica particles (water-soluble in relation to aqueous gelling baths) such as dimethylformamide, dimethylformamide, dimethylacetamide, diethylacetamide, triethylphosphate, N-methylpyrrolidone, hexamethylphosporamide, tetramethylurea, etc. After dispersing, if a coupling agent is used, add one coupling agent in an amount of about 0.05 to 5% to the hydrophilic silica, stir and disperse. Add water to the hydrophobic polymer and dissolve it to remove the bamboo. During this preparation, aprotic polar
When a solvent other than 1 is used for pouring, water, which is generally used as a gelling bath, is immiscible with the aqueous medium and may cause gelation.

このようにして調製された親水性シリカaイ1紡糸原液
ケ用いての乾湿式紡糸は、通’;::の方法と同様に行
わiする。ただし、紡糸原液中に分散さ・けたf51水
性シリカの存在は、紡糸原液の粘度を高めるので紡糸・
注を良好にさせる効果を有する。
Dry-wet spinning using the hydrophilic silica spinning dope prepared in this way is carried out in the same manner as in the method described in ``Tsu''. However, the presence of F51 aqueous silica dispersed in the spinning dope increases the viscosity of the spinning dope.
It has the effect of making notes better.

得らnる中空糸状の多孔質膜は、芯液にゲル化性液を用
いた場合には中空膜の内面側および外面側に、また非ゲ
ル化性液を用いた場合には中空膜の外面側のみに、それ
ぞれスキン層を形成させ、これらのスキン層は平均孔径
が約20〜200人の多孔構造を有する透過層であり、
スキン層以外の膜の部分は平均孔径が約1〜10μmの
多孔構造の層を形成している。
The resulting hollow fiber-like porous membrane is coated on the inner and outer sides of the hollow membrane when a gelling liquid is used as the core liquid, and on the inner and outer sides of the hollow membrane when a non-gelling liquid is used as the core liquid. A skin layer is formed only on the outer surface side, and these skin layers are permeable layers having a porous structure with an average pore size of about 20 to 200 pores,
The portion of the membrane other than the skin layer forms a porous layer with an average pore diameter of about 1 to 10 μm.

かかる中空糸状多孔質膜は、室温に半日間程度放置し、
乾燥させたものをその!Fま限外口過膜として用いるこ
とができるが、これを更に温度約50〜110℃の乾燥
炉中で約2〜3時間才たはpH2,0〜5.5、温度約
50〜110℃の酸性水溶液中で約1〜2時間、そハ、
それ熱処理することにより、疎水性重合体と親水性シリ
カとの結合をより強固なものとすることができる。なお
、水溶液中での熱処理が酸性側で行われるのは、カップ
リング剤と親水性シリカとの結合部分の加水分解を防止
させることにある。ブた、これらの熱処J」が約110
℃以下で行われるのは、多孔質膜材料たる疎水性虞合体
の熱変形温度に近すき、膜表面の細孔分布が変化するの
を防止するための配慮である。
Such a hollow fiber porous membrane is left at room temperature for about half a day,
The dried one! It can be used as an ultrafiltration membrane, but it is further dried in a drying oven at a temperature of about 50 to 110°C for about 2 to 3 hours or at a pH of 2.0 to 5.5 and a temperature of about 50 to 110°C. for about 1 to 2 hours in an acidic aqueous solution of
By heat treating it, the bond between the hydrophobic polymer and the hydrophilic silica can be made stronger. Note that the reason why the heat treatment in the aqueous solution is performed on the acidic side is to prevent hydrolysis of the bond between the coupling agent and the hydrophilic silica. But, these heat treatment J' is about 110
The reason why the temperature is below 0.degree. C. is close to the thermal deformation temperature of the hydrophobic material, which is the porous membrane material, to prevent changes in the pore distribution on the surface of the membrane.

このようにして製造される、親水性シリカを実質的に均
一に分散させた疎水性重合体の多孔質膜よりなる限外口
過膜は、膜強度を低下させることなく膜性能、特に透水
性を向上させることができ、特に熱処理された中空糸状
多孔質膜を用いたものは、膜性能ばかりではなく、耐圧
性のデーターに示されるように膜強度をも著しく向上さ
せることができる。
The ultrafiltration membrane produced in this way, which consists of a porous membrane of a hydrophobic polymer in which hydrophilic silica is substantially uniformly dispersed, improves membrane performance, especially water permeability, without reducing membrane strength. In particular, those using heat-treated hollow fiber porous membranes can significantly improve not only membrane performance but also membrane strength as shown by pressure resistance data.

次に、実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

実地例1 ジメチルアセトアミド780gを攪拌しながら、これに
親水性シリカ(米国PPG社製品H1−511233)
の所定量を添加し、室温で10分間攪拌した後、シラン
系カップリング剤(UOO製品A−1120)の所定量
を添加して更に室温で10分間攪拌し、そこにポリフッ
化ビニリデン(UOO製品カイナー460 ) 200
 gを添加した。約20〜40℃の温度で5時間攪拌し
、ポリフッ化ビニリデンを溶解させた後、約4〜5 T
orrで約20分間真空脱泡し、その後10分間静置し
て紡糸原液を調製した。
Practical Example 1 While stirring 780 g of dimethylacetamide, add hydrophilic silica (H1-511233, a product of PPG, Inc., USA).
After stirring at room temperature for 10 minutes, adding a specified amount of silane coupling agent (UOO product A-1120) and further stirring at room temperature for 10 minutes, and adding polyvinylidene fluoride (UOO product A-1120) to it. Kiner 460) 200
g was added. After stirring for 5 hours at a temperature of about 20 to 40°C to dissolve polyvinylidene fluoride, about 4 to 5 T
The mixture was degassed under vacuum for about 20 minutes using ORR, and then allowed to stand for 10 minutes to prepare a spinning dope.

このようにして調製された紡糸原液を用い、次の紡糸条
件に従って乾湿式紡糸を行ない、外径1.51m、内径
1,1露の中空糸状多孔質膜を製造した。
Using the spinning dope thus prepared, wet-dry spinning was performed according to the following spinning conditions to produce a hollow fiber porous membrane with an outer diameter of 1.51 m and an inner diameter of 1.1 mm.

紡糸原液吐出量 30−7分 芯液(水)吐出量 28m/分 ゲル化浴 温度15℃の水 巻取速度 26m/分 得られた中空糸状多孔質膜について、透水率、ポリエチ
レングリコール(牛丼化学Wlooo〜20000 )
まkはポリビニルピロリドン(関東化学製品pvpK−
90)のそれぞれ0.05J1mfl:%水溶液中の各
物質の排除率および破裂試験による耐圧性を測定した。
Spinning stock solution discharge rate: 30-7 min Core liquid (water) discharge rate: 28 m/min Gelation bath: water at a temperature of 15°C Winding speed: 26 m/min Regarding the obtained hollow fiber porous membrane, water permeability, polyethylene glycol (Gyudon Kagaku) Wlooo~20000)
Mak is polyvinylpyrrolidone (Kanto Chemical Products pvpK-
The rejection rate of each substance in each 0.05 J1 mfl:% aqueous solution of 90) and the pressure resistance by bursting test were measured.

得られた結果は、次の表1に示されるが、A1は親水性
シリカを用いない比較例であり、A2〜7はカップリン
グ剤処理をしない親水性シリカを用いた実施例であり、
A8〜12はシラン系カップリング剤で表面処理した親
水性シリカを用いた実施例であり、また&13〜14は
Allの中空糸状多孔質膜をそれぞれ80℃または10
0℃の乾燥炉中で2時間熱処理したものを用いた実施例
である。
The results obtained are shown in Table 1 below, where A1 is a comparative example in which no hydrophilic silica was used, and A2 to A7 are examples in which hydrophilic silica was not treated with a coupling agent.
A8-12 are examples using hydrophilic silica surface-treated with a silane coupling agent, and &13-14 are examples using All hollow fiber porous membranes at 80°C and 10°C, respectively.
This is an example in which a sample was heat-treated for 2 hours in a drying oven at 0°C.

実施例2 実施例1の黒8〜14において、シラン糸カップリング
の代りにチタン糸カップリング剤を用いてか用いられた
。即ち、A1〜5はシラン系カップリング剤(詠の素製
品プレンアク) T、TS )で表面処理した親水性シ
リカを用いた実施例であり、またA6〜7はA4の中空
糸状多孔質膜をそれぞれ80℃また100℃の乾燥炉中
で2時間熱処理したものを用いた実施例である。更に、
A8は、pH3の硫酸酸性水溶液中で2時間煮沸(10
0℃)したものを用いた実施例である。得られた結果は
、次の表2に示される。
Example 2 In blacks 8-14 of Example 1, a titanium thread coupling agent was used in place of the silane thread coupling. That is, A1 to A5 are examples using hydrophilic silica surface-treated with a silane coupling agent (Ei no Moto Products Plenaku T, TS), and A6 to A7 are examples using the hollow fiber porous membrane of A4. In this example, samples were heat-treated in a drying oven at 80°C and 100°C for 2 hours, respectively. Furthermore,
A8 was boiled for 2 hours (10
This is an example using a sample heated to 0°C. The results obtained are shown in Table 2 below.

く1−〜−−〜〜−一1-------1

Claims (1)

【特許請求の範囲】 1、親水性シリカを実質的に均一に分散させた疎水性本
合体の多孔質膜よりなる限外口過膜。 2、疎水性本合体に対して約1〜30重世%の親水性シ
リカを分散させた特許請求の範囲第1項記載の限外口過
膜。 3、多孔質膜が中空糸状である特許請求の範囲第1項記
載の限外口過膜。 44親水性シリカおよび疎水性重合体を非プロトン性極
性溶媒中に溶解および分散させて調製した紡糸原液を中
空環状ノズルから吐出させた後、前記疎水性本合体の非
溶媒よりなるゲル化洛中に導き凝固させることを特徴と
する中歪糸状の限外口過膜の製造法。 5、疎水性本合体との親和性を高めるカップリング剤で
表面処理された親水性シランが用いられる特許請求の範
囲第4項記載の限外口過膜の製造法0 6、親水性シリカおよび疎水性重合体を非プロトン性極
性溶媒中に溶解および分散させて調製した紡糸原液を中
空環状ノズルから吐出させた後、前記疎水性重合体の非
溶媒よりなるゲル化浴中に導いて凝固させ、得られた多
孔質膜を約50〜110℃の温度条件下で熱処理するこ
とを特徴とする中空糸状の限外口過膜の製造法。 7、疎水性重合体との親和性を高めるカップリング剤で
表面処理された親水性シランが用いられる特許請求の範
囲第6項記載の限外口過膜の製造法。 8、熱処理が乾燥炉中で行われる特許請求の範囲第6項
記載の限外口過膜の製造法。 9、熱処理がpH2,0〜5.5の酸性水溶液中で行わ
れる特許請求の範囲第6項記載の限外口過膜の製造法。
[Claims] 1. An ultrafiltration membrane comprising a porous membrane of a hydrophobic main body in which hydrophilic silica is substantially uniformly dispersed. 2. The ultra-diaphragm membrane according to claim 1, wherein about 1 to 30 weight percent of hydrophilic silica is dispersed in the hydrophobic main body. 3. The ultrafiltration membrane according to claim 1, wherein the porous membrane is in the form of hollow fibers. 44 A spinning dope prepared by dissolving and dispersing hydrophilic silica and a hydrophobic polymer in an aprotic polar solvent is discharged from a hollow annular nozzle, and then poured into a gelatinizing solution made of a non-solvent for the hydrophobic polymer. A method for producing a moderately strained thread-like ultrafiltration membrane, which is characterized by guiding and coagulating it. 5. A method for producing an ultrafiltration membrane according to claim 4, in which a hydrophilic silane whose surface is treated with a coupling agent that increases its affinity with the hydrophobic main body is used. A spinning stock solution prepared by dissolving and dispersing a hydrophobic polymer in an aprotic polar solvent is discharged from a hollow annular nozzle, and then introduced into a gelling bath made of a non-solvent for the hydrophobic polymer and coagulated. A method for producing a hollow fiber ultrafiltration membrane, characterized in that the obtained porous membrane is heat-treated at a temperature of about 50 to 110°C. 7. The method for producing an ultrafiltration membrane according to claim 6, wherein a hydrophilic silane whose surface is treated with a coupling agent that increases its affinity with a hydrophobic polymer is used. 8. The method for producing an ultrafiltration membrane according to claim 6, wherein the heat treatment is performed in a drying oven. 9. The method for producing an ultrafiltration membrane according to claim 6, wherein the heat treatment is performed in an acidic aqueous solution having a pH of 2.0 to 5.5.
JP59009884A 1984-01-23 1984-01-23 Ultrafiltration membrane and its preparation Granted JPS60153903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59009884A JPS60153903A (en) 1984-01-23 1984-01-23 Ultrafiltration membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009884A JPS60153903A (en) 1984-01-23 1984-01-23 Ultrafiltration membrane and its preparation

Publications (2)

Publication Number Publication Date
JPS60153903A true JPS60153903A (en) 1985-08-13
JPH042291B2 JPH042291B2 (en) 1992-01-17

Family

ID=11732572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009884A Granted JPS60153903A (en) 1984-01-23 1984-01-23 Ultrafiltration membrane and its preparation

Country Status (1)

Country Link
JP (1) JPS60153903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625690A1 (en) * 1988-01-11 1989-07-13 Inst Francais Du Petrole PROCESS FOR SEPARATING COMPONENTS OF A GAS PHASE MIXTURE USING A COMPOSITE MEMBRANE
JPH05258190A (en) * 1991-03-26 1993-10-08 Honshu Paper Co Ltd Overheat detecting device and overheat warning device using same
WO1998044348A1 (en) * 1997-04-02 1998-10-08 The Perkin-Elmer Corporation Detection of low level hydrophobic analytes in environmental samples
EP1096591A1 (en) * 1999-10-26 2001-05-02 MERCK PATENT GmbH Polymer electrolyte membrane for use in lithium batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109242A (en) * 1974-02-05 1975-08-28
JPS5123492A (en) * 1974-08-22 1976-02-25 Shionogi Seiyaku Kk Kyuchakuseishiito oyobi sonoseizohoho
JPS5893734A (en) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd Production of porous membrane of hydrophilic polyvinylidene fluoride resin
JPS5955722A (en) * 1982-09-27 1984-03-30 Nichias Corp Molding method of diaphragm made of fluorocarbon resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109242A (en) * 1974-02-05 1975-08-28
JPS5123492A (en) * 1974-08-22 1976-02-25 Shionogi Seiyaku Kk Kyuchakuseishiito oyobi sonoseizohoho
JPS5893734A (en) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd Production of porous membrane of hydrophilic polyvinylidene fluoride resin
JPS5955722A (en) * 1982-09-27 1984-03-30 Nichias Corp Molding method of diaphragm made of fluorocarbon resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625690A1 (en) * 1988-01-11 1989-07-13 Inst Francais Du Petrole PROCESS FOR SEPARATING COMPONENTS OF A GAS PHASE MIXTURE USING A COMPOSITE MEMBRANE
US4925459A (en) * 1988-01-11 1990-05-15 Institut Francais Du Petrole Process for separation of the constituents of a mixture in the gas phase using a composite membrane
JPH05258190A (en) * 1991-03-26 1993-10-08 Honshu Paper Co Ltd Overheat detecting device and overheat warning device using same
WO1998044348A1 (en) * 1997-04-02 1998-10-08 The Perkin-Elmer Corporation Detection of low level hydrophobic analytes in environmental samples
EP1096591A1 (en) * 1999-10-26 2001-05-02 MERCK PATENT GmbH Polymer electrolyte membrane for use in lithium batteries

Also Published As

Publication number Publication date
JPH042291B2 (en) 1992-01-17

Similar Documents

Publication Publication Date Title
US5938929A (en) Polysulfone hollow fiber semipermeable membrane
EP0572274B1 (en) Novel high flux hollow fiber membrane
JP6378090B2 (en) Doped membrane
WO2002102500A1 (en) Membrane polymer compositions
JPH02151636A (en) Preparation of isotropic microporous polysulfone film
AU2021104813A4 (en) Method for preparing hydrophilic polytetrafluoroethylene hollow fiber microfiltration membrane
Zhang et al. Preparation and characterization of PSF-TiO 2 hybrid hollow fiber UF membrane by sol–gel method
JPS60153903A (en) Ultrafiltration membrane and its preparation
JP2542572B2 (en) Hollow fiber
JPS6138208B2 (en)
JPS59150501A (en) Hollow fiber for dialysis
JPH03258330A (en) Porous hollow fiber membrane
JPH0420649B2 (en)
WO2004096418A1 (en) Hollow fiber ultrafilter membrane with poly(phthalazinone ether fulfone), poly(phthalazinone ether ketone) or poly(phthalazinone ether sulfone ketone) and preparation thereof
JPS59166208A (en) Manufacture of gas separating membrane
EP1482004B1 (en) Hydrophilized porous film and process for producing the same
JPH03284326A (en) Porous hollow fiber membrane
GB2183539A (en) Hollow fibre membrane for dialysis
CN114749032B (en) PMP hollow fiber membrane and preparation method and application thereof
JP3128875B2 (en) Polyphenylene sulfide sulfone hollow fiber membrane and method for producing the same
JPH0938473A (en) Production of polysulfone-base porous hollow fiber membrane
JPH0924261A (en) Manufacture of polysulfone porous hollow yarn membrane
JPS6252185A (en) Manufacture of porous ceramic membrane
JPH022846A (en) Production of porous ceramic multilayer hollow yarn
JPS6229524B2 (en)