JPS60153170A - Sense of contact force sensor - Google Patents

Sense of contact force sensor

Info

Publication number
JPS60153170A
JPS60153170A JP59008781A JP878184A JPS60153170A JP S60153170 A JPS60153170 A JP S60153170A JP 59008781 A JP59008781 A JP 59008781A JP 878184 A JP878184 A JP 878184A JP S60153170 A JPS60153170 A JP S60153170A
Authority
JP
Japan
Prior art keywords
pressure
stripform
force
strain gauge
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008781A
Other languages
Japanese (ja)
Inventor
Shinobu Sagisawa
鷺沢 忍
Mitsuo Kobayashi
光男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP59008781A priority Critical patent/JPS60153170A/en
Publication of JPS60153170A publication Critical patent/JPS60153170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To facilitate the manufacture of the titled device by the reduction of the number of manufacturing and assembly processes by a method wherein a plurality of pressure-sensitive cells in the column direction are prepared integrally by means of stripform single crystal Si, and this prepared strip is arranged on a substrate into this device. CONSTITUTION:A plurality of small-sized circular holes 52 and large-sized circular holes 53 are alternately bored in the vertical plane of the stripform single crystal Si 51 almost at equal intervals along the longitudinal direction, and further a diffused type strain gauge group 54 is formed around each circular hole 52 by the diffusion technique. Thereby, a plurality of pressure-sensitive cells 55 detecting the force, impressed on a pressure reception plane 51a via pressure reception plane 40 of the Si 51 with the variation in resistance value of the group 54, by decomposition into three component forces are constructed integrally. The lower end 51b of the stripform Si 51 thus constructed is fitted to each groove 31 of the lower substrate 30 and fixed vertically at a given position; thereafter, pressure reception plates 40 are fixed to the pressure reception plane 51a in the upper part of each stripform Si 51 in every pressure-sensitive module, resulting in the formation of a piece of pressure sensor.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、受圧面に印加される荷重等の力をりいに直交
する3方向の分力に分解して検出する3分力検知感圧モ
ジュールを単位とし、この感圧モジュールをアレイ状に
多数個配列して分イ1荷重等が検出できるようにした圧
覚センサに関する。
[Detailed Description of the Invention] [Technical Field to Which the Invention Pertains] The present invention is a three-component force detection sensor that detects force such as a load applied to a pressure-receiving surface by decomposing it into component forces in three directions perpendicular to the sieve. The present invention relates to a pressure sensor in which a pressure module is used as a unit, and a large number of pressure modules are arranged in an array so that a load or the like can be detected.

[従来技術とその問題点] 前述のような荷重等の力を基本的な直角座標系に分解し
、3方向分力として互いに分離して検出することができ
る感圧モジュールはその3分力を演算式により合成する
ことによって、力の大きさや方向をめることができ、更
には任慧の方向の力をめることができるので1個の荷東
計等としても有用なことはもちろんであるが、とくにこ
れらをアレイ状に配列した圧覚センサは力の分布状態や
力の中心(重心)とそれに崗〈合成力をめることができ
るので比較的新規な諸用途をもっている。
[Prior art and its problems] A pressure-sensitive module that can decompose forces such as the load mentioned above into a basic orthogonal coordinate system and detect them separately as components of force in three directions can detect the three components of force separately. By composing them using arithmetic expressions, it is possible to determine the magnitude and direction of the force, and furthermore, it is possible to determine the force in the direction of Renhui, so it is of course useful as a single loading meter, etc. However, in particular, pressure sensors arranged in an array have relatively new uses because they can measure the distribution of force, the center of force (center of gravity), and the resultant force.

この−例は、第1図に示すような人体の動態実験に見ら
れる。図には圧覚センサlの上を歩行する人の足2が示
されており、図の右方の状態では足のかかとが荷重計1
に接触しているが、袋状の矢印の先で示す図の左方の状
態ではつま先が圧覚センサlに接触している。かかる歩
行動態の推移につれて、圧覚センサにかかる荷重の分布
状態および荷電の3分力Fx 、FyおよびFzは時間
の経過とともに当然変わってくる。ふつうの体重計によ
りかかる歩Qj動態での壱f重を測定すると、荷重全体
の時間的変動を図ることができたとしても、あまり有用
な情報が得られるわけではない。しかし、歩行動態中の
荷重の面状分布や分力の推移を正確に測定することがで
きれは、歩行動態の個人差や身体」二の障害の模様につ
いて、非常に有用な知見が得られることが知られている
。また、この圧覚センサlをロボットの足のうらに取付
ければ、高級な歩行制御機能をロボットにもたせること
が可能となる。
An example of this can be seen in human body dynamics experiments such as the one shown in FIG. The figure shows the foot 2 of a person walking on the pressure sensor 1, and in the right side of the figure, the heel of the foot is on the load cell 1.
However, in the state on the left side of the figure indicated by the bag-shaped arrow, the toe is in contact with the pressure sensor l. As the walking dynamics progress, the distribution of the load applied to the pressure sensor and the three component forces Fx, Fy, and Fz of charge naturally change over time. Measuring the 1/f weight during the gait Qj dynamics using a normal weight scale does not provide very useful information, even if it is possible to measure the temporal fluctuations in the overall load. However, if it is possible to accurately measure the planar distribution of load and the transition of component forces during walking dynamics, very useful knowledge can be obtained regarding individual differences in walking dynamics and patterns of physical disorders. It is known. Furthermore, by attaching this pressure sensor l to the back of the robot's foot, it becomes possible to provide the robot with a sophisticated walking control function.

かかるイサ重分力の分布の検出の必要性は産業分野にお
いても広く存在し、第2図にロボットの圧覚センサの例
を挙げる。同図には、多関節アーム3の先端に取り付け
られたロボットハンド4の1対のフィンガ5.5により
物体6が把持された状態が示されている。物体が多くの
工業部品のように十分な硬さと強度を有している場合は
めまり問題がないが、物体8が柔らかな、または傷みや
すいもの、例えば果実類である場合には、強い力で把持
することは許されない。この種の物体を傷つけないでロ
ボットで扱うためには、把持力すなわちフィンガ5に掛
る荷重の分力とその分布をかなり精冨に測定して、物体
を傷つけずしかも落とすことがない適度の力で把持しな
ければならない。
The need to detect the distribution of Isa gravity component exists widely in the industrial field, and FIG. 2 shows an example of a pressure sensor for a robot. This figure shows a state in which an object 6 is gripped by a pair of fingers 5.5 of a robot hand 4 attached to the tip of a multi-joint arm 3. If the object has sufficient hardness and strength, such as many industrial parts, there will be no problem with mating, but if the object 8 is soft or perishable, such as fruit, it may be difficult to apply strong force. Gripping is not allowed. In order to handle this type of object with a robot without damaging it, the gripping force, that is, the component force of the load applied to the fingers 5 and its distribution, must be measured with great precision, and an appropriate force that will not damage the object and cause it to fall is determined. must be grasped with.

また把持が正しくなされているかどうかを知るには荷重
分力の面状分布を知ることが有用である。例えば図示の
ような比較的細長な物体6を把持する際には、把持する
物体の部位によって荷重分力の分布が異なるから、分布
が異常な場合には把持が不適切に行われていることがわ
かる。また比較的小さな把持力で柔らかな物体を把持し
ている場合には、荷重分力の時間的推移から物体の脱落
の危険を予知することができる。
Also, in order to know whether the grip is being performed correctly, it is useful to know the planar distribution of the load component force. For example, when gripping a relatively elongated object 6 as shown in the figure, the distribution of the load component force differs depending on the part of the object to be gripped, so if the distribution is abnormal, it is likely that the gripping is being performed inappropriately. I understand. Furthermore, when a soft object is being gripped with a relatively small gripping force, the risk of the object falling off can be predicted from the time course of the load component force.

かかる圧覚センサの構成の概要を第3図に示す。図示の
圧覚センサlには共通基板30の上に感圧モジュールl
Oがx、y両方向に多数個面アレイ状に並べられており
、各感圧モジュール1oの受圧板40を介してそれぞれ
”+FY+FZなる分力を有する荷重を受け、感圧セル
2oは受圧板4oが受ける垂直方向の力F2のほか、横
方向の力Fx 、Fyをも検知する。これによって、例
えば第1図に例示するように圧覚センサlにかかる人体
の体重分布のほかに、漬方に蹴る力Fxや歩行方向に対
して横方向に押し出す力FYの大きさと分布とを知るこ
とかできる。各感圧モジュール1oは図の一点鎖線で囲
んで示されているように感圧素子である感圧セル20と
共通基板30と上部受圧板4oとがらなっている。
FIG. 3 shows an outline of the configuration of such a pressure sensor. The illustrated pressure sensor l has a pressure sensitive module l on a common substrate 30.
A large number of O cells are arranged in a plane array in both the x and y directions, and receive a load having a component force of "+FY+FZ" through the pressure receiving plate 40 of each pressure sensitive module 1o, and the pressure sensitive cell 2o receives a load having a component force of "+FY+FZ". In addition to the vertical force F2 that the body receives, it also detects the lateral forces Fx and Fy.As a result, for example, as illustrated in Fig. 1, in addition to the distribution of the weight of the human body acting on the pressure sensor l, It is possible to know the magnitude and distribution of the kicking force Fx and the force FY pushing out in the lateral direction with respect to the walking direction.Each pressure-sensitive module 1o is a pressure-sensitive element as shown surrounded by a dashed line in the figure. The pressure sensitive cell 20, the common substrate 30, and the upper pressure receiving plate 4o are separated.

ところで、第4図および第5図に示したように、すでに
提案されている従来の感圧セル2oは各々感圧セル20
毎に分離独立した感圧リング(リング状感圧イ°クト材
)21.2’lからなっていた。そのため、圧覚センサ
lを形成するには、下部基板3o上の平行な複数の溝3
1にそれらの複数リング21の一端側を係合させて谷溝
ごとに所足個数つつ分布立設させる工程と、その溝31
に沿って行方向に分布立設されたリング21を列方向に
整列させる工程と、その溝31に係合された各リング2
1の一端側を基板に固着する工程等の工程が少なくとも
必要であり、製造・組立工数が増大するという欠点があ
った。
By the way, as shown in FIGS. 4 and 5, the conventional pressure sensitive cells 2o that have already been proposed are
Each tube was made up of 21.2 liters of separate and independent pressure-sensitive rings (ring-shaped pressure-sensitive actuators). Therefore, in order to form the pressure sensor l, it is necessary to form a plurality of parallel grooves 3 on the lower substrate 3o.
1, a step of engaging one end side of the plurality of rings 21 and erecting the plurality of rings 21 in a distributed manner in each groove;
a step of aligning the rings 21 distributed in the row direction along the column direction, and each ring 2 engaged with the groove 31;
At least a step such as a step of fixing one end of 1 to the substrate is required, which has the drawback of increasing the number of manufacturing and assembly steps.

しかも、この種の圧覚センサはできるだけ寸法を極小化
して高密度集積化できることが要求される。例えば、受
圧板40の大きさは数mrrr角、できればlam角以
下にすることが望ましいとされている。しかしながら、
それらの要求寸法で上述のような各工程を正確に行うこ
とはリング21も極めて小さくなるので容易でなく、ひ
いては部止りの低下、信頼性の低下、製造コスト晶等を
まねくおそれがあり、さらには製造組立の完全自動化が
困難となるという問題があった。
Moreover, this type of pressure sensor is required to be as small as possible and to be highly integrated. For example, it is said that it is desirable that the size of the pressure receiving plate 40 be several mrrr angles, preferably less than lam angles. however,
It is not easy to accurately carry out each of the above-mentioned processes with these required dimensions because the ring 21 will also be extremely small, which may lead to a decrease in part retention, a decrease in reliability, and an increase in manufacturing costs. The problem was that it was difficult to completely automate manufacturing and assembly.

〔発明の目的〕[Purpose of the invention]

本発明は上述の欠点を除去し、圧覚センサの製造が簡単
にできるようにすることを目的とする。
The present invention aims to eliminate the above-mentioned drawbacks and to simplify the manufacture of pressure sensors.

[発明の要点] 本発明は、短冊形の単結晶シリコンを用1.Xて列方向
のネ(数の感圧セルを一体に作成し、このイ乍成した短
冊体を基板上に配列して圧覚センサを形成することによ
り製造φ組立工数を減少し、圧覚センサの製造を容易に
しようとするものである。
[Summary of the Invention] The present invention uses rectangular single crystal silicon. By integrally fabricating a number of pressure-sensitive cells in the row direction in the The aim is to make manufacturing easier.

[発明の実施例] 以下、図面を参照して本発明の詳細な説明する。[Embodiments of the invention] Hereinafter, the present invention will be described in detail with reference to the drawings.

第6図は本発明の圧覚センサの要部構成例を示す。図示
のように短冊形の短結晶シリコン51の垂直面に小形の
円形孔52と大形の円形孔53とを長手力量に沿ってほ
ぼ等間隔に交互に複数個開口し、さらに各小形の円形孔
52の囲りに拡散形ストレンゲージ群54を公知の拡散
技術によりそれぞれ形成して′、−それによりストレン
ゲージ群54の抵抗値の変化によってシリコン51の受
圧面40を介して受圧面51aに印加された力を3分力
に分解して検知する感圧セル55を複数個一体に構成す
る。
FIG. 6 shows an example of the main part configuration of the pressure sensor of the present invention. As shown in the figure, a plurality of small circular holes 52 and large circular holes 53 are alternately opened at approximately equal intervals along the longitudinal force in the vertical plane of a rectangular short crystalline silicon 51, and each small circular Diffusion-type strain gauge groups 54 are formed around the holes 52 by a known diffusion technique.'--As a result, a change in the resistance value of the strain gauge groups 54 causes pressure to be applied to the pressure-receiving surface 51a through the pressure-receiving surface 40 of the silicon 51. A plurality of pressure sensitive cells 55 are integrally configured to detect the applied force by decomposing it into three component forces.

このように構成した短冊体のシリコン51の下端部51
bを第4図または第5図に示すような下部ノ^板30の
谷溝31にそれぞれ嵌合して所定位置で垂直に固着した
後、各短冊体のシリコン51の上部の受圧面51aに受
圧板40を感圧モジュール毎に1ili1着して1個の
圧覚センサを形成する。なお、その受圧板40は一体の
板を全てのシリコン51の受圧面51aに固着した後、
その板を感圧モジュール毎にカッタで切り離すことによ
り形成してもよい。
The lower end 51 of the silicon strip 51 configured in this way
b are fitted into the grooves 31 of the lower plate 30 as shown in FIG. One pressure receiving plate 40 is attached to each pressure sensing module to form one pressure sensor. Note that the pressure receiving plate 40 is made by fixing an integral plate to the pressure receiving surfaces 51a of all the silicones 51, and then
The plate may be formed by cutting the plate into individual pressure-sensitive modules using a cutter.

このように、列方向のセル55が各列毎←こ一木のシリ
コン51上に一体に連続して構成されているので、各セ
ル毎に基板30の溝31の所定位置に保合整列固着する
という従来の製造工程か必要でなくなり、短冊体シリコ
ン51毎の製造工程となるので、製造工数が大幅に減り
、ひいては、製造コストの軽減か得られる。さらに、取
扱う感圧体の寸法が長手力量に大きくなるので、下部基
板の溝への組込みや固着等の作業も容易となり、ひいて
は部止りの向上、信頼性の向上が得られ、製造組立の完
全自動化が容易となる。
In this way, since the cells 55 in the column direction are integrally and continuously constructed on the silicon 51 in each column, each cell is aligned and fixed at a predetermined position in the groove 31 of the substrate 30. This eliminates the need for the conventional manufacturing process, and requires a manufacturing process for each silicon strip 51, which greatly reduces the number of manufacturing steps and, in turn, reduces manufacturing costs. Furthermore, since the dimensions of the pressure-sensitive body to be handled increase in terms of the amount of longitudinal force required, work such as assembly and fixing into the groove of the lower board becomes easier, which in turn improves the part-holding and reliability, and allows for complete manufacturing and assembly. Easy to automate.

第7図は第6図のストレンゲージ群54の各ストレンゲ
ージの詳細な配置例を示す。まず、受圧面51aに受圧
板40を介して三方向の荷重Fx 、Fy 、F2がそ
れぞれ独立にかかったとき、セル55に生じる応力はシ
リコン51が基板30と受圧板40とに固着されている
として近似的に次式で表わされる。
FIG. 7 shows a detailed arrangement example of each strain gauge in the strain gauge group 54 shown in FIG. First, when loads Fx, Fy, and F2 in three directions are independently applied to the pressure-receiving surface 51a via the pressure-receiving plate 40, the stress generated in the cell 55 is due to the fact that the silicon 51 is fixed to the substrate 30 and the pressure-receiving plate 40. It is approximately expressed by the following formula.

ただし、σ:周方向応力、 R:セル55の平均円、すなわちセル55を梁と見たと
きの材料力学的な中立 軸の半径、すなわち隣接する2つの 円孔52と53の外縁の中間と小円孔52の中心とを結
ぶ半径、 2t:セル55の幅、すなわち隣接する2つの円孔52
と53の外縁の最小幅、 b=ナセル5の厚さ、すなわちシリコン51の厚さ、 ■:ナセル5のFW丈方向断面2次モーメント。
However, σ: circumferential stress, R: the average circle of the cell 55, that is, the radius of the material mechanical neutral axis when the cell 55 is viewed as a beam, that is, the midpoint between the outer edges of two adjacent circular holes 52 and 53. Radius connecting the center of the small circular hole 52, 2t: Width of the cell 55, that is, two adjacent circular holes 52
and the minimum width of the outer edge of 53, b = thickness of nacelle 5, that is, thickness of silicon 51, (2): second moment of area of nacelle 5 in the FW length direction.

T:セル55の平均7Rを基準としたセル55の径方向
の変数、 α:セル55上端からとった角度変数、である。
T: Variable in the radial direction of the cell 55 based on the average 7R of the cell 55, α: An angular variable taken from the upper end of the cell 55.

かかる応力に基づくひずみを検出するため、第7図に示
す円孔52の周囲の位置にストレンゲージを取り付ける
。まず荷重F11が掛かった時のことを考えると、FX
測定用ゲージ54xt、54xcは小円孔52の内径部
のr=−tの個所にあり、またα−39,6″の位置に
設けられるから、(1)でR> tとして、cr =0
.29 − Fx (4) t2 ヒ?Jす、ゲージ54xtの個所では引張りひずみ、ゲ
ージ54xcの個所では圧縮ひずみが生じるが、荷重F
R測定用ゲージ54zt 、 54zcの個所ではct
 = 80.’であるから、(1)式かられかるように
ひずみは0で従ってこれらのゲージから検出信号は生じ
ない。
In order to detect strain due to such stress, a strain gauge is attached to a position around the circular hole 52 shown in FIG. First, considering the case when load F11 is applied, FX
The measuring gauges 54xt and 54xc are located at the position r=-t of the inner diameter of the small circular hole 52, and are also provided at the position α-39,6'', so in (1), if R>t, cr =0.
.. 29 - Fx (4) t2 Hi? J, tensile strain occurs at the location of gauge 54xt, and compressive strain occurs at the location of gauge 54xc, but the load F
ct at the R measurement gauges 54zt and 54zc
= 80. ' Therefore, as can be seen from equation (1), the strain is 0 and therefore no detection signal is generated from these gauges.

次に、荷、IIXFzが単独にかかったときには、Fz
測定用ゲージ54zt、54zcはα;800の内外周
部(r=−tまたはr=t)の位置にあるから、なお(
3)式により同様にR>tとして、 となり、ゲージ54ztは引張りひずみを、ゲージ54
zcは圧縮ひずみを検出する。このときFx検出用のゲ
ージ54xt、54xcの位置では、α= 3i3.6
°で(3)式中の(2/π−5inα)の槍が0となる
から、ひずみはOてこれらのゲージから検出信号は生じ
ない。
Next, when the load IIXFz is applied alone, Fz
Since the measurement gauges 54zt and 54zc are located at the inner and outer periphery of α;800 (r=-t or r=t),
3) According to the formula, similarly, if R>t, then the gauge 54zt represents the tensile strain, and the gauge 54zt represents the tensile strain.
zc detects compressive strain. At this time, at the positions of the Fx detection gauges 54xt and 54xc, α=3i3.6
Since the spear of (2/π-5inα) in equation (3) becomes 0 at °, the strain is O and no detection signal is generated from these gauges.

以上のことから分力F x i%1.ll定用ゲージ5
4++t、54xcと分力Fz測定用ゲージ54zt 
、542Cとは、(4)および(5)式かられかるよう
に約2倍の出力信号の開きはあるが、相互に干渉がなく
分力を完全に分離して測定できることがわかる。
From the above, component force F x i%1. ll constant gauge 5
4++t, 54xc and gauge for measuring component force Fz 54zt
, 542C, there is a difference of about twice the output signal from equations (4) and (5), but it can be seen that there is no mutual interference and the component forces can be completely separated and measured.

一方、分力FW測定用ゲージについて考えると、荷重F
Yが第7図の紙面より手前の方向にかかるとしてそのひ
ずみ検出用ゲージ54yt 、 54yc7<図示のよ
うに設けることになる。これらのゲージの位1σでは、
(2)式で同様にα= 39.6°、R>tとおいて、 σ= 0.18 R−FY L6) ■ で表される応力に基づくひずみをゲージ54y tでは
引張りひずみ、ゲージ54ycで圧縮ひずみの形で検出
することになり、分力F2測定用ゲージ54zt 。
On the other hand, considering the gauge for measuring component force FW, the load F
Assuming that Y is applied in a direction toward the front of the plane of FIG. 7, the strain detection gauges 54yt and 54yc7 are provided as shown. In order 1σ of these gauges,
Similarly, in equation (2), α = 39.6° and R>t, σ = 0.18 R-FY L6) ■ The strain based on the stress is expressed as the tensile strain for gauge 54yt, and the tensile strain for gauge 54yc. It will be detected in the form of compressive strain, and the component force F2 measurement gauge 54zt.

54zcの位置ではα=80°であるからσ=0となり
、従って干渉信号は出ないが、分力FXX測用用ゲージ
4++t、54xcの位置では分力Fy測定用ゲージの
場合と同じように σ= 0.1!1 R−Fy (7) ■ なる応力に基づくひずみ検出出力が出ることになる。こ
の分布Fx測定用ゲージからの検出信号はそのすま出力
すれば、当然誤信号となるわけであるが、第8図(A)
〜(C)に示したようなブリッジ回路か正規の状態では
誤信号をキャンセルするように組まれているので、誤検
出14号が分力Fx測定用のブリッジ回路から出力され
ることはない。
At the position of 54zc, α = 80°, so σ = 0, and therefore no interference signal is generated, but at the position of component force FXX measurement gauge 4++t and 54xc, σ is the same as in the case of component force Fy measurement gauge. = 0.1!1 R-Fy (7) ■ A strain detection output based on the stress will be output. If the detection signal from this distribution Fx measurement gauge is output immediately, it will naturally become an erroneous signal, but as shown in Fig. 8 (A)
Since the bridge circuit shown in ~(C) is designed to cancel the erroneous signal in the normal state, erroneous detection No. 14 will not be output from the bridge circuit for measuring component force Fx.

要するに、小形の円形孔52はセル55を構成する歪を
与えるリング孔であり、大形の円形孔53は各セル55
をそれぞれ分離する境界としての作用をする。
In short, the small circular hole 52 is a ring hole that applies strain constituting the cell 55, and the large circular hole 53 is a ring hole that applies strain to each cell 55.
It acts as a boundary that separates each.

第8図は本発明の他の実施例を示すもので、セル55の
形状を基本のリング状により近づけるために、ストレン
ゲージ群54の外周部に複数の小形の円形孔56を追加
して開口したものである。
FIG. 8 shows another embodiment of the present invention, in which a plurality of small circular holes 56 are added to the outer periphery of the strain gauge group 54 in order to make the shape of the cell 55 more similar to the basic ring shape. This is what I did.

第10図は上述の小形の円形孔5Bの代りに小形の切込
み満57を設けたものである。
In FIG. 10, a small notch 57 is provided in place of the above-mentioned small circular hole 5B.

第11図も本発明の他の実施例を示すものであるが、上
述の大形の円形孔53の代りに上方が開口した大形の切
込み溝5Bを設けて各セル55の境界とし、各セルの隣
同士の干渉を少なくシタものである。この場合、各セル
55を底部位置で一体番と連結するようにしたまま、上
述の切込み溝5Bの形状を更に修正して、セル55の形
状をよりリング状に近づくようにすると、より好ましい
FIG. 11 also shows another embodiment of the present invention, but instead of the large circular hole 53 described above, a large cut groove 5B with an upper opening is provided as a boundary between each cell 55. This reduces interference between adjacent cells. In this case, it is more preferable to further modify the shape of the above-mentioned cut groove 5B so that the shape of the cell 55 approaches a ring shape while leaving each cell 55 connected to the integral number at the bottom position.

[発明の効果] 以上説明したように、本発明によれば、列方同の感圧セ
ルが短冊形の単結晶シリコン上番と一体−こ連続して構
成され、その短冊形シリコンを基盤上に配列取付けて圧
覚センサを形成するようにしているので、製造工数が大
幅に減り、組立等が容易となって製造コストの低減等が
得られる利益かある。
[Effects of the Invention] As explained above, according to the present invention, the pressure-sensitive cells in the same rows and rows are integrally and continuously formed with a rectangular single-crystal silicon upper plate, and the rectangular silicon is used as a base. Since the pressure sensor is formed by arranging and attaching the pressure sensor to the substrate, the number of manufacturing steps is greatly reduced, assembly etc. are facilitated, and there are advantages such as a reduction in manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする圧覚センサを人体の歩行動
態の4(11定に利用した例を示す説明図、第2図はそ
の圧覚センサをロボットハンドの制御用センサとして用
いた例を示す説明図、第3図はその圧覚センサの基本構
成を示す斜視図、 第4図および第5図は従来の圧覚センサの製造工程と構
成を示す斜視図、 第6図は本発明の圧覚センサの要部構成例を示す正面図
、 第7図はそのストレンゲージの配置を示す説明図、 第8図(A)〜(C)はそのストレンゲージの接続態様
の一例を示す回路図、 第9図〜第U図はそれぞれ本発明の他の実施例を示す正
面図である。 30・・・共通基板、 31・・・溝、 40・・・受圧板、 51・・・短冊形単結晶シリコン・ 51a・・・受圧面、 52・・・小形のセンサリング用孔、 53・・・大形の境界用孔・ 54−・・・ストレンゲージ群、 55・・・感圧セル、 56・・・小形の境界用孔、 57・・・小形の境界用切込み1iV(,58・・・大
形の境界用切込み溝。 特許出願人 株式会社 冨士電機総合研究所第4図 つ1 第5図 54XC54Xt 第8 (A) CB) (C) 第9図 −755 55 4535257 第11図 1 45258
Fig. 1 is an explanatory diagram showing an example in which the pressure sensor, which is the subject of the present invention, is used for four (11) changes in human walking dynamics, and Fig. 2 is an explanatory diagram showing an example in which the pressure sensor is used as a sensor for controlling a robot hand. FIG. 3 is a perspective view showing the basic structure of the pressure sensor; FIGS. 4 and 5 are perspective views showing the manufacturing process and structure of the conventional pressure sensor; FIG. 6 is the pressure sensor of the present invention. FIG. 7 is an explanatory diagram showing the arrangement of the strain gauge, FIGS. 8 (A) to (C) are circuit diagrams showing an example of the connection mode of the strain gauge, FIG. Figures 1 to 3 are front views showing other embodiments of the present invention. 30... Common substrate, 31... Groove, 40... Pressure receiving plate, 51... Rectangular single crystal silicon 51a...Pressure receiving surface, 52...Small sensor ring hole, 53...Large boundary hole, 54-...Strain gauge group, 55...Pressure sensitive cell, 56...・Small boundary hole, 57...Small boundary cut 1iV (,58...Large size boundary cut groove. Patent applicant Fuji Electric Research Institute Co., Ltd. Figure 4 1 Figure 5 54XC54Xt No. 8 (A) CB) (C) Fig. 9-755 55 4535257 Fig. 11 1 45258

Claims (1)

【特許請求の範囲】 短冊形の単結晶シリコンに対し、該シリコン受圧面と垂
直な面の長手力量にそって複数個の拡散形ストレンゲー
ジ群を形成し、かつ該ストレンゲージ群に対して円形の
穴または切込みを前記垂直な血に数か所あけることによ
り、Nij記ストレンゲージ群の抵抗値の変化によって
6iJ記受圧面に印加された力を3分力に分解して検知
する複数個のセルを帯状に形成し、該セルか形成された
前記短冊形の単結晶シリコンを前記受圧面を上方にして
下部基板の]二に並べて構成したことを特徴とする圧覚
センサ。 (以 下 余 白 )
[Claims] A plurality of diffusion type strain gauge groups are formed in a rectangular single crystal silicon along the longitudinal force of a plane perpendicular to the pressure receiving surface of the silicon, and a circular strain gauge group is formed with respect to the strain gauge group. By making several holes or cuts in the perpendicular blood, a plurality of holes or cuts are made that detect the force applied to the 6iJ pressure-receiving surface by dividing it into 3 component forces by changing the resistance value of the strain gauge group. A pressure sensor characterized in that cells are formed in a band shape, and the rectangular single crystal silicon formed from the cells are arranged on two sides of a lower substrate with the pressure receiving surface facing upward. (Margin below)
JP59008781A 1984-01-20 1984-01-20 Sense of contact force sensor Pending JPS60153170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008781A JPS60153170A (en) 1984-01-20 1984-01-20 Sense of contact force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008781A JPS60153170A (en) 1984-01-20 1984-01-20 Sense of contact force sensor

Publications (1)

Publication Number Publication Date
JPS60153170A true JPS60153170A (en) 1985-08-12

Family

ID=11702417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008781A Pending JPS60153170A (en) 1984-01-20 1984-01-20 Sense of contact force sensor

Country Status (1)

Country Link
JP (1) JPS60153170A (en)

Similar Documents

Publication Publication Date Title
EP0162565B1 (en) Pressure sense recognition control system
US7441470B2 (en) Strain gauge type sensor and strain gauge type sensor unit using the same
EP0133997B1 (en) Tactile sensing means
EP1887335A2 (en) Force sensor chip
KR100550583B1 (en) 6-axis force-torque sensor including analog signal processing circuits
JPS60153170A (en) Sense of contact force sensor
JPS60161539A (en) Sensation-of-pressure discrimination control apparatus
JPS60208866A (en) Pressure sensor
JPS6093933A (en) Load meter
EP3295141B1 (en) Multi axis load cell body
CN210571129U (en) Cylinder six-dimensional force sensor for sensing traction force
JPS60153172A (en) Sense of contact force sensor
JPH0473303B2 (en)
JPS6093932A (en) Manufacture of distributive load sensor
US11499882B2 (en) Pressure sensor
KR100597558B1 (en) ZMP sensing apparatus using strain gauge and method thereof
JPS60155937A (en) Sense-of-pressure sensor
JPS60153173A (en) Sense of contact force sensor
JPH0645616A (en) Pressure-sensing sensor
JP2577052B2 (en) Load detector
JPS61284630A (en) Contact force sensor
JPS60160672A (en) Sense of contact force sensor array
JPS60153176A (en) Sense of contact force sensor
JPH0224091A (en) Detection of strain conversion matrix of force sensor
JPS5983035A (en) Device for measuring elasticity of body