JPS60153116A - Vertical diffusion furnace type vapor growth apparatus - Google Patents

Vertical diffusion furnace type vapor growth apparatus

Info

Publication number
JPS60153116A
JPS60153116A JP919484A JP919484A JPS60153116A JP S60153116 A JPS60153116 A JP S60153116A JP 919484 A JP919484 A JP 919484A JP 919484 A JP919484 A JP 919484A JP S60153116 A JPS60153116 A JP S60153116A
Authority
JP
Japan
Prior art keywords
wafers
vapor phase
phase growth
growth apparatus
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP919484A
Other languages
Japanese (ja)
Inventor
Taisan Goto
後藤 泰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP919484A priority Critical patent/JPS60153116A/en
Publication of JPS60153116A publication Critical patent/JPS60153116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide

Abstract

PURPOSE:To increase the number of processed wafers and to facilitate the automatic handling, by carrying wafers parallel on a wafer supporting member having a plural of tiers whose axial line coincides with that of a cylindrical reacting container and by providing with a uniformly-heating tube consisting carbon or silicon carbide arranged concentrically. CONSTITUTION:Wafers 52 are carried on tiers (a) of a wafer supporting member 54. While reacting gas is supplied from a reacting gas supply nozzle 53 and purge gas such as hydrogen gas is supplied from a nozzle 60, a uniformly-heating tube 58 is heated by infrared ray lamps 55 to cause the wafers 52 to epitaxial- grow. Since the space in the uniformly-heating tube 58 becomes practically a uniform-temperature atmosphere by its heating, both the top and bottom surfaces of the wafers 52 is more uniformly heated. Accordingly, thick-irregularity of epitaxial films owing to irregularity of the temperature distribution over the wafers 52 hardly results. The wafers 52 are took in and out, with carried on carrying jigs 65 which are to be set in the wafer supporting member 64.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気相成長装置に係り、特にシリコン等の半導
体装置製造用の縦型拡散炉型気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vapor phase growth apparatus, and particularly to a vertical diffusion furnace type vapor phase growth apparatus for manufacturing semiconductor devices such as silicon.

〔従来技術〕[Prior art]

従来よp用いられている例えばシリコン等の半導体物質
のエピタキンヤル薄膜気相成長装置としては、その形状
に基づき縦型、横型およびシリンダ型に大別することが
できる。これらいずれの型の装置においても、シリコン
等のエピタキシャル成長においては、例えば石英製の反
応容器内にあって加熱装置により約1200℃に加熱さ
れるカーボン製のサセプタ板上に裏面全体を密着するよ
うにウェハを載ぜ、反応ガスをその表面に流すことによ
りウェハ上にシリコン結晶薄膜を成長させるようにし/
こものである。また、上述の加熱装置としては、通常高
周波を利用した誘導加熱又は赤外線ランプ等を利用した
ランプ加熱方式が利用されており、いずれの加熱装置を
用いた場合にも、反応容器の外部には例えばパイプ等を
配して冷却ガスを吹きつけるという強制冷却方法により
反応容い例えばホトリソグラフィ等の他の工程との連続
化が重要視され、特に、ウェハの反応容器内のサセプタ
上への出し入れの自動ハンドリングに関しての問題が生
じてきている。上述した3種の型の気相成長装置ではウ
ェハがその加熱体であるサセプタ上に密着して載置され
るため、ウェハの装脱着の際にはウェハ表面に何等かの
物質を接触せねばならず、汚染、歩留りの低下をもたら
す原因となっている。
Conventionally used devices for epitaxial thin film vapor phase growth of semiconductor materials such as silicon can be broadly classified into vertical, horizontal, and cylindrical types based on their shapes. In any of these types of devices, for epitaxial growth of silicon, etc., the entire back surface is placed in close contact with a carbon susceptor plate that is placed in a quartz reaction vessel and heated to approximately 1200°C by a heating device. A silicon crystal thin film is grown on the wafer by placing a wafer on the wafer and flowing a reactive gas onto its surface.
It's a small thing. In addition, as the above-mentioned heating device, induction heating using high frequency or lamp heating method using infrared lamp etc. is usually used, and regardless of which heating device is used, there is no space outside the reaction vessel, such as By using a forced cooling method that uses pipes and the like to blow cooling gas, it is important to connect the reaction chamber with other processes such as photolithography. Problems have arisen regarding automatic handling. In the three types of vapor phase growth apparatus mentioned above, the wafer is placed closely on the susceptor, which is the heating element, so some kind of substance must be brought into contact with the wafer surface when loading and unloading the wafer. This causes contamination and reduced yield.

以下、添付図面に基づき、上述の3種の型の気相成長装
置の概略を上記した問題点と関連させて説明する。
Hereinafter, based on the accompanying drawings, the outline of the three types of vapor phase growth apparatuses mentioned above will be explained in relation to the problems mentioned above.

第1図は従来の一般的な縦型気相成長装置を示し、通常
基台10上に石英製のベルジylle気密に載置して反
応室16を画成し、反応室16内に回転可能に設けたサ
セプタ14上にウェハ12を裏面全体を密着して載置し
、ノズル13より反応ガスを吹き出し、サセフリ14の
下部に設けた例えば高周波誘導加熱コイル15等により
加熱しウェハ12上にエピタキシャル気相成長を行うよ
うにしたものである。この縦型のものにおける自動ハン
ドリングは、ウェハ12の上面を吸着することなどによ
り行なわなければならないので、前記のような問題かあ
り、さらに装置そのものの占める床占有面積の広さに対
するウェハのバッチ処理枚数が少なく、配列が比較的複
雑になるため、ウェハの自動ハンドリングが難しい等の
欠点を有するものである。
FIG. 1 shows a conventional vertical vapor phase growth apparatus, which is usually placed airtight on a base 10 using a quartz verge to define a reaction chamber 16, and can be rotated into the reaction chamber 16. The wafer 12 is placed on a susceptor 14 provided on the susceptor 14 with its entire back surface in close contact, and a reaction gas is blown out from the nozzle 13 and heated by, for example, a high-frequency induction heating coil 15 provided at the bottom of the susceptor 14 to form an epitaxial layer on the wafer 12. It is designed to perform vapor phase growth. Automatic handling of this vertical type must be performed by suctioning the upper surface of the wafer 12, which causes the problems described above, and furthermore, the batch processing of wafers is difficult due to the large floor area occupied by the apparatus itself. Since the number of wafers is small and the arrangement is relatively complicated, automatic handling of the wafers is difficult.

第2図は従来の一般的な横型気相成長装置を示し、石英
製の反応管21の内部に形成される反応室26内にはサ
セプタ24がその長手方向に設けられ、サセプタ24上
にはウェハ22が裏面全体を密着させて載置してあり、
長手方向片側から反応ガスを流し、反応管21外局部に
設けた高周波710 熱=r イル25により加熱し、
ウェハ22上にエピタキシャル気相成長を行うようにし
たものである。この横型のものも、ウェハ22の裏面全
体をサセプタ24に密着させるため自動ハンドリングの
問題点とそれによる歩留りの低下があり、さらに床占有
面積の割にはウェハのバッチ処理枚数が少なく、特に反
応管21内よりサセプタ24を横方向に引用すための空
間が必要となり実際の占有床面積はさらに広くなってし
まう等の欠点を有している。
FIG. 2 shows a conventional general horizontal vapor phase growth apparatus, in which a susceptor 24 is provided in the longitudinal direction of a reaction chamber 26 formed inside a reaction tube 21 made of quartz. The wafer 22 is placed with its entire back side in close contact with each other,
A reaction gas is flowed from one side in the longitudinal direction, and heated by a high-frequency wave 710 installed at the outer part of the reaction tube 21.
Epitaxial vapor phase growth is performed on a wafer 22. This horizontal type also has problems with automatic handling because the entire back surface of the wafer 22 is brought into close contact with the susceptor 24, resulting in a decrease in yield.Furthermore, the number of wafers to be processed in batches is small considering the floor space occupied, and especially in reaction This has the disadvantage that a space is required to draw the susceptor 24 laterally from inside the tube 21, and the actual occupied floor area becomes even larger.

第3図は従来の一般的なシリンダ型気相成長装置を示し
、この装置では、石英製の反応管31内の反応室36内
には多面体のサセプタ34が左右方向に回転可能に垂下
され、サセプタ34上にはウェハ32がその裏面全体を
密着するように載置されている。反応管31の外部には
赤外線ランプユニット35を加熱源として設け、ノズル
33より反応ガスを供給することによりウェハ32上に
エピタキシャル気相成長を行っている。尚、赤外線ラン
テ35の背後には反射板37f:設けることにより、ラ
ンプの反射エネルギも有効に利用するようにしている。
FIG. 3 shows a conventional general cylinder type vapor phase growth apparatus. In this apparatus, a polyhedral susceptor 34 is suspended rotatably in the left and right directions in a reaction chamber 36 in a reaction tube 31 made of quartz. The wafer 32 is placed on the susceptor 34 so that its entire back surface is in close contact with the wafer 32 . An infrared lamp unit 35 is provided outside the reaction tube 31 as a heat source, and a reaction gas is supplied from a nozzle 33 to perform epitaxial vapor phase growth on the wafer 32. In addition, by providing a reflector plate 37f behind the infrared lamp 35, the reflected energy of the lamp is also effectively utilized.

この型の装置に関しても、先の2種の型と同様の問題を
考えた場合、ウェハの処理枚数は先に述べた縦型および
横型のものに比べて増大するが、サセプタ34上へのウ
ェハ32の装着が複雑で精密さを要し、自動ハンドリン
グの点において問題を有している。
Regarding this type of apparatus, when considering the same problems as the previous two types, the number of wafers processed increases compared to the vertical and horizontal types described above, but the number of wafers placed on the susceptor 34 increases. 32 is complicated and requires precision, and poses problems in terms of automatic handling.

第4図は従来の横型気相成長装置に形状的に類似した従
来公知の減圧CVD装置を示すもので、石英製の反応管
41の内部の反応室46内にはウェハ支持板48が長手
方向に設けられ、該ウェハ支持板48上には垂直方向に
多数のウェハ42が立てて配設されている。この種のU
VD装置においては、ウェハ42が垂直方向に設けられ
るため、バッチ当りのウェハ処理枚数は増加するが、ウ
ェハ支持板48を反応室46内より水平方向に引き出す
ための空間を要し、占有床面積を増大させるとともに、
気相成長処理前後の他の工程においてはウェハ42はほ
ぼ水平位置にして行うことが多いため、垂直方向から水
平方向への自動ハンドリングが複雑になる等の欠点を有
している。またこの(,1VDi置ではサセプタを用い
ずに抵抗ヒータ45により加熱しているために反応管4
1が熱壁型となり管壁にフレークが付着し、異物発生の
原因となるなど好ましくない。
FIG. 4 shows a conventionally known low pressure CVD apparatus similar in shape to a conventional horizontal vapor phase growth apparatus. A large number of wafers 42 are vertically disposed on the wafer support plate 48 . This kind of U
In the VD apparatus, since the wafers 42 are arranged vertically, the number of wafers processed per batch increases, but a space is required to pull out the wafer support plate 48 horizontally from inside the reaction chamber 46, which reduces the occupied floor space. In addition to increasing
Other processes before and after the vapor phase growth process are often carried out with the wafer 42 in a substantially horizontal position, which has the disadvantage that automatic handling from the vertical direction to the horizontal direction becomes complicated. In addition, in this (1VDi setting), the reaction tube 4 is heated by the resistance heater 45 without using a susceptor.
1 becomes a hot wall type, which is undesirable because flakes adhere to the tube wall and cause foreign matter generation.

以上述べたように従来の型の気相成長装置およびCvD
装置においては自動ハンドリングにより汚染や歩留りの
低下をもたらしたり、または自動ハンドリングに複雑で
制御がめんどうな装置を必要とするなどの種々の問題が
あった。
As mentioned above, conventional vapor phase growth equipment and CvD
There have been various problems with the equipment, such as automatic handling causing contamination and a reduction in yield, and automatic handling requiring equipment that is complex and difficult to control.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述め従来装置の欠点を排し、ウェハの
大口径化に際しても処理枚数全増大せしめ、且つウェハ
の自動ハンドリングを容易にならしめるようにした縦型
拡散炉型気相成長装置を提供することにある。
The purpose of the present invention is to provide a vertical diffusion furnace type vapor phase growth apparatus that eliminates the drawbacks of the conventional apparatus mentioned above, increases the total number of wafers that can be processed even when the diameter of wafers increases, and facilitates automatic handling of wafers. Our goal is to provide the following.

〔発明の構成〕[Structure of the invention]

上述の目的を達成するために提供される本発明による縦
型拡散炉型気相成長装置は、上端部に反応ガス供給用ノ
ズルを有し、下端部にガス排気口を有するシリンダ型石
英製反応容器内にウェハをセットし、該反応容器外周部
に加熱用熱源を配置して反応ガスによりウェハ上にエピ
タキシャル薄膜を気相成長するようにした型のものであ
って、特に、ウェハをシリンダ状反応容器の軸線とほぼ
一致する軸線を有するウェノ・支持部材上に複数段平行
に載置すると共に、反応管内壁部より間隙を有し且つ同
心に配置されたカーボン又は炭化ケイ素よシ成る均熱管
を設けたことを特徴とするものである。
A vertical diffusion furnace type vapor phase growth apparatus according to the present invention provided to achieve the above-mentioned object is a cylindrical quartz reactor having a reaction gas supply nozzle at the upper end and a gas exhaust port at the lower end. This is a type in which a wafer is set in a container, a heating heat source is placed around the outer periphery of the reaction container, and an epitaxial thin film is vapor-phase grown on the wafer using a reaction gas. A soaking tube made of carbon or silicon carbide placed in parallel in multiple stages on a support member having an axis that substantially coincides with the axis of the reaction vessel, and arranged concentrically with a gap from the inner wall of the reaction tube. It is characterized by having the following.

〔実施例〕〔Example〕

以下に添付図面の実施例に基づき本発明をさらに詳しく
説明する。
The present invention will be explained in more detail below based on the embodiments shown in the accompanying drawings.

第5図は本発明による縦型拡散炉型気相成長装置を示す
もので、特に構造的には第3図に示すシリンダ型気相成
長装置及び第4図に示すCvD装置を基本的に応用した
ものと考えられる。即ち、通常石英製のシリンダ型反応
容器(以下反応管という)51内の反応室56内には水
平方向段状に複数個のウェノ・52を等間隔で載置する
ための多数の段部af有する石英製のウエノ・支持部材
54が垂直方向にその軸線をほぼ反応管51の中心線と
一致させその軸線を中心に回転可能に垂下されている。
FIG. 5 shows a vertical diffusion furnace type vapor phase growth apparatus according to the present invention, and in particular, the structure is basically an application of the cylinder type vapor growth apparatus shown in FIG. 3 and the CvD apparatus shown in FIG. It is thought that this was done. That is, in a reaction chamber 56 in a cylinder-type reaction vessel (hereinafter referred to as a reaction tube) 51 usually made of quartz, there are a number of step portions af for placing a plurality of wenos 52 at equal intervals in a horizontal step shape. A supporting member 54 made of quartz is suspended vertically so that its axis substantially coincides with the center line of the reaction tube 51 and is rotatable about the axis.

反応管51の外周部には熱源としての赤外線ランプ55
が設けられている。他方、反応管51の内側には、前記
ウェハ支持部材54を囲むように、反応管51の内壁面
から少し離れた位置にランプ光を効率よく吸収し得る材
料、例えばカーボンまたは炭化ケイ素等からなる均熱管
58が設けられている。この均熱管58の縦方向の長さ
は、ウェハ支持部材54の縦方向長さに一致するか、少
し越える程度の長さがあることが望ましい0反応管51
の上部には、反応ガス供給ノズル53が複数設けられ、
他方、反応管51の下端部には排気口59が設けられて
いる。さらに反応管51の上部には、反応管51の内壁
部と均熱管58の間に水素、窒素、アルゴン等のバー 
シカ、Xを流すノズル60が複数設けられ、反応告51
の内壁面を冷却すると共に、前記の間に反応ガスが回り
込んで反応管51の内壁面に反応物質が堆積することを
防止するようになっている。
An infrared lamp 55 as a heat source is installed on the outer periphery of the reaction tube 51.
is provided. On the other hand, inside the reaction tube 51, a material that can efficiently absorb lamp light, such as carbon or silicon carbide, is formed at a position slightly away from the inner wall surface of the reaction tube 51 so as to surround the wafer support member 54. A soaking tube 58 is provided. The length of the soaking tube 58 in the vertical direction preferably matches or slightly exceeds the length of the wafer support member 54 in the vertical direction.
A plurality of reaction gas supply nozzles 53 are provided at the top of the
On the other hand, an exhaust port 59 is provided at the lower end of the reaction tube 51 . Further, at the upper part of the reaction tube 51, a bar of hydrogen, nitrogen, argon, etc. is provided between the inner wall of the reaction tube 51 and the soaking tube 58.
Deer, a plurality of nozzles 60 that flow X are provided, and a reaction notice 51
In addition to cooling the inner wall surface of the reaction tube 51, the reactant gas is prevented from entering the reaction tube 51 and depositing the reactant on the inner wall surface of the reaction tube 51.

なお、赤外線ランプ55の背後には、反射板57を設け
、反射エネルギを十分利用するようにした点は、従来装
置と同じである。
Note that this device is the same as the conventional device in that a reflector plate 57 is provided behind the infrared lamp 55 to fully utilize the reflected energy.

次いで本装置の作用について説明する。ウェハ支持部材
54の段部aにウニ・・52を載置し、反応ガス供給ノ
ズル53から反応ガスを供給すると共に、ノズル60か
ら水素ガスなどのパージガスを供給し、赤外線ランプ5
5により均熱管58を加熱してエピタキシャル成長を行
なわせる。本装置は、ウェノ・52の端部全石英製のウ
エノ・支持部材54にて支持しているのみであるため、
従来の第1ないし3図に示す装置のようにサセプタを介
してウェハ52’に加熱するのではなく、前記のように
赤外線ランプ55により均熱管58を加熱する。この均
熱管5どの加熱によりその内部の空間は略均−の温度雰
囲気となるため、ウニ’・52の表裏両面をより均一に
加熱する。このため、ウェハ52の温度分布のむらによ
るエピタキシャル膜の厚さむらの発生はほとんどない。
Next, the operation of this device will be explained. A sea urchin .
5, the soaking tube 58 is heated to perform epitaxial growth. Since this device is only supported by the end of the weno 52 by the weno support member 54 made entirely of quartz,
Rather than heating the wafer 52' through the susceptor as in the conventional apparatus shown in FIGS. 1 to 3, the soaking tube 58 is heated by the infrared lamp 55 as described above. The heating of this soaking tube 5 creates a substantially uniform temperature atmosphere in the interior space, so that both the front and back surfaces of the sea urchins 52 are heated more uniformly. Therefore, unevenness in the thickness of the epitaxial film due to unevenness in the temperature distribution of the wafer 52 hardly occurs.

なお、第5図のものにおいては、ウェノ・52はノズル
53からの反応ガスの流れに対しほぼ垂直方向に配置さ
れているため、ガス流は乱流又は分子流の状態でないと
均一濃度とはなり難く、本発明実施例においては、この
点第4図に示される(v1〕装(1ケの特徴をと9入れ
、エピタキシャル膜の成長速度の減少を考慮しつつ圧力
の低減度を考えることによりガス濃度の均一化を図って
いる。また、圧力を大きく下げることにより成長膜厚の
精密制御も容易となる。
In addition, in the case shown in Fig. 5, the Weno-52 is arranged in a direction almost perpendicular to the flow of the reaction gas from the nozzle 53, so the gas flow must be in a turbulent or molecular flow state to have a uniform concentration. However, in the embodiment of the present invention, in this respect, the (v1) device shown in FIG. This makes it possible to make the gas concentration uniform.Also, by greatly lowering the pressure, precise control of the thickness of the grown film becomes easy.

第6図は本発明におけるウェノ・支持の変形実施例を示
すもので、赤外線ラング55のON、OF:l”に伴な
うウェノ−52の急熱、急冷を防ぐため、炭化ケイ素ま
たはカーボン製板等の載置治具65を介してウェハ52
をウェハ支持部材64にセ・ソ卜するよりに17たもの
である。この場合、ウエノ・52の搬入、搬出は載置治
A、65と共に行なわれる0 また、第7図のように、ウエノ・支持部材74の中心軸
線に対してウェノ\52を傾斜させて置くことにより反
応管内部での反応ガスの流れを改善することもできる。
FIG. 6 shows a modified embodiment of the weno support in the present invention, in which the weno support is made of silicon carbide or carbon to prevent rapid heating and cooling of the weno 52 due to the ON and OF:l'' of the infrared rungs 55. The wafer 52 is placed through a mounting jig 65 such as a plate.
17 by attaching it to the wafer support member 64. In this case, the Ueno 52 is carried in and out together with the mounting jig A, 65. Also, as shown in FIG. It is also possible to improve the flow of reaction gas inside the reaction tube.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ウェノ\全面をより
均一に加熱して良好なエピタキシャル成長ができると共
に、一度に処理できるウェハ枚数を飛躍的に増加させる
ことができ、ウェハは略水平に置かれ、かつ裏面111
1 e支持して搬出入することが可能であるため、自動
ノ・ンドリングが容易となり、エピタキシャル膜の損傷
による歩留りの低下も少なくできるなどの効果が得られ
る。
As described above, according to the present invention, the entire surface of the wafer can be heated more uniformly to achieve good epitaxial growth, and the number of wafers that can be processed at once can be dramatically increased, and the wafers are placed approximately horizontally. Him and the back side 111
1e Since it is possible to carry in and out while supporting, automatic no-undling is facilitated, and yield reductions due to damage to the epitaxial film can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は従来の縦型、横型、シリンダ型気相
成長装置の概略断面図、第4図は従来の成田CVI)装
置の概略断面図、第5図は本発明による縦型拡散炉を気
相成長装置の縦方向断面図、第6図および第7図は第5
図におけるウエノ・支持部のそれぞれ異なる変形実施例
金示す図面である。 51・・・反応容器、 52・・・つS’・、53・・
・反応ガス供給ノズル、 54.64.74・・・ウェノ・支持部材、55・・・
熱源(赤外線ランプ)、 56・・・反応室、57・・
・反射板、 58・・・均熱管、 59・・・排気口、
60・・・ノズル(パージガス)、 65・・・載置治
具。 出願人 東芝機械株式会社 才1閏 1゜ 第3図 第2口
Figures 1 to 3 are schematic sectional views of conventional vertical, horizontal, and cylinder type vapor phase growth apparatuses, Figure 4 is a schematic sectional view of a conventional Narita CVI) apparatus, and Figure 5 is a vertical type according to the present invention. The diffusion furnace is a longitudinal sectional view of the vapor phase growth apparatus, and FIGS. 6 and 7 are
FIG. 3 is a drawing showing different modified embodiments of the support part shown in FIG. 51... Reaction container, 52... S'., 53...
・Reaction gas supply nozzle, 54.64.74... Weno support member, 55...
Heat source (infrared lamp), 56... Reaction chamber, 57...
・Reflector plate, 58... Soaking tube, 59... Exhaust port,
60... Nozzle (purge gas), 65... Mounting jig. Applicant: Toshiba Machine Co., Ltd. Sai 1 Leap 1゜ Figure 3, Entrance 2

Claims (1)

【特許請求の範囲】 1、 上端部に反応ガス供給用ノズルを有し、下端部に
ガス排気口を有するシリンダ状石英製反応容ピタキシャ
ル薄膜を気相成長するようにした気相成長装置において
、前記ウェハ全前記シリンダ状反応容器の軸線とほぼ一
致する軸線を有するウェハ支持部材上に複数段平行に載
置すると共に、前記反応管内壁部より間隙を有し且つ同
心に配置されたカーボン又は炭化ケイ素より成る均熱管
を設けたことを特徴とする縦型拡散炉型気相成長装置2
、前記ウェハを各々平行状態を保ったまま水平に載置す
るようにした特許請求の範囲第1項に記載の気相成長装
置。 3、前記各ウェハを各々平行状態を保ったまま前記ウェ
ハ支持部材の軸線に対して傾斜して載置するようにした
特許請求の範囲第1項に記載の気相成長装置。 4、前記均熱管と前記反応容器内壁との間の間隙にパー
ジガスを流すようにした特許請求の範囲第1項に記載の
気相成長装置。 気相成長装置。 平に載置するようにした特許請求の範囲第6項に記ウェ
ハ支持部材の軸線に対して傾斜して載置するようにした
特許請求の範囲第6項に記載の気相成長装置。
[Claims] 1. In a vapor phase growth apparatus for vapor phase growth of a pitaxial thin film in a cylindrical quartz reaction chamber having a reaction gas supply nozzle at the upper end and a gas exhaust port at the lower end, All of the wafers are placed in parallel in multiple stages on a wafer support member having an axis that substantially coincides with the axis of the cylindrical reaction vessel, and carbon or carbonized wafers are placed concentrically with a gap from the inner wall of the reaction tube. Vertical diffusion furnace type vapor phase growth apparatus 2 characterized by being provided with a soaking tube made of silicon
The vapor phase growth apparatus according to claim 1, wherein the wafers are placed horizontally while maintaining parallel states. 3. The vapor phase growth apparatus according to claim 1, wherein each of the wafers is placed at an angle with respect to the axis of the wafer support member while maintaining a parallel state. 4. The vapor phase growth apparatus according to claim 1, wherein a purge gas is made to flow through a gap between the soaking tube and the inner wall of the reaction vessel. Vapor phase growth equipment. The vapor phase growth apparatus according to claim 6, which is arranged to be mounted flatly, but which is arranged to be mounted at an angle with respect to the axis of the wafer support member.
JP919484A 1984-01-20 1984-01-20 Vertical diffusion furnace type vapor growth apparatus Pending JPS60153116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP919484A JPS60153116A (en) 1984-01-20 1984-01-20 Vertical diffusion furnace type vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP919484A JPS60153116A (en) 1984-01-20 1984-01-20 Vertical diffusion furnace type vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS60153116A true JPS60153116A (en) 1985-08-12

Family

ID=11713698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP919484A Pending JPS60153116A (en) 1984-01-20 1984-01-20 Vertical diffusion furnace type vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS60153116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471117A (en) * 1987-05-12 1989-03-16 Jiemini Res Inc Reflector for cvd reactor
US6310328B1 (en) * 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471117A (en) * 1987-05-12 1989-03-16 Jiemini Res Inc Reflector for cvd reactor
US6310328B1 (en) * 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers
US6610967B2 (en) 1998-12-10 2003-08-26 Mattson Technology, Inc. Rapid thermal processing chamber for processing multiple wafers
US6727474B2 (en) 1998-12-10 2004-04-27 Mattson Technology, Inc. Rapid thermal processing chamber for processing multiple wafers

Similar Documents

Publication Publication Date Title
KR950001839B1 (en) Lateral cvd apparatus
JP2654996B2 (en) Vertical heat treatment equipment
KR100514726B1 (en) Vacuum processing apparatus
JP3178824B2 (en) High productivity multi-station type processing equipment for compound single wafer.
JP3090339B2 (en) Vapor growth apparatus and method
US5164012A (en) Heat treatment apparatus and method of forming a thin film using the apparatus
US20080220150A1 (en) Microbatch deposition chamber with radiant heating
US20030049372A1 (en) High rate deposition at low pressures in a small batch reactor
JPH03287770A (en) Single wafer processing atmospheric cvd device
JPS63108712A (en) Method and apparatus for heating semiconductor substrate and for inducing reaction
US5261960A (en) Reaction chambers for CVD systems
US5096534A (en) Method for improving the reactant gas flow in a reaction chamber
US4651674A (en) Apparatus for vapor deposition
US20040178176A1 (en) Apparatus and method for cleaning a bell jar in a barrel epitaxial reactor
JPH0322523A (en) Vapor growth device
US5044315A (en) Apparatus for improving the reactant gas flow in a reaction chamber
JPS60153116A (en) Vertical diffusion furnace type vapor growth apparatus
CN107641796B (en) Processing equipment and chemical vapor deposition process
JPS60152675A (en) Vertical diffusion furnace type vapor growth device
JPH10223538A (en) Vertical heat-treating apparatus
JPH0727870B2 (en) Low pressure vapor deposition method
JPS60113921A (en) Method for vapor-phase reaction and device thereof
JPH1050613A (en) Epitaxial growth device
JPS61271818A (en) Vapor growth apparatus
JPH03164688A (en) Vertical heat treatment device