JPS60153494A - Spiral-grooved molecular pump - Google Patents

Spiral-grooved molecular pump

Info

Publication number
JPS60153494A
JPS60153494A JP717484A JP717484A JPS60153494A JP S60153494 A JPS60153494 A JP S60153494A JP 717484 A JP717484 A JP 717484A JP 717484 A JP717484 A JP 717484A JP S60153494 A JPS60153494 A JP S60153494A
Authority
JP
Japan
Prior art keywords
cylinder
molecular pump
static
thread groove
rotary cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP717484A
Other languages
Japanese (ja)
Inventor
Masahiro Mase
正弘 真瀬
Yoshitsugu Tsutsumi
芳紹 堤
Minoru Taniyama
実 谷山
Makoto Terajima
寺島 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP717484A priority Critical patent/JPS60153494A/en
Publication of JPS60153494A publication Critical patent/JPS60153494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To achieve a high evacuation speed with a spiral-grooved molecular pump, by providing the facing surfaces of a static cylinder and a rotary cylinder with screw grooves turning in opposite directions to each other, to increase the cross-sectional area of a gas molecule evacuation passage. CONSTITUTION:A static cylinder 2 having a screw groove 2a on the inside circumferential surface is fitted in the cylindrical casing 1 of a molecular pump. A rotary cylinder 3 is housed in the static cylinder 2 concentrically thereto. The surface of the rotary cylinder 3, which faces the static cylinder 2, is provided with a screw groove which turns in the opposite direction to the screw groove 2a. Gas is evacuated from a suction port A to a discharge port B by rotating a motor 7. Since the mean free path of the gas molecules is much longer than the width of the screw grooves, the gas molecules collide against the surfaces of the screw grooves of the static cylinder 2 and the rotary cylinder 3 alternately and are guided in the direction of the rotation, so that a high evaculation speed is achieved without deteriorating the performance of the pump.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は気体が主として分子流領域にある場合速度を得
るのに好適なねじ溝分子ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a threaded groove molecular pump suitable for obtaining velocities when the gas is primarily in the molecular flow region.

〔発明の背景〕[Background of the invention]

従来から分子ポンプの代表的なものとしてねじ溝分子ポ
ンプがある。このポンプは構造が簡単で(1) 比較的製作が容易であるが、排気速度が小さいという欠
点があった。
Thread groove molecular pumps are conventionally representative molecular pumps. This pump has a simple structure (1) and is relatively easy to manufacture, but it has the disadvantage of a low pumping speed.

従来、ねじ溝分子ポンプは一般に静止外周と回転内筒の
組合せが取られており、分子流の流路となるねじ溝は上
記外筒あるいは内筒の一方にだけ設けられているのが通
常で、ねじ溝の大きさによって制限され排気速度を大き
くとれないものであった。そこで、最近では高排気速度
が得やすい軸流分子ポンプが利用されることが多くなっ
ている。
Conventionally, thread groove molecular pumps generally have a combination of a stationary outer circumference and a rotating inner cylinder, and the thread groove that serves as a flow path for molecular flow is usually provided only on one of the outer cylinder or the inner cylinder. However, the pumping speed was limited by the size of the thread groove, and the pumping speed could not be increased. Therefore, in recent years, axial flow molecular pumps, which can easily achieve high pumping speeds, have been increasingly used.

このため、ねじ溝分子ポンプは特殊用途以外あまり利用
されなくなっている。
For this reason, thread groove molecular pumps are rarely used except for special purposes.

〔発明の目的〕[Purpose of the invention]

うことなく、大きな排気速度が得られるねじ溝分子ポン
プを提供することにある。
An object of the present invention is to provide a thread groove molecular pump that can obtain a large pumping speed without causing any problems.

〔発明の概要〕[Summary of the invention]

太し上記目的を達成するようにしたものである。 It is designed to achieve the above purpose.

〔発明の実施例〕[Embodiments of the invention]

(2) 以下、本発明の一実施例を第1図について説明する。 (2) An embodiment of the present invention will be described below with reference to FIG.

図において、円筒状の分子ポンプ筐体1内にねじ溝2a
を内周面に有する静止筒2が取付けられ、静止筒2内に
は回転筒3が同心的に収容されている。回転筒3aの静
止筒2対向面には溝2aと逆方向のねじ溝3aが設けら
れている。この回転筒3が固定される回転軸4は軸受5
,6で支持されている。また、この回転軸4にはモータ
7の回転子7aが設けられ、この回転子7aの対向面に
は固定子7bが筐体1に設けられている。Aは吸込口で
、この先に排気すべき装置が接続され、気体は吸込口A
より吐出口Bに排気される。
In the figure, a thread groove 2a is formed in a cylindrical molecular pump housing 1.
A stationary cylinder 2 having an inner peripheral surface thereof is attached, and a rotating cylinder 3 is concentrically accommodated within the stationary cylinder 2. A thread groove 3a in the opposite direction to the groove 2a is provided on the surface of the rotating cylinder 3a facing the stationary cylinder 2. The rotating shaft 4 to which this rotating cylinder 3 is fixed is a bearing 5
, 6. Further, a rotor 7a of a motor 7 is provided on the rotating shaft 4, and a stator 7b is provided in the housing 1 on the opposite surface of the rotor 7a. A is the suction port, to which the device to be exhausted is connected, and the gas is passed through the suction port A.
It is exhausted to the discharge port B.

上記構成の分子ポンプにおいて、まず、吐出口4に油回
転ポンプ等の補助ポンプを接続して駆動し、ねじ溝分子
ポンプ本体内の圧力が分子流領域になるまで粗引きした
後、本体を起動する。吸込口Aより吸入された気体は静
止筒2と回転筒3に設けられたねじ溝2a、3aを通る
間に圧縮されて吐出口Bから排気される。
In the molecular pump configured as described above, first, an auxiliary pump such as an oil rotary pump is connected to the discharge port 4 and driven, and after rough evacuation until the pressure inside the thread groove molecular pump body reaches the molecular flow region, the main body is started. do. The gas sucked through the suction port A is compressed while passing through thread grooves 2a and 3a provided in the stationary cylinder 2 and the rotating cylinder 3, and is exhausted from the discharge port B.

(3) 分子流領域では気体分子の平均自由行程はねじ溝寸法よ
りも十分に大きいので、気体分子はねじ溝内の静止筒2
壁と回転筒3壁に交互に衝突してはコサイン法則によっ
てはね返りながら溝内を回転方向へ導かれていく。互い
に逆方向のねじ溝である静止筒2のねじ溝2aと回転筒
3のねじ溝3aが交叉する個所ではねじ溝がピッチ方向
に短絡されることになるが、静止筒2と回転筒3のねじ
溝形状が同一であれば、ねじ溝内の流れ方向の圧力勾配
がほぼ等しいので、ピッチ方向の洩れ流れは非常に小さ
くなる。したがって、静止筒2と回転筒3に設けたねじ
溝が互いに流路として機能し、大きな排気速度を得るこ
とができる。
(3) In the molecular flow region, the mean free path of gas molecules is sufficiently larger than the thread groove dimensions, so gas molecules move toward the stationary tube 2 in the thread groove.
It alternately collides with the wall and the wall of the rotating cylinder 3, and is guided in the direction of rotation within the groove while bouncing back according to the cosine law. At the point where the thread groove 2a of the stationary cylinder 2 and the thread groove 3a of the rotating cylinder 3 intersect, which are thread grooves in opposite directions, the thread grooves are short-circuited in the pitch direction. If the thread groove shapes are the same, the pressure gradient in the flow direction within the thread groove is approximately equal, so the leakage flow in the pitch direction becomes extremely small. Therefore, the thread grooves provided in the stationary cylinder 2 and the rotating cylinder 3 mutually function as a flow path, and a high exhaust speed can be obtained.

本発明の他の実施例を第2図について説明する。Another embodiment of the invention will be described with reference to FIG.

これは本発明をジーグバーン形式の分子ポンプに適用し
た場合を示すもので、第1図と同じ個所には同じ符号を
付して説明する。
This shows the case where the present invention is applied to a Siegbahn type molecular pump, and the same parts as in FIG. 1 are given the same reference numerals and will be explained.

ジーグバーンロータ3には螺旋状の溝3a。The Siegbahn rotor 3 has a spiral groove 3a.

3bが設けられ、この溝3a、3bに対向する筐体1の
面には互いに逆方向の螺旋状のねじ溝2a。
3b, and spiral thread grooves 2a in opposite directions are provided on the surface of the housing 1 facing the grooves 3a and 3b.

(4) 2bが設けられて構成される。(4) 2b is provided.

第1図の実施例で示したねじ溝と本実施例の螺旋状のね
じ溝はほぼ同等の作用、効果を奏することができる。ジ
ーグバーン形式の分子ポンプは軸方向寸法が短くなるの
で、軸の共振防止に有利である。また、ロータ3の回転
方向に応じて吸込口Aと吐出口Bを簡単に逆にすること
が可能である。
The thread groove shown in the embodiment of FIG. 1 and the spiral thread groove of this embodiment can provide substantially the same functions and effects. Since the Siegbahn type molecular pump has a short axial dimension, it is advantageous in preventing shaft resonance. Furthermore, it is possible to easily reverse the suction port A and the discharge port B depending on the rotational direction of the rotor 3.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば静止筒と回転筒に
互いに逆方向の溝を設けることにより大きな排気速度を
得ることができる。
As explained above, according to the present invention, a large exhaust speed can be obtained by providing grooves in opposite directions in the stationary cylinder and the rotating cylinder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を示す縦断面図である
。 1・・・分子ポンプ筐体、2・・・静止筒、2a・・・
ねじ溝、3・・・回転筒、3a・・・ねじ溝、A・・・
吸込口、B山吐(5) 峯1図 手20
1 and 2 are longitudinal sectional views showing an embodiment of the present invention. 1... Molecular pump housing, 2... Stationary cylinder, 2a...
Thread groove, 3... Rotating tube, 3a... Thread groove, A...
Suction port, B mountain discharge (5) Mine 1 figure hand 20

Claims (1)

【特許請求の範囲】 ■、静止筒に対向し同心的に回転筒を配置し、前記回転
筒の回転によって気体分子を軸方向に移動させる分子ポ
ンプにおいて、前記静止筒と前記回転筒筒の対向面に互
いに逆方向のねじ溝を設けたことを特徴とするねじ溝分
子ポンプ。 2、特許請求の範囲第1項において、前記回転筒はジー
グバーンロータであることを特徴とするねじ溝分子ポン
プ。
[Scope of Claims] (1) A molecular pump in which a rotating cylinder is arranged concentrically opposite to a stationary cylinder, and gas molecules are moved in the axial direction by rotation of the rotating cylinder, in which the stationary cylinder and the rotating cylinder are opposed to each other. A thread groove molecular pump characterized by having thread grooves in opposite directions on its surface. 2. The thread groove molecular pump according to claim 1, wherein the rotating cylinder is a Siegbahn rotor.
JP717484A 1984-01-20 1984-01-20 Spiral-grooved molecular pump Pending JPS60153494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP717484A JPS60153494A (en) 1984-01-20 1984-01-20 Spiral-grooved molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP717484A JPS60153494A (en) 1984-01-20 1984-01-20 Spiral-grooved molecular pump

Publications (1)

Publication Number Publication Date
JPS60153494A true JPS60153494A (en) 1985-08-12

Family

ID=11658710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP717484A Pending JPS60153494A (en) 1984-01-20 1984-01-20 Spiral-grooved molecular pump

Country Status (1)

Country Link
JP (1) JPS60153494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220798U (en) * 1988-07-27 1990-02-13
US5053690A (en) * 1988-11-30 1991-10-01 Hitachi, Ltd. Control method of pulse width modulation inverter and pulse width modulation inverter system
JPH0475196U (en) * 1990-11-09 1992-06-30

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220798U (en) * 1988-07-27 1990-02-13
US5053690A (en) * 1988-11-30 1991-10-01 Hitachi, Ltd. Control method of pulse width modulation inverter and pulse width modulation inverter system
JPH0475196U (en) * 1990-11-09 1992-06-30

Similar Documents

Publication Publication Date Title
JPH03222895A (en) Thread-grooved vacuum pump
US4732529A (en) Turbomolecular pump
US5052887A (en) Turbomolecular vacuum pump
US3169375A (en) Rotary engines or pumps
KR960002529A (en) Vacuum pump
JPH074383A (en) Compound molecular pump
US6200116B1 (en) Vacuum pumps
KR930008311A (en) Fluid rotator
JPS60153494A (en) Spiral-grooved molecular pump
JPS60182394A (en) Turbomolecular pump
US4484872A (en) Globoid-worm machine with tapered screw clearance near high pressure end seal
KR930016662A (en) Fluid rotating device
JPS5965586A (en) Scroll system pump
JPS61190191A (en) Motor-driven fuel pump for car
RU2168070C2 (en) Molecular vacuum pump
JPS6017284A (en) Fluid operation machine of screw system
JPH07117067B2 (en) Molecular pump
JPS63159695A (en) Turbo molecular pump
JPH03237297A (en) Turbo-molecular pump
GB2140089A (en) Sliding-vane rotary compressor
JPH0244076Y2 (en)
JPH04370379A (en) Dry vacuum pump
JPH02264196A (en) Turbine vacuum pump
RU2107840C1 (en) Two-flow molecular vacuum pump
JPS5822444Y2 (en) Seal device in rotating fluid machinery