JPH0473303B2 - - Google Patents

Info

Publication number
JPH0473303B2
JPH0473303B2 JP59008782A JP878284A JPH0473303B2 JP H0473303 B2 JPH0473303 B2 JP H0473303B2 JP 59008782 A JP59008782 A JP 59008782A JP 878284 A JP878284 A JP 878284A JP H0473303 B2 JPH0473303 B2 JP H0473303B2
Authority
JP
Japan
Prior art keywords
pressure
cell
load
cells
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59008782A
Other languages
Japanese (ja)
Other versions
JPS60153171A (en
Inventor
Teizo Takahama
Mitsuo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP59008782A priority Critical patent/JPS60153171A/en
Publication of JPS60153171A publication Critical patent/JPS60153171A/en
Publication of JPH0473303B2 publication Critical patent/JPH0473303B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、受圧面にかかる荷重等の力を互いに
直交する3方向の分力に分解して検出する3分力
検知感圧モジユールを1単位とし、この感圧モジ
ユールをアレイ状に多数個配列して1個の分布荷
重計ユニツト等を構成するのに好適な圧覚センサ
に関する。
Detailed description of the invention [Technical field to which the invention pertains] The present invention is directed to a three-component force detection pressure-sensitive module that detects force such as a load applied to a pressure-receiving surface by decomposing it into three component forces in three mutually orthogonal directions. The present invention relates to a pressure sensor suitable for constructing one distributed load cell unit or the like by arranging a large number of pressure sensitive modules in an array.

[従来技術とその問題点] 前述のような荷重等の力を基本的な直角座標系
に分解し、3方向分力として互いに分離して検出
することができる感圧モジユールはその3分力を
演算式により合成することによつて、力の大きさ
や方向を求めることができ、更には任意の方向の
力を求めることができるので1個の荷重計等とし
ても有用なことはもちろんであるが、とくにこれ
ををアレイ状に配列した圧覚センサは力の分布状
態や力の中心(重心)とそれに働く合成力を求め
ることができるので比較的新規な諸用途をもつて
いる。
[Prior art and its problems] The pressure-sensitive module is capable of decomposing forces such as the loads mentioned above into a basic orthogonal coordinate system and detecting them separately as components of force in three directions. By synthesizing it using an arithmetic expression, it is possible to determine the magnitude and direction of the force, and furthermore, it is possible to determine the force in any direction, so it is of course useful as a single load meter, etc. In particular, pressure sensors arranged in an array have relatively new uses because they can determine the distribution of force, the center of force (center of gravity), and the resultant force acting on it.

この一例は、第1図に示すような人体の動態実
験に見られる。図には圧覚センサ1の上を歩行す
る人の足2が示されており、図の右方の状態では
足のかかとが荷重計1に接触しているが、袋状の
矢印の先で示す図の左方の状態ではつま先が圧覚
センサ1に接触している。かかる歩行動態の推移
につれて、圧覚センサにかかる荷重の分布状態お
よび荷重の3分力Fx,FyおよびFzは時間の経過
とともに当然変わつてくる。ふつうの体重計によ
りかかる歩行動態での荷重を測定すると、荷重全
体の時間的変動を測ることができたとしても、あ
まり有用な情報が得られるわけではない。しか
し、歩行動態中の荷重の面状分布や分力の推移を
正確に測定することができれば、歩行動態の個人
差や身体上の障害の模様について、非常に有用な
知見が得られることが知られている。また、この
圧覚センサ1をロボツトの足のうらに取付けれ
ば、高級な歩行制御機能をロボツトにもたせるこ
とが可能となる。
An example of this can be seen in the human body dynamics experiment shown in FIG. The figure shows the foot 2 of a person walking on the pressure sensor 1, and in the state on the right side of the figure, the heel of the foot is in contact with the load cell 1, which is indicated by the tip of the bag-shaped arrow. In the state on the left side of the figure, the toe is in contact with the pressure sensor 1. As the walking dynamics progress, the distribution of the load applied to the pressure sensor and the three component forces Fx, Fy, and Fz of the load naturally change over time. Measuring the load during walking dynamics using an ordinary weight scale does not provide very useful information, even if it is possible to measure the temporal changes in the overall load. However, if it is possible to accurately measure the planar distribution of load and the transition of component forces during walking dynamics, it is known that very useful knowledge can be obtained regarding individual differences in walking dynamics and patterns of physical disorders. It is being Furthermore, by attaching this pressure sensor 1 to the back of the robot's foot, it becomes possible to provide the robot with a sophisticated walking control function.

かかる荷重分力の分布の検出の必要性は産業分
野においても広く存在し、第2図にロボツトの圧
覚センサの例を挙げる。同図には、多関節アーム
3の先端に取り付けられたロボツトハンド4の1
対のフインガ5,5により物体6が把持された状
態が示されている。物体が多くの工業部品のよう
に十分な硬さと強度を有している場合はあまり問
題がないが、物体6が柔らかな、または傷みやす
いもの、例えば果実類である場合には、強い力で
把持することは許されない。この種の物体を傷つ
けないでロボツトで扱うためには、把持力すなわ
ちフインガ5に掛る荷重の分力とその分布をかな
り精密に測定して、物体を傷つけずしかも落とす
ことがない適度の力で把持しなければならない。
The need to detect the distribution of such load components exists widely in the industrial field, and an example of a pressure sensor for a robot is shown in FIG. In the figure, one of the robot hands 4 attached to the tip of the multi-joint arm 3 is shown.
A state in which an object 6 is gripped by a pair of fingers 5, 5 is shown. If the object 6 has sufficient hardness and strength, such as many industrial parts, there will be no problem, but if the object 6 is soft or perishable, such as fruit, it may be difficult to use strong force. Gripping is not allowed. In order to handle this type of object with a robot without damaging it, the gripping force, that is, the component force of the load applied to the fingers 5 and its distribution, must be measured fairly accurately, and the gripping force must be measured with a moderate amount of force that will not damage the object or cause it to fall. must be grasped.

また把持が正しくなされているかどうかを知る
には荷重分力の面状分布を知ることが有用であ
る。例えば図示のような比較的細長な物体6を把
持する際には、把持する物体の部位によつて荷重
分力の分布が異なるから、分布が異常な場合には
把持が不適切に行われていることがわかる。また
比較的小さな把持力で柔らかな物体を把持してい
る場合には、荷重分力の時間的推移から物体の脱
落の危険を予知することができる。
Also, in order to know whether the grip is being performed correctly, it is useful to know the planar distribution of the load component force. For example, when gripping a relatively elongated object 6 as shown in the figure, the distribution of the load component force differs depending on the part of the object to be gripped, so if the distribution is abnormal, the gripping may be performed inappropriately. I know that there is. Furthermore, when a soft object is being gripped with a relatively small gripping force, the risk of the object falling off can be predicted from the time course of the load component force.

かかる圧覚センサの構成の概要を第3図に示
す。図示の圧覚センサ1には共通基板30の上に
感圧モジユール10がx,y両方向に多数個面ア
レイ状に並べられており、各感圧モジユール10
の受圧板40を介してそれぞれFx,Fy,Fzなる
分力を有する荷重を受け、感圧セル20は受圧板
40が受ける垂直方向の力Fzのほか、横方向の
力Fx,Fyをも検知する。これによつて、例えば
第1図に例示するように圧覚センサ1にかかる人
体の体重分布のほかに、後方に蹴る力Fxや歩行
方行に対して横方向に押し出す力Fyの大きさと
分布とを知ることができる。各感圧モジユール1
0は図の一点鎖線で囲んで示されているように感
圧構造体としてのセル20と基板30と受圧板4
0とからなつている。
FIG. 3 shows an outline of the configuration of such a pressure sensor. In the illustrated pressure sensor 1, a large number of pressure sensitive modules 10 are arranged in a plane array in both the x and y directions on a common substrate 30, and each pressure sensitive module 10
The pressure-sensitive cells 20 receive loads having component forces Fx, Fy, and Fz through the pressure-receiving plates 40, respectively, and the pressure-sensitive cells 20 detect not only the vertical force Fz that the pressure-receiving plates 40 receive, but also the lateral forces Fx and Fy. do. For example, as illustrated in Fig. 1, in addition to the distribution of the human body's weight applied to the pressure sensor 1, it is possible to determine the magnitude and distribution of the force Fx that kicks backwards and the force Fy that pushes out in a lateral direction with respect to the walking direction. can be known. Each pressure sensitive module 1
0 indicates a cell 20 as a pressure sensitive structure, a substrate 30, and a pressure receiving plate 4 as shown surrounded by a dashed line in the figure.
It consists of 0.

ところが、このような従来の感圧モジユール1
0は、それぞれ第4図に示すように、ストレンゲ
ージ群22を有する1個のリング状セル20を下
部共通基板30の上に垂直に立て、モジユール1
0毎に独立の上部受圧板40を介してその1個の
セル20で荷重を受けていたので、第5図に示す
ようにセル20の取付位置からずれた偏荷重Fz
が受圧板40に加わつた時には、それが受圧板4
0に対して垂直な荷重であつても第6図に示すよ
うにセル20に対して曲げモーメントMが発生
し、y方向の荷重検出用ストレンンゲージから
Fyに相当する誤つた検出出力が出るという欠点
があつた。また、1枚セルの構造のため、機械的
に弱く、比較的大きな力には耐えられないという
欠点があつた。
However, such a conventional pressure-sensitive module 1
0, as shown in FIG.
Since each cell 20 receives a load through an independent upper pressure receiving plate 40 for each cell 20, the unbalanced load Fz deviates from the mounting position of the cell 20 as shown in FIG.
is applied to the pressure receiving plate 40, it is applied to the pressure receiving plate 40.
Even if the load is perpendicular to zero, a bending moment M is generated on the cell 20 as shown in Figure 6, and the strain gauge for detecting the load in the y direction generates a bending moment M.
The drawback was that a false detection output equivalent to Fy was produced. Furthermore, because of the single cell structure, it was mechanically weak and could not withstand relatively large forces.

[発明の目的] 本発明は、上述のような検出誤差を生じさせる
原因となるモーメントの発生をなくし、さらに感
圧モジユールの構造を強固なものにした圧覚セン
サを提供することを目的とする。
[Object of the Invention] An object of the present invention is to provide a pressure sensor that eliminates the generation of moments that cause detection errors as described above, and further has a stronger structure of the pressure-sensitive module.

[発明の要点] 本発明は、感圧モジユールを2個の3方向分力
検出セルで一体に構成することにより、モーメン
トの発生をなくし、さらに構造を強固にするよう
にしたものである。
[Summary of the Invention] The present invention eliminates the generation of moments and further strengthens the structure by integrally constructing a pressure-sensitive module with two three-direction force detection cells.

[発明の実施例] 以下、図面を参照して本発明を詳細に説明す
る。
[Embodiments of the Invention] The present invention will be described in detail below with reference to the drawings.

第7図は本発明の一実施例を示すもので、図示
のように2個のリング状セル20,20をその端
面20aが互いに平行するように下部基板30と
上部受圧板40との間に配設し、かつ各セル20
の図の下端の突出部20bを基板30の溝31に
嵌め込んで接着等の手段で基板30に固着させ
る。セル20の上端部も同様にして受圧板40と
固着させる。
FIG. 7 shows an embodiment of the present invention, in which two ring-shaped cells 20, 20 are placed between a lower substrate 30 and an upper pressure receiving plate 40 so that their end surfaces 20a are parallel to each other. and each cell 20
The protrusion 20b at the lower end of the figure is fitted into the groove 31 of the substrate 30 and fixed to the substrate 30 by adhesive or other means. The upper end of the cell 20 is also fixed to the pressure receiving plate 40 in the same manner.

このように、2個のセル20,20を基板30
の上部に垂直に立てて固定し、この2個のセル2
0,20を1組としてその上に受圧板40を乗せ
て固定することにより、1個の感圧モジユール5
0を構成しているので、第5図に示すようなz方
向(垂直方向)の偏荷重が受圧板40に加わつて
も、第6図のような曲げモーメントはほとんど生
ぜず、その結果、y方向荷重検出用センサ22
yt,22ycから誤差出力が発生することはない。
また、端部が基板30と受圧板40とに固着した
垂直な2個のセル20,20により荷重を受ける
ので、感圧モジユール50は機械的に強固な1個
の構造体となり、ひいては信頼性の向上も得られ
る。
In this way, the two cells 20, 20 are connected to the substrate 30.
and fix it vertically on the top of the cell 2.
By placing and fixing the pressure receiving plate 40 on a set of 0 and 20, one pressure sensitive module 5 is formed.
0, even if an unbalanced load in the z direction (vertical direction) as shown in FIG. 5 is applied to the pressure receiving plate 40, almost no bending moment as shown in FIG. Directional load detection sensor 22
No error output is generated from yt, 22yc.
In addition, since the two vertical cells 20, 20 whose ends are fixed to the substrate 30 and the pressure receiving plate 40 receive the load, the pressure sensitive module 50 becomes a single mechanically strong structure, which improves reliability. Improvements can also be obtained.

なお、この例では各セル20は単結晶シリコン
からなり、受圧板40と接しているそのセルの受
圧面に垂直なセルの端面20a内にすべて、複数
個のストレンゲージ22xt,22xc,22yt,
22yc,22zt,22zcが公知の拡散技術によ
り、第8図に示すような配列で作り込まれてい
る。分力間の干渉がないようにするためには、角
度αは式sinα=2/πを満足するα=39.6゜に選ぶ
のがよい。これら各8個のFx,Fy,Fz分力測定
用ストレンゲージは、第9図A〜Cに示すように
それぞれ直列接続された2個のブリツジ回路に接
続されるので、これによつて正規のひずみ検出信
号A,B,Cは互いに相加され、分力間の干渉に
より生じる誤差信号α,β,γは互いに相殺され
る。その結果、第9図A〜Cの各回路からの出力
信号Ez,Ex,Eyは干渉による誤差信号が相殺さ
れた互いに独立に分力Fz,Fx,Fyを表わす検出
信号となる。さらに、このように構成した感圧モ
ジユール50を第10図に示すようにアレイ状に
複数個配置することにより、圧覚センサを形成す
るようにしているので、測定誤差や分力間の干渉
の極めて少ない高精度の分布荷重検出が得られ
る。
In this example, each cell 20 is made of single crystal silicon, and a plurality of strain gauges 22xt, 22xc, 22yt,
22yc, 22zt, and 22zc are formed in an arrangement as shown in FIG. 8 by a known diffusion technique. In order to avoid interference between component forces, the angle α is preferably chosen to be α=39.6°, which satisfies the equation sinα=2/π. These eight strain gauges for measuring Fx, Fy, and Fz component forces are each connected to two bridge circuits connected in series as shown in Fig. 9A to C, so that they can be used to measure regular force. The strain detection signals A, B, and C are added to each other, and the error signals α, β, and γ caused by interference between the force components cancel each other out. As a result, the output signals Ez, Ex, and Ey from each of the circuits shown in FIGS. 9A to 9C become detection signals representing the component forces Fz, Fx, and Fy independently of each other, with error signals due to interference cancelled. Furthermore, since a pressure sensor is formed by arranging a plurality of pressure-sensitive modules 50 configured in this way in an array as shown in FIG. 10, measurement errors and interference between component forces are minimized. Highly accurate distributed load detection can be obtained.

[発明の効果] 本発明によれば、基板上に取付けた3方向分力
検出セルを2個1組として1個の感圧モジユール
を構成し、この感圧モジユールをアレイ状に配列
して圧覚センサを形成するようにしたので、各セ
ルの受圧面に垂直方向(z方向)の偏荷重が加わ
つた時にも、水平方向(y方向)荷重検出用セン
サから誤差出力が発生することはなく高精度の分
布荷重検出が得られる。また、2個のセルを1組
として荷重を受けるので、感圧モジユールが強固
になり、ひいては信頼性が向上する。
[Effects of the Invention] According to the present invention, one pressure-sensitive module is constituted by a set of two three-direction force detection cells mounted on a substrate, and the pressure-sensitive modules are arranged in an array to detect pressure. Since the sensor is formed in such a way that even when an unbalanced load in the vertical direction (z direction) is applied to the pressure receiving surface of each cell, an error output does not occur from the horizontal direction (y direction) load detection sensor and the output is high. Accurate distributed load detection can be obtained. In addition, since the load is applied to a set of two cells, the pressure-sensitive module becomes stronger and its reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする圧覚センサを人体
の歩行動態の測定に利用した例を示す説明図、第
2図はその圧覚センサをロボツトハンドの制御用
センサとして用いた例を示す説明図、第3図は従
来の感圧モジユールを集積化した圧覚センサの基
本構成例を示す斜視図、第4図はその従来の感圧
モジユールを示す斜視図、第5図および第6図は
それぞれその感圧モジユールにおける荷重に対す
る変形の模様を示す模式図、第7図は本発明の圧
覚センサを形成する感圧モジユールの構成例を示
す斜視図、第8図は第7図の感圧モジユールのセ
ルにおけるストレンゲージの配置を示す配置構成
図、第9図A〜Cは第8図のストレンゲージの接
続態様を示す回路図、第10図は本発明の圧覚セ
ンサの構成例を示す斜視図である。 1…圧覚センサ、10,50…感圧モジユー
ル、20…リング状セル、30…基板、40…受
圧板。
Fig. 1 is an explanatory diagram showing an example in which the pressure sensor to which the present invention is applied is used to measure the walking dynamics of a human body, and Fig. 2 is an explanatory diagram showing an example in which the pressure sensor is used as a sensor for controlling a robot hand. , Fig. 3 is a perspective view showing an example of the basic configuration of a pressure sensor that integrates a conventional pressure-sensitive module, Fig. 4 is a perspective view showing the conventional pressure-sensitive module, and Figs. FIG. 7 is a schematic diagram showing a pattern of deformation in response to a load in a pressure-sensitive module. FIG. 7 is a perspective view showing a configuration example of a pressure-sensitive module forming a pressure-sensitive sensor of the present invention. FIG. 8 is a cell of the pressure-sensitive module shown in FIG. 7. 9A to 9C are circuit diagrams showing the connection mode of the strain gauges in FIG. 8, and FIG. 10 is a perspective view showing a configuration example of the pressure sensor of the present invention. . DESCRIPTION OF SYMBOLS 1... Pressure sensor, 10, 50... Pressure sensitive module, 20... Ring-shaped cell, 30... Substrate, 40... Pressure receiving plate.

Claims (1)

【特許請求の範囲】 1 単結晶シリコンの表面に形成した拡散形スト
レンゲージの抵抗値の変化によつて、前記シリコ
ンの受圧面に印加された力を3成分に分解して検
出するセルにより感圧モジユールを構成し、該感
圧モジユールをアレイ状に複数個配列した圧覚セ
ンサにおいて、前記感圧モジユールが各々2個の
前記セルからなることを特徴とする2セル型圧覚
センサ。 2 特許請求の範囲第1項記載の圧覚センサにお
いて、前記感圧モジユールは互いに平行に配され
た受圧板と基板との間に前記セルを2個該セルの
端面を互いに平行にして該セルの端面が前記両板
と直交するように固定して構成されたことを特徴
とする2セル型圧覚センサ。 3 単結晶シリコンの表面に形成した拡散形スト
レンゲージの抵抗値の変化によつて、前記シリコ
ンの受圧面に印加された力を3成分に分解して検
出するセルにより感圧モジユールを構成した圧覚
センサにおいて、前記感圧モジユールが各々2個
の前記セルからなることを特徴とする2セル型圧
覚センサ。
[Scope of Claims] 1. A cell that detects the force applied to the pressure-receiving surface of the silicon by decomposing it into three components based on a change in the resistance value of a diffusion-type strain gauge formed on the surface of single-crystal silicon. A two-cell pressure sensor comprising a pressure module and having a plurality of pressure-sensitive modules arranged in an array, wherein each of the pressure-sensitive modules includes two cells. 2. In the pressure sensor according to claim 1, the pressure-sensitive module includes two cells between a pressure-receiving plate and a substrate that are arranged parallel to each other, and the end surfaces of the cells are parallel to each other. A two-cell pressure sensor, characterized in that the end faces are fixed so as to be orthogonal to both the plates. 3. A pressure sensing module configured with a cell that detects the force applied to the pressure-receiving surface of the silicon by decomposing it into three components based on changes in the resistance value of a diffusion type strain gauge formed on the surface of single-crystal silicon. A two-cell pressure sensor, wherein each of the pressure-sensitive modules includes two cells.
JP59008782A 1984-01-20 1984-01-20 Two-cell type sense of contact force sensor Granted JPS60153171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008782A JPS60153171A (en) 1984-01-20 1984-01-20 Two-cell type sense of contact force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008782A JPS60153171A (en) 1984-01-20 1984-01-20 Two-cell type sense of contact force sensor

Publications (2)

Publication Number Publication Date
JPS60153171A JPS60153171A (en) 1985-08-12
JPH0473303B2 true JPH0473303B2 (en) 1992-11-20

Family

ID=11702443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008782A Granted JPS60153171A (en) 1984-01-20 1984-01-20 Two-cell type sense of contact force sensor

Country Status (1)

Country Link
JP (1) JPS60153171A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153172A (en) * 1984-01-20 1985-08-12 Fuji Electric Corp Res & Dev Ltd Sense of contact force sensor
JPH0663881B2 (en) * 1986-12-19 1994-08-22 工業技術院長 Pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153172A (en) * 1984-01-20 1985-08-12 Fuji Electric Corp Res & Dev Ltd Sense of contact force sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153172A (en) * 1984-01-20 1985-08-12 Fuji Electric Corp Res & Dev Ltd Sense of contact force sensor

Also Published As

Publication number Publication date
JPS60153171A (en) 1985-08-12

Similar Documents

Publication Publication Date Title
EP0702220B2 (en) Load cell and weighing apparatus using the same
EP0133997B1 (en) Tactile sensing means
US3938603A (en) Constant moment weigh scale with floating flexure beam
EP2904362B1 (en) Force and torque sensors
JP3792274B2 (en) Six-axis force sensor using multiple shear strain gauges
KR101115418B1 (en) 6-axis sensor structure using force sensor and method of measuring force and moment therewith
US4478089A (en) Tri-axial force transducer for a manipulator gripper
EP2901125B1 (en) System and method for three dimensional calibration of force plates
JP2010078439A (en) Electronic weight meter and method for detecting inclination
KR20110098070A (en) Six axis force-moment sensor
KR101542977B1 (en) Switching type 6-axis sensor and measuaring apparatus using it
JPH0473303B2 (en)
USRE32003E (en) Constant moment weigh scale with floating flexure beam
JPH0739975B2 (en) Distributed tactile sensor
JPS6271828A (en) Detector for surface pressure distribution
JPS6093933A (en) Load meter
KR100597558B1 (en) ZMP sensing apparatus using strain gauge and method thereof
USRE32002E (en) Constant moment weigh scale with floating flexure beam
JP2004245717A (en) Contact pressure sensor and grasp robot
JPS60153172A (en) Sense of contact force sensor
JPS60131191A (en) Detector for external force
JPH0224091A (en) Detection of strain conversion matrix of force sensor
JPH0668501B2 (en) Accelerometer
JPH0473634B2 (en)
CN118786010A (en) Transmission for a gripper sensor type finger