JPS60153172A - Sense of contact force sensor - Google Patents
Sense of contact force sensorInfo
- Publication number
- JPS60153172A JPS60153172A JP59008783A JP878384A JPS60153172A JP S60153172 A JPS60153172 A JP S60153172A JP 59008783 A JP59008783 A JP 59008783A JP 878384 A JP878384 A JP 878384A JP S60153172 A JPS60153172 A JP S60153172A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- strain gauges
- pressure sensor
- sensor unit
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 7
- 238000009792 diffusion process Methods 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 239000013078 crystal Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 239000010408 film Substances 0.000 abstract description 4
- 239000013013 elastic material Substances 0.000 abstract description 2
- 238000005530 etching Methods 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 abstract description 2
- 238000010884 ion-beam technique Methods 0.000 abstract description 2
- 239000010409 thin film Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 230000008020 evaporation Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 238000005468 ion implantation Methods 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Pressure Sensors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の属する技術分野]
この本発明は、ストレンゲージを用いて、受圧面に印加
されている力を検出する圧覚センサのうちで、特に面状
に分布された荷重の分布を検出するに適した小形の圧覚
センサに関する。[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to a pressure sensor that uses a strain gauge to detect a force applied to a pressure-receiving surface. This invention relates to a small pressure sensor suitable for detecting the distribution of
[従来技術とその問題点]
第1図に従来から用いられている力の3方向成分を検出
するセンサ(六角形応力リング)を示す。このセンサは
金属製入角形リング1の受圧面2および基板面3を除く
外周部の8面と、]II4側面および内周面とにそれぞ
れストレンゲージ41〜44.51〜54.81〜64
を貼イリして、その貼付位置によって3方向成分を互い
に分離してそれぞれ検出するようにしたものである。上
述のストレンゲージ41〜44は八角形リングのうちの
受圧面2に垂直な外周面とリングの内周面とに貼付され
ており。[Prior art and its problems] FIG. 1 shows a conventionally used sensor (hexagonal stress ring) that detects three-directional components of force. This sensor has strain gauges 41 to 44, 51 to 54, 81 to 64, and 8 surfaces on the outer periphery of the metal rectangular ring 1 excluding the pressure receiving surface 2 and the substrate surface 3, and on the side surface and the inner peripheral surface of II4, respectively.
The components of the three directions are separated from each other and detected depending on the position of the paste. The above-mentioned strain gauges 41 to 44 are attached to the outer peripheral surface of the octagonal ring perpendicular to the pressure receiving surface 2 and to the inner peripheral surface of the ring.
受圧面2に垂直な力の成分Fzを検出する。また、スト
レンゲージ51〜54は八角形リングのうちの4つの斜
めの外周面に貼付されており、受圧面2にかかる水平な
力の成分のうちのX方向の成分Fxを検出する。さらに
、ストレンゲ−シロ1〜64はリングの両側面に、へ角
形リングの斜め面と同じ角度で、リングの肉厚のほぼ中
央部に貼付されており、受圧面2にかかる水平な力の成
分のうちのX方向の成分FYを検出する。A force component Fz perpendicular to the pressure receiving surface 2 is detected. Further, the strain gauges 51 to 54 are attached to the four oblique outer peripheral surfaces of the octagonal ring, and detect the X-direction component Fx of the horizontal force component applied to the pressure receiving surface 2. Furthermore, the strain gauges 1 to 64 are affixed to both sides of the ring at the same angle as the diagonal surface of the hexagonal ring, and approximately at the center of the ring's wall thickness, so that the horizontal force component applied to the pressure receiving surface 2 is The component FY in the X direction is detected.
このように、図示のような3方向分カセンサは力を基本
的な直角座標系に分解しsyJ同分力として検出してい
るので、この3分力を演躊式により合成することによっ
て、力の大きさや方向をめることができる。更に任意の
方向の力もめることができる。In this way, the three-direction component force sensor shown in the figure decomposes the force into the basic orthogonal coordinate system and detects it as the syJ component force, so by combining these three component forces using an equation, the force can be calculated as follows: You can determine the size and direction of Furthermore, force in any direction can be measured.
このように力の分解、合成か容易にできるのが、3方向
分カセンサの大きな特徴である。The ability to easily separate and combine forces in this way is a major feature of the three-direction force sensor.
しかしなから、IA示のような従来の大角形応力リング
は、3方向の力の成分を検出するセンサとしては著名な
ものであるか、次のような欠点があり、特にこれを面ア
レイ状に配列して面状に分布する荷重の荷重分布を検出
するには不適当である。以下、その欠点を列挙する。However, the conventional large square stress ring shown in IA is not only well-known as a sensor for detecting force components in three directions, but also has the following drawbacks, especially when it is used in a planar array. It is inappropriate to detect the load distribution of loads arranged in a planar manner. The drawbacks are listed below.
■ 多数のストレンゲージをリング体の各方向に貼付し
た構造であるので、小形化が困難である。■ It is difficult to downsize the ring body because it has a structure in which many strain gauges are attached in each direction.
■ スI・1/ンゲージを貼イリするために、その貼伺
層によるクリープを生じさせ、安定性か悪い。■ Since the adhesive is not pasted, creep occurs due to the pasting layer, resulting in poor stability.
■ ストレンゲージの貼伺位置により、大きな干渉出力
を発生する。■ A large interference output is generated depending on the position of the strain gauge.
■ 製作が比較的大変である。特に、リングの内周面へ
のストレンゲージの貼付は難しい。■ It is relatively difficult to manufacture. In particular, it is difficult to attach the strain gauge to the inner peripheral surface of the ring.
■ 量産性がなく、高価となる。■ It is not suitable for mass production and is expensive.
一方1人間の手のひらの有する圧覚機能にできるだけ近
いレベルの高度な圧覚機能を有するロボットハンドを実
現するためには、その圧覚センサとしては3方向分カセ
ンサの機能を有し、さらにこのセンサを多数高密度で面
アレイ状に配列して、印加される力の分布状態や力の中
心(重心)とそれに働く合成力を正確にめることかでき
なければならない。そのため、このような圧覚センサと
しては、荷重の分力を相互間の干渉なしによく分N1シ
て正確に検出できること、寸法を極小化して高密度集積
化できることが要求され、例えばセンサの受圧板の大き
さは数mm角、できれば1IIII11角以下にするこ
とが望ましい。On the other hand, in order to realize a robot hand with advanced pressure sensing function as close as possible to the pressure sensing function of the human palm, the pressure sensor must have a three-directional sensor function, and a large number of these sensors must be highly sophisticated. It must be possible to accurately determine the distribution of applied force, the center of force (center of gravity), and the resultant force acting on it by arranging it in a surface array with density. Therefore, such a pressure sensor is required to be able to accurately detect the component forces of a load without mutual interference, and to be able to minimize dimensions and integrate at high density. It is desirable that the size is several mm square, preferably 1III11 square or less.
[発明の目的]
この発明の目的は、上述の従来技術の有する欠点を解消
して、小形で高布度集積化が可能であり、かつ安定性が
良く、力の3方向成分の正確な検出ができ、また量産性
がよく、廉価に製作でき、力の3方向成分間の干渉か小
さい圧覚センサを提供することにある。[Objective of the Invention] The object of the present invention is to overcome the drawbacks of the above-mentioned prior art, to provide a compact and highly integrated system that is highly stable, and that accurately detects three-directional components of force. The object of the present invention is to provide a pressure sensor that can be mass-produced at a low cost, has low interference between components of force in three directions.
[発明の要点]
この発明は、弾性体として非常に秀れた特性をもつ単結
晶シリコンを感圧構造体とし、そのシリコンの面にプレ
ーナ技術によって形成した拡散形ストレンゲージ群の抵
抗値の変化によって、感圧1構造体の受圧面に印加され
た力の3方向成分を検出しようとするものである。[Summary of the invention] This invention uses single-crystal silicon, which has excellent properties as an elastic body, as a pressure-sensitive structure, and changes the resistance value of a group of diffused strain gauges formed on the surface of the silicon by planar technology. This is intended to detect three-directional components of force applied to the pressure-receiving surface of the pressure-sensitive structure.
[発明の実施例] 以下、1Δ面を参照してこの発明の詳細な説明する。[Embodiments of the invention] Hereinafter, the present invention will be described in detail with reference to the 1Δ plane.
第2図はこの発明の一実施例を示すもので、N形シリコ
ン単結晶からなるリング状の感圧構造体7の受圧面8に
垂直な平面13の各所定位置に、複数個のP形拡散形ス
トレンゲージ101〜104.Ill〜114,121
〜124をプレーナ技術によって形成している。上述の
ストレンゲージ101〜104は受圧面8に垂直な力の
成分Fzを検出し、また、ストレンゲージ111〜11
4は受圧面8に平行な力の一成分Fxを検出し、さらに
、ストレンゲーシ121〜124は受圧irj 8に平
行な力の他の成分IYを検出する。これらのストレンゲ
ージの配置は後述のように高感度でかつ他の二方向分力
に対し理論的に影響を受けぬ場所に設けられている。FIG. 2 shows an embodiment of the present invention, in which a plurality of P-types are arranged at predetermined positions on a plane 13 perpendicular to the pressure-receiving surface 8 of a ring-shaped pressure-sensitive structure 7 made of N-type silicon single crystal. Diffusion type strain gauges 101-104. Ill~114,121
124 are formed by planar technology. The strain gauges 101 to 104 described above detect the force component Fz perpendicular to the pressure receiving surface 8, and the strain gauges 111 to 11
4 detects one component Fx of the force parallel to the pressure-receiving surface 8, and furthermore, the strainers 121 to 124 detect another component IY of the force parallel to the pressure-receiving pressure irj8. As will be described later, these strain gauges are arranged in locations that are highly sensitive and are theoretically unaffected by component forces in other two directions.
感圧構造体7は基板面8で不図示の基板上に固定され、
受圧面8に印加される力を受け止める。The pressure sensitive structure 7 is fixed on a substrate (not shown) at a substrate surface 8,
It receives the force applied to the pressure receiving surface 8.
この力の各成分を検出する上述のストレンゲージ群は、
例えば第3図(A)〜(C)に示すように、それぞれに
ブリッジに結線されて、力の成分に応じた電気信号Ez
、ExおよびEyを出力する。なお、第2図においては
、ブリッジ結線するだめの配線は煩雑さを避けるために
省略しである。また、この実施例ではN形シリコン単結
晶面にP形拡散形ストレンゲージを形成すると説明した
が、P形シリコンにN膨拡散層のスートレンゲージを形
成する場合も可能である。しかし、前者の力か感度の高
いものがイIノられる。The above-mentioned strain gauge group that detects each component of this force is
For example, as shown in FIGS. 3(A) to 3(C), each wire is connected to a bridge to generate an electric signal Ez according to the force component.
, Ex and Ey. Note that in FIG. 2, wiring for bridge connection is omitted to avoid complexity. Further, in this embodiment, it has been explained that a P-type diffusion type strain gauge is formed on an N-type silicon single crystal surface, but it is also possible to form a strain gauge of an N-swelled diffusion layer on P-type silicon. However, the former's power or sensitivity is high.
第4図は第2図のストレンゲージ形成面(平面)13の
ゲージ配置および配線の一例を示す。図示のように、F
2検出用のストレンゲージ101〜104は感圧構造体
7の中心を通り、−ヒ部の受圧面8に平行な線A−A’
上で、左右の外縁および内縁の近くのストレンゲージ形
成面13に合計4個配置され、かつ配線141でブリッ
ジ結線され、この配線141 に接続したホンディング
バンド部15で入出力がされている。また、Fx検出用
のストレンゲ−ゝジ111−114は上述のに5AA−
cから」二下両方向に角度α0傾いた2つの線上の外縁
近くのストレンゲージ形成面13に合計4個配置され、
かつ配線142でブリッジ結線され、この配線142に
接続したポンディングパッド部15で入出力がされてい
る。さらに、FV検出用のストレンゲージ121〜12
4は、上述の線A−A’から上下両方間に角度α0傾い
た線上のリングの中央近くの材料力学的な中立軸上の位
置のストレンゲージ形成面13に合計4個配置され、か
つ配線143でブリッジ結線され、この配線143に接
続したホンディングバンド部15で入出力がされている
。上述の角度α0は受圧面8に垂直な力のみがその受圧
面に印加されたとき、ひずみを生じない位置の角度に追
定され、例えば図示のような円形リングの場合には、5
0.4°の近傍になる。FIG. 4 shows an example of the gauge arrangement and wiring on the strain gauge forming surface (plane) 13 of FIG. 2. FIG. As shown, F
2. The strain gauges 101 to 104 for detection are connected to a line A-A' that passes through the center of the pressure-sensitive structure 7 and is parallel to the pressure-receiving surface 8 of the -A section.
At the top, a total of four strain gauges are arranged on the strain gauge forming surface 13 near the left and right outer edges and inner edges, and are bridge-connected by wiring 141, and input and output are performed by the bonding band part 15 connected to this wiring 141. In addition, the strain gauges 111-114 for Fx detection are 5AA-
A total of four strain gauges are arranged on the strain gauge forming surface 13 near the outer edge on two lines tilted at an angle α0 in both directions from c to
A bridge connection is made using a wiring 142, and an input/output is performed through a bonding pad section 15 connected to this wiring 142. Furthermore, strain gauges 121 to 12 for FV detection
4 are arranged on the strain gauge forming surface 13 at a position on the material mechanical neutral axis near the center of the ring on a line tilted at an angle α0 between the upper and lower sides from the above-mentioned line A-A', and the wiring A bridge connection is made at 143, and an input/output is performed at a honding band section 15 connected to this wiring 143. The above-mentioned angle α0 is set to an angle at which no strain occurs when only a force perpendicular to the pressure-receiving surface 8 is applied to the pressure-receiving surface.For example, in the case of a circular ring as shown in the figure,
It will be around 0.4°.
次に、このように構成した圧覚センサの製造方法の一例
について、第5図(A) 、(B)を参照して簡単に説
明する。まず、所定の厚さく例えばQ、6mm)を有し
、所定の伝導形(例えばツ形)と比抵抗(例えば1〜l
OΩφcm)を有し、かつ所定の結晶方位(例えば(I
ll)方向の形成面)を有する単結晶シリコンウェハ1
6の圧覚センサ単位セル相出領域17に第4図のような
配置の拡散形ストレンゲージ101−124の群、およ
び金属配線をマスクレスイオンビーム加工やAn蒸着な
どのIC製造士支!本j(プレーナ技術)によって形成
する。このIC製造方法によれば、1枚のウニ/\18
4こ多数イ固の1王覚センサ単位セルを作り込むこと力
〜できる。このウェハ18からワイヤーソーカ・アト1
去やレーザカ■工あるいはエッチ力・ントなどの機械加
工側こより、圧覚センサ単位セルを精度よく切り出すこ
とによって、特性のよ< 4#1つだ小形(例えti数
mm”1mm)のプレーナ形圧覚センサ単位セルカζ(
替られる。なお、以上の説明ではリング状の圧覚センサ
につl/)で述べたが、リング状以外の圧覚センサにも
本発明のプレーナ形構造か適用できることit勿=であ
る。Next, an example of a method for manufacturing the pressure sensor configured as described above will be briefly described with reference to FIGS. 5(A) and 5(B). First, it has a predetermined thickness (e.g., Q, 6 mm), a predetermined conductivity type (e.g., square shape), and a specific resistance (e.g., 1 to l).
OΩφcm) and has a predetermined crystal orientation (for example, (I
Single crystal silicon wafer 1 having a formation surface in the ll) direction
A group of diffusion type strain gauges 101-124 arranged as shown in FIG. 4 and metal wiring are arranged in the pressure sensor unit cell phase extraction region 17 of No. 6 using IC manufacturing techniques such as maskless ion beam processing and An vapor deposition. Formed by this method (planar technology). According to this IC manufacturing method, one sea urchin/\18
It is possible to fabricate a single sensory sensor unit cell with a large number of four elements. From this wafer 18, wire soaker at 1
By cutting out the unit cell of the pressure sensor with high precision from the machining side such as cutting, laser cutting, etching, etc., we can produce a planar pressure sensor of small size (for example, a few mm or 1 mm) with characteristics like <4#1. Sensor unit selfie ζ (
Can be replaced. Although the above description has been made regarding a ring-shaped pressure sensor, it goes without saying that the planar structure of the present invention can also be applied to pressure sensors other than ring-shaped.
第61図はこのように構成した本発明の1玉覚センサの
断面構成例を示し1図示のようにN形シ1ノコ、ン単結
晶茫板7の表面内しこイオン?主人J去をこよりP形拡
散形ストレンケージ101〜104 、111〜114
゜+21−124か形成され、また基板7一ヒに5i0
2絶縁llジ201を介して金属薄膜配置141−14
3.1−3よびポンディングパッド部15か)hノr法
で形成されてし)る。FIG. 61 shows an example of the cross-sectional structure of the one-ball sensor of the present invention constructed in this way, and as shown in FIG. P-type diffused strain cage 101-104, 111-114
゜+21-124 is formed, and 5i0 is formed on the substrate 7-hi.
2 Metal thin film arrangement 141-14 via insulation board 201
3.1-3 and the bonding pad portion 15) are formed by the Hnoring method.
第7図は本発明の圧覚センサを面アレイ:1火に配設し
て面状に分布する荷重の荷重分71jを検+11できる
ようにした分布荷重計の一例を〉1′Xす。まず、上述
のようにして構成した本発明の圧覚センサ202を共通
基板203上の平行溝2041こ垂直に嵌合して、水平
のx、y両方向に多数個面アレイ状しこNfuべて固着
し、それらの圧覚センサ202の上音−こ受Jf&20
5を固着して分布荷重計208をプ杉成する。なお、本
例では2個の圧覚センサ202を1組として1個の受圧
微細モジュールを形成した場合を示したが、この受圧微
細モジュールを例え4f 1cm2当り25〜100個
程度の密度でアレイ:1大に1イ本に集Jj’tしたも
のをロボット/\ンドの把持…jξヘ一しこ耳ヌづ寸(
す、三次元圧力分布測定を可能としてl、Nる。FIG. 7 shows an example of a distributed load cell in which the pressure sensor of the present invention is arranged in a planar array so that the load component 71j of the load distributed in a planar manner can be detected. First, the pressure sensor 202 of the present invention configured as described above is fitted perpendicularly into the parallel groove 2041 on the common substrate 203, and is fixed across the multiple surface array Nfu in both the horizontal x and y directions. Then, the sound of those pressure sensors 202 - Kore Jf & 20
5 is fixed to form the distributed load cell 208. In addition, in this example, a case is shown in which one pressure-receiving micro module is formed with two pressure sensors 202 as one set, but this pressure-receiving micro module may be arrayed at a density of about 25 to 100 pieces per 4 f 1 cm2: 1 The robot/\nd grips the things that have been collected into one book...
It enables three-dimensional pressure distribution measurement.
第8図は上述の各圧覚センサ202力・ら411定用配
線の接続手段の一例を示すもので、ここで207Cよ接
続手段としての可撓性配線フイ)レム、208Cよ基板
203側の接続手段としての端子台りであり、配線フィ
ルム207はセ、ンサ202のホンディングパッド部1
5と端子部208とを接kjdする。また、208は接
続手段としての配線、210はマウント*++であり。FIG. 8 shows an example of the connection means for the wiring for each of the pressure sensors 202 and 411 described above, in which 207C is connected to the flexible wiring (FI) as the connection means, and 208C is connected to the board 203 side. The wiring film 207 is a terminal block as a means, and the wiring film 207 is connected to the terminal pad part 1 of the sensor 202.
5 and the terminal portion 208 are connected kjd. Further, 208 is wiring as a connection means, and 210 is a mount *++.
このマウント部210上に前述のブリッジ回路や付属増
幅器などの信号処理回路を内部集積化した図示しない半
導体チップをマウントして、大力の信号処理を済ませた
上、外部に導出か必要な正味の検出4i号のみを接続ピ
ン211を介して取り出せばよい。かかる半導体チップ
のマウントに適する手段としては例えば公知のH膜回路
を最上層212の上面に施せはよく、またイ1)号処理
回路の一部ないし全部をセンサ202を構成するシリコ
ン単結晶中に公知の手段で作り込むこともul’能であ
る。A semiconductor chip (not shown) in which signal processing circuits such as the aforementioned bridge circuit and attached amplifier are internally integrated is mounted on this mount section 210, and after completing a large amount of signal processing, the necessary net detection is carried out to the outside. It is sufficient to take out only No. 4i through the connecting pin 211. As a means suitable for mounting such a semiconductor chip, for example, a known H film circuit may be applied on the upper surface of the uppermost layer 212, and a part or all of the processing circuit (1) may be formed in a silicon single crystal constituting the sensor 202. It is also possible to create it by known means.
なお、ストレンゲージの配置ξは前述のように高感度で
、かつ他の二方向分力に対し理論的に影響を受けぬ」↓
1所に設けられているので8個のゲージ抵抗値の不均一
補償、温度補償により高精度な三次元圧力分布の測定が
可能である。また、受圧微細モジュールの圧力は、半導
体ストレンゲージの抵抗変化で表わせられるので、各受
圧微細モジュールのストレンゲージの抵抗は、スキャナ
ーでスキャンされ、増幅器、A/Dコン八−へを経て、
川−CPUに取りこまれ、基本演算アルゴリズムで各点
の3方向分力・合成力・3方向モーメント等が演算され
、この演算結果をメモリファイルに格納させることがで
きる。また、受圧面パッドの材質分布を適切に選定する
ことにより、演算により対象物の弾性をめることが可能
であるので、対象物の変形、破損を避けたソフトハンド
リングがB(能であるし、対象物の材質判定、形状認詭
の補助入力にもなる。また、受圧面の圧力分布の時間的
変化より把持力不足による滑りが演算され、把持力「1
ツノ御演算アルゴリズムにより滑りがおこらぬソフトハ
ンドリングが可能となる。また、ハンド駆動機構制御の
為の把持・持ち上げ・挿入・回転等の基本作業演算アル
ゴリズムを用いて、高速・晶レスポンス・高精度で、上
位コンピュータよりのスーパーバイザリ制御又は自律局
所制御を行うことが可能となる。さらに、本発明の圧覚
センサをロホットの歩行制御用に足のうらに取付けるこ
とによって高精度の歩行制御が可能となる。Furthermore, the strain gauge arrangement ξ is highly sensitive as mentioned above, and is theoretically unaffected by the other two-direction component forces.''↓
Since it is installed in one place, it is possible to measure the three-dimensional pressure distribution with high accuracy by compensating for the unevenness of the eight gauge resistance values and compensating for the temperature. In addition, since the pressure in the pressure-receiving micro-module is expressed by a change in the resistance of the semiconductor strain gauge, the resistance of the strain gauge in each pressure-receiving micro-module is scanned by a scanner, passed through an amplifier, and an A/D controller.
This is loaded into the CPU and calculates the three-direction component force, resultant force, three-direction moment, etc. at each point using a basic calculation algorithm, and the results of this calculation can be stored in a memory file. In addition, by appropriately selecting the material distribution of the pressure-receiving surface pad, it is possible to increase the elasticity of the object by calculation, so soft handling that avoids deformation and damage of the object is possible. It also serves as an auxiliary input for determining the material of the object and for shape recognition.In addition, slippage due to insufficient gripping force is calculated from temporal changes in the pressure distribution on the pressure-receiving surface, and the gripping force is ``1''.
The horn control algorithm enables soft handling without slipping. In addition, by using basic operation calculation algorithms such as grasping, lifting, inserting, and rotating to control the hand drive mechanism, supervisory control or autonomous local control from a host computer can be performed with high speed, crystal response, and high precision. It becomes possible. Furthermore, by attaching the pressure sensor of the present invention to the back of the foot of the robot for controlling the robot's walking, highly accurate walking control becomes possible.
C発明の効果]
以」二説明したように、この発明によれば、弾性材料と
して秀れた単結晶シリコンを感圧gj構造体して、IC
製造に用いられるプレーナ技術によってウェハの状jル
;で多数個の圧覚センサ単位セルに相当する拡散形スト
レンゲージ群と配線群とを形成し、このウェハから多数
個の圧覚センサ単位セルをνJり出せるようにしたため
、極めて小形で、特性がよく揃い、安全性がよく、精度
か高く、かつ量産性が良く、ひいては価格が低くできる
力の三成分検出用の荷重分布検出に適した圧覚センサ(
圧覚センサ単位セル)を冑・ることができる。C. Effects of the Invention] As explained above, according to the present invention, monocrystalline silicon, which is excellent as an elastic material, is used as a pressure-sensitive gj structure to form an IC.
Using the planar technology used in manufacturing, a group of diffused strain gauges and a wiring group corresponding to a large number of pressure sensor unit cells are formed in the shape of a wafer, and a large number of pressure sensor unit cells are produced from this wafer. This pressure sensor is suitable for detecting load distribution for detecting three components of force.
pressure sensor unit cell).
第1図は従来技術による圧覚センサ単位セル(へ角形応
カリンク)を示す斜視図、
第2図はこの発明による圧覚センサ単位セルの実施例の
斜視図、
第3図(A)〜(C)は第2図の圧覚センサのストレン
ゲーシの結線状態を示す回路図、
第4図はこの発明による圧覚センサ単位セルの実施例の
ストレンゲージおよび配線の配置例の模式図、
第5図(A)はこの発明による圧覚センサ単位セル製造
方法の説明図で第5図(B)はそのA部を拡大した拡大
図、
第6図はこの発明による圧覚センサ単位セルの断面構造
の一例を示す断面図、
第7図はこの発明による圧覚センサ単位セルを面アレイ
状に配列して荷重計を形成した一例を示す斜視図。
第8図はその単位セルと基板との結線手段の一例を示す
拡大図である。
1・・・金属製六角形リング、
7・・・シリコン感圧構造体、
8・・・受圧面、
8・・・基板面、
13・・・ストレンゲージ形成面、
15・・・ポンディングパッド部、
16・・・シリコンウェハ、
I7・・り圧覚センサ単位セル相当領域、101〜10
4,111 N114,121−124・・・拡散形ス
トレンゲージ、
141〜143・・・配線。
特許出願人 株式会社 富士電機総合研究所箱21¥l
I
F。
第31ビ4
(A)(円 (C)
第4図
り
103’
第5図
A耶
第(を図
第′門′図
ンυq ILIJFIG. 1 is a perspective view showing a pressure sensor unit cell (hexagonal flexible link) according to the prior art, FIG. 2 is a perspective view of an embodiment of a pressure sensor unit cell according to the present invention, and FIGS. 3 (A) to (C) is a circuit diagram showing the connection state of the strain gauge of the pressure sensor shown in FIG. 2, FIG. 4 is a schematic diagram of an example of the arrangement of the strain gauge and wiring in the embodiment of the pressure sensor unit cell according to the present invention, and FIG. FIG. 5(B) is an enlarged view of part A of the manufacturing method of the pressure sensor unit cell according to the present invention, and FIG. 6 is a sectional view showing an example of the cross-sectional structure of the pressure sensor unit cell according to the present invention. FIG. 7 is a perspective view showing an example of a load cell formed by arranging pressure sensor unit cells in a planar array according to the present invention. FIG. 8 is an enlarged view showing an example of the connection means between the unit cell and the substrate. DESCRIPTION OF SYMBOLS 1... Metal hexagonal ring, 7... Silicon pressure sensitive structure, 8... Pressure receiving surface, 8... Substrate surface, 13... Strain gauge forming surface, 15... Ponding pad Part 16... Silicon wafer, I7... Area corresponding to pressure sensor unit cell, 101 to 10
4,111 N114, 121-124... Diffusion type strain gauge, 141-143... Wiring. Patent applicant Fuji Electric Research Institute Co., Ltd. Box 21 yen
IF. 31st bi 4 (A) (circle (C) 4th drawing 103' Fig. 5
Claims (1)
受圧面に垂直な面に複数個の拡散形ストレンゲージを形
成し、これらの前記ストレンゲージの抵抗値の変化によ
って前記受圧面に印加された力の三成分を検出するよう
にしたことを特徴とする圧覚センサ。 2、特許請求の範囲第1項記載の圧覚センサにおいて、
前記単結晶シリコンとしてN形シリコンを用い、前記拡
散形ストレンゲージとしてP形拡蔽層を用いたことを特
徴とする圧覚センサ。 3)特許請求の範囲第1項記載の圧覚センサにお′いて
、前記感圧構造体がリング状の形状を有していることを
特徴とする圧覚センサ。[Claims] l) A pressure sensitive structure made of single crystal silicon, a plurality of diffusion type strain gauges formed on a surface perpendicular to a pressure receiving surface of the pressure sensitive structure, and a resistance value of these strain gauges. A pressure sensor characterized in that three components of the force applied to the pressure receiving surface are detected by changes in the pressure sensor. 2. In the pressure sensor according to claim 1,
A pressure sensor characterized in that N-type silicon is used as the single crystal silicon, and a P-type diffusion layer is used as the diffusion type strain gauge. 3) The pressure sensor according to claim 1, wherein the pressure sensitive structure has a ring shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59008783A JPS60153172A (en) | 1984-01-20 | 1984-01-20 | Sense of contact force sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59008783A JPS60153172A (en) | 1984-01-20 | 1984-01-20 | Sense of contact force sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60153172A true JPS60153172A (en) | 1985-08-12 |
JPH0473629B2 JPH0473629B2 (en) | 1992-11-24 |
Family
ID=11702468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59008783A Granted JPS60153172A (en) | 1984-01-20 | 1984-01-20 | Sense of contact force sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60153172A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60153171A (en) * | 1984-01-20 | 1985-08-12 | Fuji Electric Corp Res & Dev Ltd | Two-cell type sense of contact force sensor |
JPS63155677A (en) * | 1986-12-19 | 1988-06-28 | Agency Of Ind Science & Technol | Method for connecting tactile sense sensor and substrate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60153171A (en) * | 1984-01-20 | 1985-08-12 | Fuji Electric Corp Res & Dev Ltd | Two-cell type sense of contact force sensor |
-
1984
- 1984-01-20 JP JP59008783A patent/JPS60153172A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60153171A (en) * | 1984-01-20 | 1985-08-12 | Fuji Electric Corp Res & Dev Ltd | Two-cell type sense of contact force sensor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60153171A (en) * | 1984-01-20 | 1985-08-12 | Fuji Electric Corp Res & Dev Ltd | Two-cell type sense of contact force sensor |
JPH0473303B2 (en) * | 1984-01-20 | 1992-11-20 | Fuji Denki Sogo Kenkyusho Kk | |
JPS63155677A (en) * | 1986-12-19 | 1988-06-28 | Agency Of Ind Science & Technol | Method for connecting tactile sense sensor and substrate |
Also Published As
Publication number | Publication date |
---|---|
JPH0473629B2 (en) | 1992-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7578162B2 (en) | Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus | |
US6512364B1 (en) | Testing sensor | |
US7428841B2 (en) | Acceleration sensor and inclination-detecting method | |
US4683755A (en) | Biaxial strain gage systems | |
US6763719B2 (en) | Acceleration sensor | |
JP4431475B2 (en) | Semiconductor type 3-axis acceleration sensor | |
JPS60161539A (en) | Sensation-of-pressure discrimination control apparatus | |
JPS60153172A (en) | Sense of contact force sensor | |
JP2006098323A (en) | Semiconductor-type three-axis acceleration sensor | |
JPH0739975B2 (en) | Distributed tactile sensor | |
JPH01287470A (en) | Semiconductor acceleration sensor | |
JPS61224465A (en) | Force sensor and manufacture thereof | |
JPH0197827A (en) | Semiconductor diffusion-type stress sensor | |
JPH0560269B2 (en) | ||
JPS60153173A (en) | Sense of contact force sensor | |
WO2011078715A1 (en) | Method for measuring physical values using piezoresistive transducers and transducer | |
JPS60153175A (en) | Sense of contact force sensor | |
JPH0645616A (en) | Pressure-sensing sensor | |
JPS60153176A (en) | Sense of contact force sensor | |
JPS6093933A (en) | Load meter | |
JPH0473303B2 (en) | ||
CN117629492A (en) | Silicon piezoresistive six-dimensional force sensor based on MEMS technology and preparation method thereof | |
JPH0473634B2 (en) | ||
JPS61284390A (en) | Tactile sensor | |
JPH04130277A (en) | Semiconductor acceleration sensor |