JPS60152954A - Measurement of biological sample - Google Patents

Measurement of biological sample

Info

Publication number
JPS60152954A
JPS60152954A JP899784A JP899784A JPS60152954A JP S60152954 A JPS60152954 A JP S60152954A JP 899784 A JP899784 A JP 899784A JP 899784 A JP899784 A JP 899784A JP S60152954 A JPS60152954 A JP S60152954A
Authority
JP
Japan
Prior art keywords
target substance
receptor
substance
biological sample
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP899784A
Other languages
Japanese (ja)
Inventor
Kyoko Makiguchi
牧口 恭子
Toshiyuki Sagusa
佐草 寿幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP899784A priority Critical patent/JPS60152954A/en
Publication of JPS60152954A publication Critical patent/JPS60152954A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To enable a highly accurate measurement of a biological sample by separating a carrier from a vapor phase through a centrifugal force to measure optical characteristic based on material in the vapor phase. CONSTITUTION:A plurality of reaction vessels 2 having a trapping section each are set on a reaction table 1 and a plurality of sample cups 4 containing a standard substance and a sample to be inspected are set on a sample table 3 separately. A sample distribution arm 5 discharges a sample liquid at the fixed position 6 on the table 3 into a vessel 2 at the fixed position 7 on the table 1. The table 1 is fed rotatively by steps according to intervals between the vessels 2 and the table 3 is turned based on input information on analysis items. As each vessel 2 reaches the specified position 7, arms 8 and 9 move to discharge a reagent of a cold insulation storage 10 into the vessel 2 to mix the sample with the reagent to react. Then, the table 1 is turned at a high speed to separate a fluorescent labeled substance bonded to a solid phase from an isolated fluorescent labeled substance and then, the vessel 2 is irradiated with a laser light to indicate the results of analysis on a printer 14 and a CRT15 through an A/D converter 40. These operations are controlled with a microcomputer 11 based on analysis conditions previously inputted.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は生体試料の測定方法に係り、特に生体試料中の
標的物質を光学的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for measuring a biological sample, and particularly to a method for optically measuring a target substance in a biological sample.

〔発明の背景〕[Background of the invention]

近年、医療分野において微量物質を定量することが強く
望まれている。従来から免疫学的手法により抗原抗体反
応を利用して生体液中の物質を測定する方法が種々考案
されてきた。例えば、毛細管沈降法、免疫比濁法、免疫
比ろう法、ラテックス凝集法、5RID法など沈降や凝
集を直接測定する方法f1酸素標識免疫法、ラジオアイ
ソトープ標識免疫法、蛍光標識免疫法などの標識法が開
発されている。しかしながら、これらの方法には一長一
短がある。定量性に優れた測定方法のうち操作性のよい
均一免疫反応系の測定方法は測定感度が不十分でおるし
、不均一免疫反応系を用いる測定方法は感度は高いが操
作が煩雑でしかも結果が得られるまで数時間かかるため
通常の脇床検査の場においては不便なものであった。
In recent years, there has been a strong desire to quantify trace substances in the medical field. Conventionally, various methods have been devised to measure substances in biological fluids using antigen-antibody reactions using immunological techniques. For example, methods that directly measure sedimentation and agglutination, such as capillary sedimentation, immunoturbidimetry, immunoturbidimetry, latex agglutination, and 5RID; laws are being developed. However, these methods have advantages and disadvantages. Among measurement methods with excellent quantitative performance, the measurement method using a homogeneous immune reaction system with good operability has insufficient measurement sensitivity, while the measurement method using a heterogeneous immune reaction system has high sensitivity but is complicated to operate and results in poor results. Because it takes several hours to obtain the desired results, it is inconvenient in regular axillary examinations.

これらの内、標識抗原−抗体結合物(Boundまたけ
B)と、遊離の状態(preeまたはF)で残・りた過
剰の標識抗原とを分離するいわゆるB/F分敵分法方法
では固相法が比較的操作が簡便である。この固相法は、
液相中では沈降してしまう大粒径の担体を用いて反応さ
せ、その後洗浄して遊離標識抗原を除去し、Bの活性を
測定する方法である。ところが、固相法は反応の効率が
極めて悪く、測定結果を得るまでに数時間を要する。さ
らに、洗浄の程度を一定にすることが困難であるために
、十分な測定精度が得られなかった。
Among these, the so-called B/F fractionation method, which separates the labeled antigen-antibody complex (Bound straddling B) and the excess labeled antigen remaining in a free state (pree or F), The phase method is relatively easy to operate. This solid phase method is
In this method, the activity of B is measured by performing a reaction using a large-particle carrier that precipitates in a liquid phase, and then washing to remove free labeled antigen. However, the solid-phase method has extremely low reaction efficiency and requires several hours to obtain measurement results. Furthermore, because it was difficult to maintain a constant level of cleaning, sufficient measurement accuracy could not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、操作時間を短縮できて測定精度も高め
ることができる生体試料の測定方法を提供することKあ
る。
An object of the present invention is to provide a method for measuring a biological sample that can shorten operation time and improve measurement accuracy.

〔発明の概要〕[Summary of the invention]

本発明は、標的物質あるいは標的物質に特異的結合性を
有する受容体を粒度の小さい不溶性担体に担持させ、こ
の担持された標的物質あるいは受容体に1標的物質を含
む試料と標識標的物質あるいは標識受容体および又は受
容体と溶媒あるいは分散媒を加えて担体が懸濁している
状態で反応させ、その後遠心力を加えることにより担体
と液相を分離し、担体を反応容器に残したまま液相中の
物質に基づく光学的特性を測定することによって試料に
含まれる標的物質を測定することを特徴とする。
In the present invention, a target substance or a receptor having a specific binding property to the target substance is supported on a small-sized insoluble carrier, and a sample containing one target substance and a labeled target substance or label are attached to the supported target substance or receptor. Add the receptor and/or receptor and a solvent or dispersion medium to react while the carrier is suspended, then centrifugal force is applied to separate the carrier from the liquid phase, leaving the carrier in the reaction vessel. It is characterized by measuring a target substance contained in a sample by measuring optical properties based on the substance inside.

〔発明の実施例〕[Embodiments of the invention]

本発明の望ましい実施例では、液相中で懸濁するような
微細粒子の不溶性担体に抗体あるいけ抗原を担持させ、
これに抗原、抗体、蛍光標識抗原あるいは蛍光標識抗体
を加えて抗原抗体反応を行なわせ、そののちに、反応混
合物を遠心などの手段によシ固相と液相に分離させ、反
応容器内の固相部位を避けて液相部位に励起光を照射す
ることにより、抗原抗体反応を光学的に定量的に測定し
、これにより目的の抗原又は抗体を定量する。
In a preferred embodiment of the present invention, an antibody or a fish antigen is supported on a fine particle insoluble carrier suspended in a liquid phase;
An antigen, an antibody, a fluorescently labeled antigen, or a fluorescently labeled antibody is added to this to perform an antigen-antibody reaction.Then, the reaction mixture is separated into a solid phase and a liquid phase by means such as centrifugation, and the reaction mixture is separated into a solid phase and a liquid phase by means such as centrifugation. By irradiating the liquid phase region with excitation light while avoiding the solid phase region, the antigen-antibody reaction is optically and quantitatively measured, thereby quantifying the target antigen or antibody.

本発明の望ましい実施例によれば、従来実用的にはラジ
オアイソトープ標識免疫法によって初めて測定可能であ
ったような微量成分を、それよりも遥かに迅速かつ安全
に定量的に測定できる。しかも望ましい実施例では、試
薬組成上は担体粒子を用いた固相法でありながら、固相
を洗浄する必要のない測定の完全自動化に適した測定方
法を提供できる。
According to a preferred embodiment of the present invention, trace components that could only be measured practically by radioisotope labeling immunoassay can be quantitatively measured much more quickly and safely than that. Moreover, in a preferred embodiment, although the reagent composition is a solid phase method using carrier particles, it is possible to provide a measurement method that does not require washing the solid phase and is suitable for complete automation of measurement.

懸濁させる担体としては、平均粒径が0.01μmから
1鰭のものが目的にかない、特に好ましくは平均粒径が
0.1μmから10μmの不活性担体粒子を固相として
用いるのがよい。このような担体を被検試料と反応させ
ると反応効率が非常に良くなるため測定が迅速に進行す
る。しかも試薬系に蛍光標識物質を加えて一定時間反応
させたのち、反応混合液を遠心その他の手段にかけると
、洗浄操作を導入せずに容易に固相結合蛍光標識物質と
遊離の蛍光標識物質とに分離することができ、液相(遊
離)の蛍光強度と被検試料中の目的成分濃度に一定の関
係がある。このような方法によ2Lば、担体粒子を用い
る固相反応系でありながら洗浄操作をすることなく目的
成分を定量でき、しかも従来の不均一反応系に匹敵する
冒い測定感度を得ることができる。
As the carrier for suspension, those having an average particle size of 0.01 μm to 1 fin are suitable for the purpose, and it is particularly preferable to use inert carrier particles with an average particle size of 0.1 μm to 10 μm as the solid phase. When such a carrier is reacted with a test sample, the reaction efficiency becomes very high and the measurement proceeds rapidly. Furthermore, by adding a fluorescent labeling substance to the reagent system and allowing it to react for a certain period of time, the reaction mixture can be centrifuged or other means to easily separate the solid-phase bound fluorescent labeling substance and the free fluorescent labeling substance without introducing a washing operation. There is a certain relationship between the fluorescence intensity of the liquid phase (free) and the concentration of the target component in the test sample. With such a method, 2L can quantify target components without washing operations even though it is a solid-phase reaction system using carrier particles, and it is also possible to obtain a sensitivity measurement comparable to that of conventional heterogeneous reaction systems. can.

被検体中の標的物質を固相法により高精度にしかも迅速
に定量するためには、例えばラテックス粒子のような不
活性担体に担持させた受容体又は標識標的物質を、なる
べく高濃度でこれと反応する標的物質を含む被検体と接
触させることが望ましいことはいうまでもない。
In order to accurately and quickly quantify a target substance in a sample using a solid-phase method, a receptor or a labeled target substance supported on an inert carrier such as latex particles should be used at as high a concentration as possible. It goes without saying that it is desirable to bring the specimen into contact with a specimen containing a reactive target substance.

発明者等が、最終反応液中の担体の重量%を一定として
種々の直径を有する不溶性担体に標的物質例えばヒトイ
ムノグロブリンG(ヒトIgG)に対する受容体(抗ヒ
)IgO抗体)を担持させた試薬を調製して、試薬で達
成する測定感度と反応時間を併せて考慮したところ、担
体の平均粒径がIIal+以下のものを用いると反応時
間1時間以内に標的物質(ヒ)IgG)を定量的に検出
することができることがわかった。また、特に平均粒径
10μm以下の微細粒子を用いると、反応時間15分以
内に標的物質(ヒ)IgG)を定量的に検出することが
できることがわかった。
The inventors made insoluble carriers with various diameters support a target substance, such as a receptor (anti-human IgO antibody) for human immunoglobulin G (human IgG), while keeping the weight percent of the carrier in the final reaction solution constant. After preparing the reagent and considering the measurement sensitivity and reaction time to be achieved with the reagent, we found that if a carrier with an average particle size of IIal+ or less was used, the target substance (H)IgG) could be quantified within 1 hour of reaction time. It was found that it is possible to detect Furthermore, it has been found that when fine particles having an average particle size of 10 μm or less are used, the target substance (IgG) can be quantitatively detected within a reaction time of 15 minutes.

標的物質の測定自動化にあたり、検体処理速度の点から
許容される反応時間は1時間、好ましくは15分以内で
あることから平均粒径10μm以下の担体を使用するこ
とが好ましいといえる。さらに、不活性担体として広く
利用されているポリスチレンラテックス粒子(比重1.
05)を担体に用いて試薬を調製したところ、試薬と被
検試料の混合反応液を、自動分析装置としてくみこむこ
とができる遠心能力の最高回転数である2000Orp
sで遠心したとき、遠心時間1時間以内で担体反応物と
反応液液相を分離するためには、担体粒子径が0.1μ
m以上である必要があることが判明した。
In automating the measurement of a target substance, it is preferable to use a carrier with an average particle size of 10 μm or less, since the allowable reaction time from the viewpoint of sample processing speed is 1 hour, preferably 15 minutes or less. Furthermore, polystyrene latex particles (specific gravity 1.
When the reagent was prepared using 05) as a carrier, the mixed reaction solution of the reagent and the test sample was collected at 2000 rpm, which is the maximum rotational speed of the centrifugal capacity that can be loaded into the automatic analyzer.
In order to separate the carrier reaction product and the reaction liquid phase within 1 hour of centrifugation at
It turns out that it is necessary to be greater than or equal to m.

以上の結果によれば、不活性担体粒子は平均粒径が1■
以下が好ましく、平均粒径が0.1μmから10μmの
担体が好適であることが判明した。
According to the above results, the average particle size of the inert carrier particles is 1
It has been found that the following is preferable, and a carrier having an average particle size of 0.1 μm to 10 μm is suitable.

不活性担体粒子としては、生体液の測定を行なうときに
用いられる液体媒体に実質的に不溶性で、前記平均粒径
を有する有機高分子物質の微粒子、例えばポリスチレン
のような有機高分子のラテックス、個々に分散されたブ
ドウ球菌、連鎖球菌のような細菌あるいは細胞、あるい
は例えばシリカ。
Examples of the inert carrier particles include fine particles of an organic polymer substance that is substantially insoluble in the liquid medium used when measuring biological fluids and has the above-mentioned average particle size, such as organic polymer latex such as polystyrene; Individually dispersed bacteria or cells such as staphylococci, streptococci, or eg silica.

シリカ−アルミナ、アルミナのような無機酸化物、その
他鉱物粉末、金属等が用いられる。
Inorganic oxides such as silica-alumina and alumina, other mineral powders, metals, etc. are used.

測定する物理量は、試薬として用いる標識物質の種類に
より種々、のものが考えられる。例えば、標識物質が蛍
光物質であるときには、蛍光強度を測定する。蛍光強度
■は、垂直成分の蛍光偏光度■1と平行成分の蛍光偏光
度■/の和で表わされるから、1工あるいは■/を測定
しても同様の結果が得られる。また、被検試料中の発蛍
光性の夾雑物質(蛋白質など)による測定誤差を除くに
は、試薬中の蛍光標識物質(標的物質又は受容体)を夾
雑物質よりも大きな形状の不溶性担体に担持させる方法
を用いる。
Various physical quantities can be considered depending on the type of labeling substance used as a reagent. For example, when the labeling substance is a fluorescent substance, the fluorescence intensity is measured. Since the fluorescence intensity (■) is expressed as the sum of the fluorescence polarization degree (1) of the vertical component and the fluorescence polarization degree (2)/of the parallel component, similar results can be obtained even if one measurement or (2)/ is measured. In addition, in order to eliminate measurement errors due to fluorescent contaminants (proteins, etc.) in the test sample, it is necessary to support the fluorescent labeling substance (target substance or receptor) in the reagent on an insoluble carrier that is larger than the contaminant. Use the method of

夾雑物質は不溶性担体と比較して小分子であるため、溶
液中での回転ブラウン運動が活発におこり、蛍光偏光度
が小さいのに対して、不溶性担体に担持した蛍光標識物
質は大分子のために蛍光分子の回転ブラウン運動が抑え
られて蛍光の偏光度は大きくなる。すなわち、前記ヒ)
IgG測定実験において励起光側の偏光フィルタを例え
ば垂直に固定し、蛍光側の偏光フィルタをそれに平行に
したときの蛍光偏光強度I/を測定したところ、総蛍光
強度を測定した場合と比較して夾雑発蛍光物質の影響が
より少ないことを見出した。このとき標的物質IgGに
対する抗IgG抗体を直径10μm1比重1.05のポ
リスチレンラテックスに担持させて、F工TC標識抗I
gG抗体を直径0.1μm1比重1.05のポリスチレ
ンラテックスに担持させて標的物質であるIgGと反応
させたところ、1000ralO分間の遠心により抗I
gG抗体担持ラテックス反応複合物と遊離のF’ I’
I’C標識抗IgG抗体担持ラテックスを分離すること
ができ、抗1gG抗体担持ラテックス反応複合物の部位
を避けて励起光を照射し工、を測定した。
Since contaminants are small molecules compared to insoluble carriers, rotational Brownian motion occurs actively in solution and the degree of fluorescence polarization is small, whereas fluorescent labeling substances supported on insoluble carriers are large molecules. The rotational Brownian motion of fluorescent molecules is suppressed and the degree of polarization of fluorescence increases. That is, the above h)
In an IgG measurement experiment, when the polarizing filter on the excitation light side was fixed vertically and the polarizing filter on the fluorescent side was set parallel to it, the fluorescence polarization intensity I/ was measured, and compared to when measuring the total fluorescence intensity. It was found that the influence of contaminant fluorescent substances was less. At this time, an anti-IgG antibody against the target substance IgG was supported on polystyrene latex with a diameter of 10 μm and a specific gravity of 1.05.
When the gG antibody was supported on polystyrene latex with a diameter of 0.1 μm and a specific gravity of 1.05 and reacted with the target substance IgG, the anti-I
gG antibody-supported latex reaction complex and free F'I'
The I'C-labeled anti-IgG antibody-supported latex could be separated, and excitation light was irradiated avoiding the site of the anti-1gG antibody-supported latex reaction complex, and the results were measured.

本発明は、以上述べたような蛍光強度あるいは蛍光偏光
度の測定に限るものではない。標識物質が酵素であるな
らば酵素活性を測定すればよく、りん光物質ならリン光
の強光を測定すればよく、また、これ以外のものであっ
てもかまわない。
The present invention is not limited to the measurement of fluorescence intensity or fluorescence polarization degree as described above. If the labeling substance is an enzyme, the enzyme activity may be measured, and if the labeling substance is a phosphorescent substance, the intensity of phosphorescence may be measured, and other substances may also be used.

以丁、本発明の実施例の詳細を説明する。Hereinafter, details of embodiments of the present invention will be described.

実施例1: (1)抗α−フェトプロティン抗体感作ラテックス試薬
(抗AFPラテックス試薬)の調製抗ヒトAFP抗体の
グリシン緩衝液(2〜/dt)10−に、平均粒径が0
,55μmのポリスチレンラテックス(積木化学工業製
、固形分濃度10重f%)1−を加え、室温において3
時間攪拌したのち、2〜4Cの冷却下に40分間遠心分
離(12000rlll)を行なう。沈殿を分散させた
抗AP’P抗体感作(担持]ラテックス粒子を牛血清ア
ルブミン溶液(0,2重量%)に懸濁させて、該感作ラ
テツクス粒子濃度が1重量%の抗AEPラテックス試薬
を調製する。
Example 1: (1) Preparation of anti-α-fetoprotein antibody sensitized latex reagent (anti-AFP latex reagent) An anti-human AFP antibody with an average particle size of 0 was added to a glycine buffer (2~/dt) 10-
, 55 μm polystyrene latex (manufactured by Block Chemical Co., Ltd., solid content concentration 10% by weight) was added, and
After stirring for an hour, centrifugation (12,000 rll) is performed for 40 minutes while cooling at 2-4C. The anti-AP'P antibody sensitized (supported) latex particles in which the precipitate is dispersed are suspended in a bovine serum albumin solution (0.2% by weight) to prepare an anti-AEP latex reagent whose concentration of the sensitized latex particles is 1% by weight. Prepare.

0) 抗α−7工トプロテイン抗体グロブリン分画のF
ITC標識 抗ヒトAFP抗体10■を含む0.9 % NaC1溶
液2−中に、0,5dの0.5M炭酸−重炭酸緩衝液(
pH9,0)を加え、さらにp I T C(fluo
rescoinlsothiocyanate 31 
m&を含む0.5M炭酸−重炭酸緩衝液(1)H9,O
)0.5−を加え、4Cで4時間反応させる。反応終了
後、9 ephadex O−25カラムで分画し、波
長280nmおよび495nmの吸光度を測定して両ピ
ークの一致する分画をPITC標識抗体として用いた。
0) F of anti-α-7 protein antibody globulin fraction
0.5 M carbonate-bicarbonate buffer (
pH 9,0) was added, and p I T C (fluo
rescoinlsothiocyanate 31
0.5M carbonate-bicarbonate buffer containing m&(1)H9,O
)0.5- and react at 4C for 4 hours. After the reaction was completed, it was fractionated using a 9 ephadex O-25 column, the absorbance at wavelengths of 280 nm and 495 nm was measured, and a fraction with matching peaks was used as a PITC-labeled antibody.

9 ephadex Q −25カラムからの溶出には
5mMリン酸緩衝液(pH7,2)を使用した。
9 5mM phosphate buffer (pH 7,2) was used for elution from the ephadex Q-25 column.

(3)測定方法 第1図に本実施例の分析装置の平面図を示す。(3) Measurement method FIG. 1 shows a plan view of the analyzer of this embodiment.

第2図にトラップを有する反応容器を載置したテーブル
と測光系の側面図を第2図に示した。反応容器はメタク
リル樹脂の製形品で本体部は通常の角形キュベツトと同
様であるが、一方の側面にトラップ2を設けである。
FIG. 2 shows a side view of a table on which a reaction vessel with a trap is placed and a photometric system. The reaction vessel is a molded product of methacrylic resin, and the main body is similar to a normal square cuvette, but a trap 2 is provided on one side.

第1図、第2図において反応テーブル10円周上に、ト
ラップ部21を外周方向にした反応容器2が60個(図
示の都合で12個のみ表示)設置される。サンプルテー
ブル30円周上には標準物質および被検試料を収容した
40個のサンプルカップ4が設置される。試料分注腕5
は図示されていない分注シリンジと連動してサンプルテ
ーブル3上の定位置6に位置づけられた試料液をプロー
ブ13内に吸入して反応テーブル1上の定位置7にある
反応容器中に吐出する。反応テーブル1は、反応容器1
個分の間隔を1ピツチとするステップ送りで回転され、
サンプルテーブル3は、分析依頼項目の入力情報に基づ
いて回転する。反応テーブル1がステップ送りされて試
料の吐出収容された反応容器2が所定位置7に達すると
、各々分注シリンジと連動する試薬分注プローブを有す
る腕8.9が移動動作して、保冷庫10中の分析項目に
応じた試薬を一定量分取して定位置にある反応容器中に
吐出する。試料と試薬は混和され反応が進行する。これ
らの各動作は、予め入力する分析条件に基づいてマイク
αコンピュータ11で制御される。分析結果はプリンタ
14およびCRT15に表示される。
In FIGS. 1 and 2, 60 reaction vessels 2 (only 12 are shown for convenience of illustration) are installed around the circumference of the reaction table 10, with the trap portions 21 facing toward the outer periphery. Forty sample cups 4 containing standard substances and test samples are placed on the circumference of the sample table 30. Sample dispensing arm 5
works in conjunction with a dispensing syringe (not shown) to aspirate the sample liquid located at a fixed position 6 on the sample table 3 into the probe 13 and discharge it into the reaction container located at a fixed position 7 on the reaction table 1. . Reaction table 1 is reaction container 1
It is rotated by step feed with the interval between each piece being 1 pitch,
The sample table 3 is rotated based on the input information of the analysis request item. When the reaction table 1 is fed step by step and the reaction container 2 in which the sample is discharged and accommodated reaches the predetermined position 7, the arms 8 and 9 each having a reagent dispensing probe interlocked with a dispensing syringe are moved and moved to the cold storage. A certain amount of the reagent corresponding to the analysis item in 10 is taken out and discharged into a reaction container in a fixed position. The sample and reagent are mixed and the reaction proceeds. Each of these operations is controlled by the microphone α computer 11 based on analysis conditions input in advance. The analysis results are displayed on the printer 14 and CRT 15.

反応容器2中で反応が一定時間進行すると、固相に結合
した蛍光標識物質(B)と遊離の蛍光標識物質(F)を
分離するために反応テーブル1は高速回転する。反応容
器2を架設した反応テーブル1は、モーター24の軸に
固定されており、反応容器2のステップ送り動作に加え
て、20000rpmまでの高速回転動作をすることが
できる。
When the reaction proceeds for a certain period of time in the reaction vessel 2, the reaction table 1 rotates at high speed in order to separate the fluorescent labeling substance (B) bound to the solid phase from the free fluorescent labeling substance (F). The reaction table 1 on which the reaction container 2 is mounted is fixed to the shaft of a motor 24, and in addition to the step feed operation of the reaction container 2, it can perform high-speed rotation operation up to 20,000 rpm.

表1に示すα−フェトプロティン(AFP)濃度を有す
る標準AFP溶液をサンプルテーブル3に、抗AFPラ
テックス試薬とFI’rC標織抗AFP抗体を保冷庫1
0Vcセツトして分析を開始した。分析条件は、試料5
μt1抗AFPラテックス試薬300μt%FITC標
識抗AFP抗体100μtである。すなわち、試料5μ
tを分取後に、抗AFP抗体ラテックス試薬を300μ
を添加して37Cで10分間反応させた。この反応混合
液にFITC標識抗ARP抗体を100μを添加分注し
、さらに37tll”で10分間反応させた。
A standard AFP solution having the α-fetoprotein (AFP) concentration shown in Table 1 was placed in sample table 3, and anti-AFP latex reagent and FI'rC-textured anti-AFP antibody were placed in cold storage 1.
The analysis was started by setting 0Vc. The analysis conditions are sample 5.
μt1 anti-AFP latex reagent 300 μt% FITC-labeled anti-AFP antibody 100 μt. That is, sample 5μ
After separating t, add 300μ of anti-AFP antibody latex reagent.
was added and reacted at 37C for 10 minutes. To this reaction mixture, 100μ of FITC-labeled anti-ARP antibody was added and dispensed, and further reacted at 37tll'' for 10 minutes.

こののち、反応容器を1oooor−で5分間遠心した
。遠心終了後に、3秒ピッチで反応テーブルをステップ
送りして波長5251mにおける蛍光強度をめた。この
結果を表1に示す。
After this, the reaction container was centrifuged at 1 oooor- for 5 minutes. After the centrifugation was completed, the reaction table was moved in steps at a pitch of 3 seconds to measure the fluorescence intensity at a wavelength of 5251 m. The results are shown in Table 1.

表 1 反応容器2には、レーザ光源31からのアルゴンレーザ
(波長488nm)を照射し、[)elayedplu
orescenceを測定した。すなわち、光源側シャ
ッタ32と光検知器35側シヤツタ33は逆位相で制御
され、励起時にはシャッタ32が開きシャッタ33が閉
じられる。また、測定時にはシャッタ32が閉じられ、
シャッタ33が開かれる。各反応容器が測光位置に位置
づけられる都度、シャッタ32.33の開閉動作が行わ
れる。フィルタ37.38は迷光カット用緩衝フィルタ
である。
Table 1 The reaction vessel 2 is irradiated with an argon laser (wavelength 488 nm) from the laser light source 31,
oressence was measured. That is, the light source side shutter 32 and the photodetector 35 side shutter 33 are controlled in opposite phases, and the shutter 32 is opened and the shutter 33 is closed during excitation. Further, the shutter 32 is closed during measurement,
Shutter 33 is opened. Each time each reaction vessel is positioned at a photometric position, the shutters 32, 33 are opened and closed. Filters 37 and 38 are buffer filters for cutting stray light.

測定は10ミリ秒(m(5))間隔で20回測光して平
均値をめた。39は増幅器、40はA/D変換器である
The measurement was performed 20 times at intervals of 10 milliseconds (m(5)) and the average value was calculated. 39 is an amplifier, and 40 is an A/D converter.

表1の測定結果を、標準APP溶液の濃度を横軸とし蛍
光強度をM1″@とするグラフにプロットして標準曲線
を作成する。被検者から採取した試料は、上述の標準液
の場合と全く同様にして反応させ、デジタルコンピュー
タ11は上記のようにして得られた標準曲線を用いて測
定した蛍光強度に対応するAFP濃度を読みとる。被検
者試料の測定の結果を表2に示す。なお、表2には比較
のため従来のラジオアイソトープ標識法(RIA法)に
よる測定結果も併せて示す。
A standard curve is created by plotting the measurement results in Table 1 on a graph with the concentration of the standard APP solution as the horizontal axis and the fluorescence intensity as M1''@. The digital computer 11 reads the AFP concentration corresponding to the fluorescence intensity measured using the standard curve obtained as above.The results of the measurement of the subject sample are shown in Table 2. For comparison, Table 2 also shows the measurement results by the conventional radioisotope labeling method (RIA method).

表 2 以上の結果から、本実施例法によって得られるAFP濃
度は、従来法のうちでも最も正確な定量法として知られ
ているRIA法による測定結果と極めてよく一致してい
ることがわかる。本発明の実施例では蛍光標識物質にF
ITCを使用したが、標識物質はこれに制限されるもの
ではない。
Table 2 From the above results, it can be seen that the AFP concentration obtained by the method of this example is in extremely good agreement with the measurement results by the RIA method, which is known as the most accurate quantitative method among conventional methods. In the embodiments of the present invention, the fluorescent labeling substance is F.
Although ITC was used, the labeling substance is not limited thereto.

実施例2; (1)抗ケンタマイシン抗体感作イムノビーズの調20
−の精製水に懸濁したイムノビーズ(Bi。
Example 2; (1) Preparation of anti-centamycin antibody-sensitized immunobeads 20
- Immunobeads (Bi.

−Rad社製)2001ngに、市販の抗ゲンタマイシ
ン抗体151Qを含む22チジメチルホルムアミド含有
10mMリン酸緩衝液(1)H6,2)4−を加え、次
いで401111iJの1− ethl −3−(3−
dimethyla −minopropyl ) c
art)odiimideを加え、室温で8時間反応さ
せる。反応終了後、イムノビーズを10mMリン酸緩衝
液(pH6,2) 、 s o %メpt −ル、0.
11ゼラチン含有の0.06Mバルビタール緩衝液(p
 Hs、 a )の順に洗浄して、最後に0.1優ゼラ
チン含有の0.06Mバルビタール緩衝液(1)H8,
6)でイムノビーズ1rv/−の懸濁液として測定に用
いる。
- To 2001 ng of commercially available anti-gentamicin antibody 151Q was added 10 mM phosphate buffer (1) H6,2)4- containing 22 tidimethylformamide, and then 401111 iJ of 1-ethl-3-(3-
dimethyla-minopropyl) c
art) Add odiimide and react at room temperature for 8 hours. After the reaction was completed, the immunobeads were mixed with 10 mM phosphate buffer (pH 6,2), SO% Meptol, 0.
11 gelatin-containing 0.06 M barbital buffer (p
Hs, a), and finally 0.06M barbital buffer containing 0.1 predominant gelatin (1) H8,
6) is used for measurement as a suspension of 1rv/- of immunobeads.

(2)FITC標識ゲッタマイシンの調製ゲンタマイシ
ン4■をメタノール0.5−に溶解し、0.1NNaO
Hにてp H9,0に調製後、FITC20myを含む
ジオキサン溶液を添加し、室温で4時間反応後、反応生
成物を薄層クロマトグラフィにより分離、精製してFI
TC標識ゲンタマイシンを得る。
(2) Preparation of FITC-labeled gettamycin Dissolve 4 ml of gentamicin in 0.5-methanol and add 0.1 N NaO
After adjusting the pH to 9.0 with H, a dioxane solution containing 20 my of FITC was added, and after reacting at room temperature for 4 hours, the reaction product was separated and purified by thin layer chromatography to obtain FITC.
Obtain TC-labeled gentamicin.

(3) 測定方法 試料10μtと抗ゲンタマイシン抗体感作イムノピーズ
100μtとFI’l’C標識抗体60μtを加えて3
7Cで20分間反応させた。こののち、反応容器を50
00rpmで5分間遠心後、実施例1と同様にして蛍光
強度をめた。
(3) Measurement method: Add 10 μt of sample, 100 μt of anti-gentamicin antibody-sensitized immunopeads, and 60 μt of FI'l'C-labeled antibody.
The reaction was carried out at 7C for 20 minutes. After this, the reaction container was
After centrifugation at 00 rpm for 5 minutes, the fluorescence intensity was measured in the same manner as in Example 1.

(4)測定結果 (3)の方法で得ら・れたゲンタマイシンの検量線を第
3図に示す。また、RIA法との相関図を第4図に示す
(4) Measurement Results The calibration curve for gentamicin obtained by the method in (3) is shown in FIG. Furthermore, a correlation diagram with the RIA method is shown in FIG.

実施例3: (1)試薬の調製 抗IgG抗体を抗ヒ)AFP抗体の代わりに使用し、平
均粒径10μmのラテックス粒子を用いた他は実施例1
(1)と同様の方法により、抗IgG抗体感作ラテック
ス試薬を調製した。また、抗ヒ)AFP抗体の代わりに
市販のFITC標識抗IgG抗体を用い、平均粒径0.
1μmのラテックス粒子を用いた他は実施例1(1)と
同様の方法によりFITC標識抗IgG抗体感作ラテッ
クス試薬を調製した。
Example 3: (1) Preparation of reagent Same as Example 1 except that anti-IgG antibody was used instead of anti-human AFP antibody and latex particles with an average particle size of 10 μm were used.
An anti-IgG antibody sensitized latex reagent was prepared in the same manner as in (1). In addition, a commercially available FITC-labeled anti-IgG antibody was used instead of the anti-Human AFP antibody, and the average particle size was 0.
A FITC-labeled anti-IgG antibody-sensitized latex reagent was prepared in the same manner as in Example 1 (1) except that 1 μm latex particles were used.

(2) 測定方法 分析条件は、試料10μt1抗IgG抗体ラテックス試
薬300μt%FITC標識抗IgG抗体感作ラテック
ス試薬50μtとした。すなわち、試料10μtを分取
後に抗IgG抗体ラテックス試薬300μtを添加して
37Cで10分間反応させた。この反応混合液にFIT
C標識抗IgG抗体感作ラテックス試薬50μtを添加
分注して、さらに37Uで10分間反応させた。このの
ち、反応容器を1000rIIlで10分間遠心し、遠
心終了後に3秒ピッチで反応テーブルをステップ送りし
て蛍光偏光度を測定した。
(2) Measurement method The analysis conditions were as follows: sample 10 μt1 anti-IgG antibody latex reagent 300 μt% FITC-labeled anti-IgG antibody sensitized latex reagent 50 μt. That is, after 10 μt of the sample was taken, 300 μt of anti-IgG antibody latex reagent was added and reacted at 37 C for 10 minutes. FIT this reaction mixture
50 μt of C-labeled anti-IgG antibody-sensitized latex reagent was added and dispensed, and the mixture was further reacted with 37 U for 10 minutes. Thereafter, the reaction container was centrifuged at 1000 rIIl for 10 minutes, and after the centrifugation, the reaction table was stepped at a 3 second pitch to measure the degree of fluorescence polarization.

反応の程度を蛍光偏光度で測定する場合には、第2図に
おけるフィルタ37、フィルタ38を偏光フィルタに交
換すればよい。偏光フィルタ9は、偏光フィルタ8に平
行な場合と直角な場合とに切り換えることができる。励
起光側の偏光フィルタ8を垂直に固定して蛍光側の偏光
フィルタ9をそれに平行にしたときに得られる蛍光強度
工 を測定した。
If the degree of reaction is to be measured by the degree of fluorescence polarization, filters 37 and 38 in FIG. 2 may be replaced with polarizing filters. The polarizing filter 9 can be switched between being parallel to the polarizing filter 8 and being perpendicular to it. The fluorescence intensity obtained when the polarizing filter 8 on the excitation light side was fixed vertically and the polarizing filter 9 on the fluorescent side was set parallel to it was measured.

(3)測定結果 IgG測定の検量線を第5図に示す。(3) Measurement results A calibration curve for IgG measurement is shown in FIG.

次に本発明に基づ〈実施態様をいくつか列挙する。Next, some embodiments based on the present invention will be listed.

(1) 標的物質と標的物質に特異的結合性を有する蛍
光標識した受容体を反応させる。反応混合物と平均粒径
が0,01μmからIM好ましくは0.1μmから10
μmの不活性担体粒子に標的物質を担持させた固相化標
的物質を反応させたのち、反応容器を遠心その他の操作
にかけて、固相化標的物質に反応した蛍光標識受容体と
標的物質に反応した蛍光標識受容体を分離する。標識蛍
光物質を励起する光束を、同相化標的物質の部位を避け
て該反応容器に照射することにより標的物質に反応した
蛍光標識受容体に由来する蛍光量を測定し、該蛍光量に
基づいて標的物質を定量する。
(1) A target substance is reacted with a fluorescently labeled receptor that has specific binding properties to the target substance. The reaction mixture and the average particle size are preferably from 0.1 μm to 10 μm.
After reacting the immobilized target substance in which the target substance is supported on μm-sized inert carrier particles, the reaction vessel is subjected to centrifugation or other operations to cause the fluorescently labeled receptor that has reacted with the immobilized target substance to react with the target substance. The fluorescently labeled receptors are isolated. The amount of fluorescence derived from the fluorescently labeled receptor that has reacted with the target substance is measured by irradiating the reaction vessel with a light flux that excites the labeled fluorescent substance while avoiding the site of the in-phase target substance, and the amount of fluorescence derived from the fluorescently labeled receptor that has reacted with the target substance is measured. Quantify the target substance.

(2)平冷粒径が0.01μmからIIO+好ましくは
0.1μmから10μmの不活性担体粒子に標的物質に
特異的結合性を有する受容体−1を担持させた固相化受
容体と標的物質を反応させる。反応混合物と受容体−1
に特異的結合性を有せず標的物質に特異的結合性を有す
る蛍光標識受容体を反応させたのち、反応容器を遠心そ
の他の操作にかけて、固相化受容体反応標的物質に反応
した蛍光標識受容体と遊離の蛍光標識受容体を分離する
。標識蛍光物質を励起する光束を、固相化複合体の部位
を避けて該反応容器に照射することにより遊離の蛍光標
識受答体に由来する蛍光量を測定し、この蛍光量に基づ
いて標的物質を定量する。
(2) A solid-phase receptor and a target in which receptor-1 having a specific binding property to a target substance is supported on an inert carrier particle having a cold particle size of 0.01 μm to IIO + preferably 0.1 μm to 10 μm. make substances react. Reaction mixture and receptor-1
After reacting with a fluorescently labeled receptor that does not have specific binding properties to the target substance but does have specific binding properties to the target substance, the reaction vessel is subjected to centrifugation or other operations to detect the fluorescent label that has reacted with the target substance. Separate the receptor and free fluorescently labeled receptor. By irradiating the reaction vessel with a light flux that excites the labeled fluorescent substance while avoiding the site of the immobilized complex, the amount of fluorescence derived from the free fluorescently labeled acceptor is measured, and based on this amount of fluorescence, the target is detected. Quantify substances.

(3)平均粒径が0,01μmからIm好ましくは0.
1μmから10μmの不活性担体粒子に標的物質に特異
的に結合する受容体−1を担持させた固相化受容体と標
的物質を反応させる。
(3) The average particle diameter is preferably from 0.01 μm to 0.01 μm.
The target substance is reacted with a solid-phase receptor in which receptor-1 that specifically binds to the target substance is supported on inert carrier particles of 1 μm to 10 μm.

反応混合物と固相化受容体に特異的結合性を有せず標的
物質に特異的結合性を有する受容体−2と該受容体−2
に特異的結合性を有する蛍光標識受容体−3を反応させ
たのち、反応容器を遠心その他の操作にかけて、固相化
複合体に反応した蛍光標識受容体−3と遊離の蛍光標識
受容体−3を分離する。標識蛍光物質を励起する光束を
固相化複合体の部位を避けて反応容器に照射することに
より遊離の蛍光標識受容体に由来する蛍光量を測定し、
この蛍光量に基づいて標的物質を定量する。
Receptor-2 that does not have specific binding properties to the reaction mixture and the solid-phase receptor but has specific binding properties to the target substance, and the receptor-2
After reacting with fluorescently labeled receptor-3 that has specific binding properties, the reaction vessel is subjected to centrifugation or other operations to separate the fluorescently labeled receptor-3 that has reacted with the immobilized complex and the free fluorescently labeled receptor. Separate 3. The amount of fluorescence originating from the free fluorescently labeled receptor is measured by irradiating the reaction vessel with a light flux that excites the labeled fluorescent substance while avoiding the site of the immobilized complex.
The target substance is quantified based on this amount of fluorescence.

(4)平均粒径が0.01μmからIIal好ましくは
0.1μmから10μmの不活性担体粒子に標的物質に
特異的結合性を有する受容体を担持させた固相化受容体
と標的物質と蛍光標識標的物質を反応させたのち、反応
容器を遠心その他の操作にかけて、固相化受容体に反応
した蛍光標識標的物質と遊離の蛍光標識標的物質を分離
する。標識蛍光物質を励起する光束を固相化複合体の部
位を避けて反応容器に照射することにより遊離の蛍光標
識的物質に由来する蛍光量を測定し、蛍光量に基づいて
標的物質を定量する。
(4) A solid-phase receptor in which a receptor having specific binding property to a target substance is supported on inert carrier particles with an average particle diameter of 0.01 μm to IIal, preferably 0.1 μm to 10 μm, a target substance, and fluorescence After the labeled target substance is reacted, the reaction vessel is subjected to centrifugation or other operations to separate the fluorescently labeled target substance that has reacted with the solid-phase receptor from the free fluorescently labeled target substance. The amount of fluorescence derived from the free fluorescent labeling substance is measured by irradiating the reaction vessel with a light flux that excites the labeled fluorescent substance while avoiding the site of the immobilized complex, and the target substance is quantified based on the amount of fluorescence. .

(5)標的物質と標的物質に特異的結合性を有する受答
体−1と蛍光標識標的物質を反応させる。反応混合物と
平均粒径が0.01μmからIm好ましくけ041μm
から10μmの不活性担体粒子に受容体−1に特異的結
合性を有する受容体−2を担持させた固相化受容体を反
応させたのち、反応容器を遠心その他の操作にかけて、
固相化複合体に反応し九蛍光標識標的物質と遊離の蛍光
標識標的物質を分離する。標識蛍光物質を励起する光束
を固相化複合体の部位を避けて該反応容器に照射するこ
とにより遊離の蛍光標識標的物質に由来する蛍光量を測
定し、該蛍光量に基づいて標的物質を定量する。
(5) React the fluorescently labeled target substance with the target substance and the receptor-1 that has specific binding properties to the target substance. The reaction mixture and the average particle size are preferably from 0.01 μm to 041 μm.
After reacting a solid-phase receptor carrying receptor-2 having a specific binding property to receptor-1 with inert carrier particles of 10 μm in size, the reaction vessel is subjected to centrifugation or other operations,
It reacts with the immobilized complex and separates the nine fluorescently labeled target substances from the free fluorescently labeled target substances. The amount of fluorescence derived from the free fluorescently labeled target substance is measured by irradiating the reaction vessel with a light flux that excites the labeled fluorescent substance while avoiding the site of the immobilized complex, and the target substance is detected based on the amount of fluorescence. Quantify.

(6)標的物質と酵素作用をうけて初めて発蛍光性物質
を生成する蛍光基質標識標的物質(非蛍光性)と平均粒
径0.01μmから1m好ましくは0.1μmから10
μmの不活性担体粒子に標的物質に41)異的結合性を
有する受容体を担持させた固相化受容体を反応させる。
(6) Fluorescent substrate-labeled target substance (non-fluorescent) that generates a fluorescent substance only after undergoing enzyme action with the target substance and an average particle size of 0.01 μm to 1 m, preferably 0.1 μm to 10 μm.
41) A solid-phase receptor carrying a receptor having a different binding property to a target substance is reacted with a μm-sized inert carrier particle.

反応混合物と蛍光基質に作用して発蛍光性物質を生成す
る酵素を反応させる反応系において、反応容器を遠心そ
の他の操作にかけて、固相化受答体と反応した蛍光基質
ma&標的物質と遊離の蛍光基質標識標的物質を分離す
る。酵素作用をうけて発蛍光性となった物質を励起する
光束を面相化複合体の部位を避けて反応容器に照射する
ことにより遊離の蛍光基質標識標的物質に由来する蛍光
量を測定し、該蛍光量に基づいて標的物質を定量する。
In a reaction system in which a reaction mixture is reacted with an enzyme that acts on a fluorescent substrate to produce a fluorescent substance, the reaction vessel is subjected to centrifugation or other operations to separate the fluorescent substrate ma that has reacted with the immobilized receptor, the target substance, and the free Separate fluorescent substrate-labeled target substances. The amount of fluorescence derived from the free fluorescent substrate-labeled target substance is measured by irradiating the reaction vessel with a light flux that excites the substance that has become fluorescent due to the action of the enzyme, avoiding the site of the phase-forming complex. The target substance is quantified based on the amount of fluorescence.

(7)標的物質と酵素作用をうけて初めて発蛍光性物質
を生成する蛍光標識標的物質(非蛍光性)と平均粒径0
.01μmから1m+好ましくは0,1μmから10μ
mの不活性担体粒子に標的物質に特異結合性を有する受
容体を担持させた固相化受容体を反応させる。反応混合
物と蛍光物質(非蛍光性)に作用して発蛍光性物質を生
成する性質を有する酵素を反応させる反応系において、
反応容器を遠心その他の操作にかけて、固相化複合体と
反応した蛍光標R標的物質と固相化複合体とは反応せず
に酵素作用をうけた発蛍光性物質を分離する。
(7) Fluorescently labeled target substance (non-fluorescent) that generates a fluorescent substance only after receiving enzyme action with the target substance and an average particle size of 0
.. 0.1μm to 1m+preferably 0.1μm to 10μ
A solid-phase receptor carrying a receptor having specific binding property to the target substance is reacted with the inert carrier particles of m. In a reaction system in which a reaction mixture is reacted with an enzyme that has the property of acting on a fluorescent substance (non-fluorescent) to produce a fluorescent substance,
The reaction vessel is subjected to centrifugation or other operations to separate the fluorescent label R target substance that has reacted with the immobilized complex from the fluorescent substance that has not reacted with the immobilized complex but has been subjected to the action of the enzyme.

発蛍光性物質を励起する光束を固相化複合体の部位を避
けて反応容器に照射することにより蛍光量を測定し、該
蛍光量に基づいて標的物質を定量する。
The amount of fluorescence is measured by irradiating the reaction container with a light flux that excites the fluorescent substance while avoiding the site of the immobilized complex, and the target substance is quantified based on the amount of fluorescence.

(8)標的物質を含有する試料を供給する試料供給機構
と、これらの試料を反応容器に移送するサンプリング機
構と、固相化受容体、蛍光標識受容体、固相化標的物質
、受容体、蛍光標識標的物質、酵素液などを試薬として
反応器に移送する試薬供給機構と、標的物質と試薬を反
応容器内で一定時間反応させたのち反応混合物を含有す
る反応容器を500〜20000rfllの遠心にかけ
ることのできる反応容器遠心機構と、反応容器中の該反
応混合物の液相に標識蛍光物質を励起させる光束を照射
するための光源と、液相から発光される蛍光強度を検知
する検知手段と、蛍光量に基づいて試料中の標的物質の
濃度を演算処理する部分と、演算の結果を印字する手段
とを有することを特徴とする自動分析装置を用いて標的
物質を測定する。
(8) a sample supply mechanism that supplies a sample containing a target substance, a sampling mechanism that transfers these samples to a reaction container, a solid-phase receptor, a fluorescently labeled receptor, a solid-phase target substance, a receptor, A reagent supply mechanism that transfers a fluorescently labeled target substance, an enzyme solution, etc. as a reagent to a reactor, and a mechanism that allows the target substance and reagent to react in the reaction vessel for a certain period of time, and then centrifuges the reaction vessel containing the reaction mixture at 500 to 20,000 rfl. a reaction container centrifugation mechanism that can be applied to a reaction container; a light source for irradiating a liquid phase of the reaction mixture in the reaction container with a light flux that excites a labeled fluorescent substance; and a detection means for detecting the intensity of fluorescence emitted from the liquid phase. A target substance is measured using an automatic analyzer characterized by having a part for calculating the concentration of a target substance in a sample based on the amount of fluorescence, and a means for printing the result of the calculation.

(9)標的物質を含有する試料を供給する試料供給機構
と、これらの試料を反応容器に移送するサンプリング機
構と、磁性を有する固相化受容体あるいは磁性を有する
固相化標的物質と受容体、蛍光標識受容体、蛍光標識標
的物質、酵素液などを試薬として反応容器に移送する試
薬供給機構と、標的物質と試薬を一定時間反応させたの
ち反応混合物を含有する該反応容器の一部に磁性を持た
せて反応混合物を液相と固相に分離することのできる反
応容器保持機構と、液相に標識蛍光物質を励起させる光
束を照射するための光源と、液相から発光される蛍光強
度を検印する検知手段と、蛍光量に基づいて試料中の標
的物質の濃度を演算処理する機能を有する自動分析装置
を用いて標的物質を測定する。
(9) A sample supply mechanism that supplies a sample containing a target substance, a sampling mechanism that transfers these samples to a reaction container, and a magnetic solid phase receptor or a magnetic solid phase target substance and a receptor. , a reagent supply mechanism that transfers a fluorescently labeled receptor, a fluorescently labeled target substance, an enzyme solution, etc. as reagents to a reaction vessel, and a part of the reaction vessel containing a reaction mixture after reacting the target substance and reagent for a certain period of time. A reaction container holding mechanism that can magnetically separate the reaction mixture into a liquid phase and a solid phase, a light source for irradiating the liquid phase with a light flux that excites the labeled fluorescent substance, and fluorescence emitted from the liquid phase. The target substance is measured using an automatic analyzer that has a detection means for checking the intensity and a function to calculate the concentration of the target substance in the sample based on the amount of fluorescence.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、担体の懸濁状態で反応を進行できるの
で、反応効率が高くなり、操作時間を短縮できる。しか
も洗浄操作が不要となるので測定精度を高めることがで
きる。
According to the present invention, since the reaction can proceed while the carrier is in suspension, the reaction efficiency can be increased and the operation time can be shortened. Furthermore, since no cleaning operation is required, measurement accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部平面を示す図、第2図
は第1図の実施例の反応テーブル付近の縦断面図、第3
図はゲンタマイシンの検量線例を示す図、第4図は水沫
とRIA法による測定結果の相関性を示す図、第5図は
イムノグロブリンOの検量線例を示す図である。 1・・・反応テーブル、2・・・反応容器、3・・・サ
ンプルテーブル、31・・・レーザ光源、32.33・
・・シャケ゛゛ンフマイしシ(、u3/+ン RIAシ直(1)I/献】 躬5目 0 1500 300O r=a ’TA蔑(m楕)
FIG. 1 is a plan view showing a main part of an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of the vicinity of the reaction table of the embodiment of FIG.
The figure shows an example of the calibration curve for gentamicin, FIG. 4 shows the correlation between the measurement results of water droplets and the RIA method, and FIG. 5 shows an example of the calibration curve for immunoglobulin O. DESCRIPTION OF SYMBOLS 1... Reaction table, 2... Reaction container, 3... Sample table, 31... Laser light source, 32.33.
・・Shake ゛゛nfumyshishi(, u3/+nRIASiDirect(1)I/Dedication)

Claims (1)

【特許請求の範囲】 1、標的物質を含む生体試料に不溶性担体粒子を懸濁さ
せてこの担体粒子に上記標的物質を担持させること、反
応容器内で上記標的物質に抗原抗体反応を行わせること
、遠心分離により上記担体粒子を液相と分離すること、
および上記担体粒子を上記反応容器に存在させたまま上
記液相の光学的特性を測定することを含む生体試料の測
定方法。 2、上記担体粒子の粒度は、0.01μmから1鰭の範
囲内である特許請求の範囲第1項記載の生体試料の測定
方法。 3、上記光学的特性は、蛍光強度および蛍光偏光度の内
の一方である特許請求の範囲第1項記載の生体試料の測
定方法。 4、標的物質を含む生体試料に不溶性担体粒子を懸濁さ
せること、上記生体試料に標識標的物質を加えること、
反応容器内で上記標的物質および上記標識標的物質に抗
原抗体反応を行わせること、遠心分離により上記担体粒
子を液相と分離すること、および上記液相の光学的特性
を測定することを含む生体試料の測定方法。 5、抗原抗体反応を用いて標的物質を定量する方法にお
いて、標的物質を含む試料と標識標的物質と標的物−に
特異的結合性を有する第1の受容体を反応させた後に、
□該受容体に特異的結合性を有する第2の受容体を加え
て反応させ、しかるのちに遠心力を加えることにより、
第2の受容体と反応した第1の受容体反応標識複合物と
、遊離の標識物質を分離して後者の標識物理量を測定す
ることによって試料に含まれる標的物質を測定する生体
試料の測定方法。 6、標的物質を含む生体試料に不溶性担体粒子を懸濁さ
せること、上記試料に受容体を加えこの受容体を上記担
体粒子に担持させること、標識受容体を加えること、遠
心分離により上記担体粒子を液相と分離すること、およ
び上記液相の光学的特性を測定することを含む生体試料
の測定方法。 7、平均粒径が0.1μmから10μmの不活性担体粒
子に標的物質との間で特異的結合性を有する受容体を担
持させた固相化受答体と、標的物質とを反応容器内で反
応させ、その反応混合物と蛍光標識受容体を反応させた
のち、上記反応容器を遠心回転して同相化複合体に反応
した蛍光標識受容体と遊離の蛍光標識受容体を分離し、
標識蛍光物質を励起する光束を上記反応容器に照射して
遊離蛍光標識受容体に由来する蛍光量を測定し、該蛍光
量に基づいて上記標識物質を定量することを特徴とする
生体試料の測定方法。 8、該担体粒子が、水性液体媒体に実質的に不溶性の有
機高分子物質微粉末又は無機物質微粉末である特許請求
の範囲第7項記載の生体試料の測定方法。 9、該有機高分子物質微粉末が合成樹脂微粉末、バクテ
リア又は細胞膜片である特許請求の範囲第8項記載の生
体試料の測定方法。 10、上記有機高分子物質微粉末がポリスチレンラテッ
クス粒子、スチレン/プダジエンラテックス粒子である
特許請求の範囲第8項記載の生体試料の測定方法。 11、上記有機高分子物質微粉末が磁性を有するラテッ
クス粒子である特許請求の範囲第10項記載の生体試料
の測定方法。 12、上記無機物質微粉末が、金属、無機酸化物、およ
び鉱物の微粉末の内のいずれかである特許請求の範囲第
8項記載の生体試料の測定方法。 13、上記無機物質微粉末が、シリカ、アルミナおよび
シリカ−アルミナの微粉末の内のいずれかである特許請
求の範囲第8項に記載の生体試料の測定方法。
[Claims] 1. Suspending insoluble carrier particles in a biological sample containing a target substance, causing the carrier particles to carry the target substance, and causing the target substance to undergo an antigen-antibody reaction in a reaction vessel. , separating the carrier particles from the liquid phase by centrifugation;
and a method for measuring a biological sample, comprising measuring the optical properties of the liquid phase while the carrier particles are present in the reaction vessel. 2. The method for measuring a biological sample according to claim 1, wherein the particle size of the carrier particles is within the range of 0.01 μm to one fin. 3. The method for measuring a biological sample according to claim 1, wherein the optical property is one of fluorescence intensity and fluorescence polarization degree. 4. Suspending insoluble carrier particles in a biological sample containing the target substance, adding a labeled target substance to the biological sample,
A biological method comprising causing the target substance and the labeled target substance to undergo an antigen-antibody reaction in a reaction container, separating the carrier particles from a liquid phase by centrifugation, and measuring optical properties of the liquid phase. How to measure the sample. 5. In a method for quantifying a target substance using an antigen-antibody reaction, after reacting a sample containing a target substance with a labeled target substance and a first receptor having specific binding property to the target substance,
□By adding a second receptor having specific binding properties to the receptor and causing a reaction, and then applying centrifugal force,
A method for measuring a biological sample in which a target substance contained in a sample is measured by separating a first receptor-reactive labeling compound that has reacted with a second receptor and a free labeling substance and measuring the physical quantity of the latter label. . 6. Suspending insoluble carrier particles in a biological sample containing the target substance, adding a receptor to the sample and allowing the receptor to be supported on the carrier particles, adding a labeled receptor, and separating the carrier particles by centrifugation. A method for measuring a biological sample, the method comprising: separating a liquid from a liquid phase; and measuring optical properties of the liquid phase. 7. A solid-phase receptor, in which inert carrier particles with an average particle size of 0.1 μm to 10 μm carry a receptor that has specific binding properties with the target substance, and the target substance are placed in a reaction vessel. After reacting the reaction mixture with the fluorescently labeled receptor, the reaction vessel is centrifugally rotated to separate the fluorescently labeled receptor that has reacted with the inphase complex and the free fluorescently labeled receptor,
Measurement of a biological sample, characterized in that the reaction vessel is irradiated with a light beam that excites the labeled fluorescent substance, the amount of fluorescence derived from the free fluorescently labeled receptor is measured, and the labeled substance is quantified based on the amount of fluorescence. Method. 8. The method for measuring a biological sample according to claim 7, wherein the carrier particles are a fine powder of an organic polymer substance or a fine powder of an inorganic substance that is substantially insoluble in an aqueous liquid medium. 9. The method for measuring a biological sample according to claim 8, wherein the organic polymer substance fine powder is a synthetic resin fine powder, bacteria, or cell membrane fragment. 10. The method for measuring a biological sample according to claim 8, wherein the organic polymer substance fine powder is polystyrene latex particles or styrene/pudadiene latex particles. 11. The method for measuring a biological sample according to claim 10, wherein the organic polymer substance fine powder is a magnetic latex particle. 12. The method for measuring a biological sample according to claim 8, wherein the inorganic substance fine powder is any one of metal, inorganic oxide, and mineral fine powder. 13. The method for measuring a biological sample according to claim 8, wherein the inorganic substance fine powder is any one of silica, alumina, and silica-alumina fine powder.
JP899784A 1984-01-20 1984-01-20 Measurement of biological sample Pending JPS60152954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP899784A JPS60152954A (en) 1984-01-20 1984-01-20 Measurement of biological sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP899784A JPS60152954A (en) 1984-01-20 1984-01-20 Measurement of biological sample

Publications (1)

Publication Number Publication Date
JPS60152954A true JPS60152954A (en) 1985-08-12

Family

ID=11708324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP899784A Pending JPS60152954A (en) 1984-01-20 1984-01-20 Measurement of biological sample

Country Status (1)

Country Link
JP (1) JPS60152954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272968A (en) * 1988-04-26 1989-10-31 Nippon Telegr & Teleph Corp <Ntt> Preparation of specimen in order to execute laser magnetic immunosassay

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116630A (en) * 1974-01-02 1975-09-12
JPS57132060A (en) * 1980-12-23 1982-08-16 Boehringer Mannheim Gmbh Peculiarly bonding protein and method of measuring one component in reaction of material able to be bonded thereto
JPS5973766A (en) * 1982-09-15 1984-04-26 オ−ソ・ダイアグノステイツク・システムズ・インコ−ポレ−テツド Device for separating, washing and reading ultrafine partic-le and its use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116630A (en) * 1974-01-02 1975-09-12
JPS57132060A (en) * 1980-12-23 1982-08-16 Boehringer Mannheim Gmbh Peculiarly bonding protein and method of measuring one component in reaction of material able to be bonded thereto
JPS5973766A (en) * 1982-09-15 1984-04-26 オ−ソ・ダイアグノステイツク・システムズ・インコ−ポレ−テツド Device for separating, washing and reading ultrafine partic-le and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272968A (en) * 1988-04-26 1989-10-31 Nippon Telegr & Teleph Corp <Ntt> Preparation of specimen in order to execute laser magnetic immunosassay

Similar Documents

Publication Publication Date Title
JP2854058B2 (en) Method and apparatus for performing an assay
JPH087215B2 (en) Method for detecting antigen and / or antibody and test kit for detection
JPS5949545B2 (en) Antibody, antigen or antibody: reagent for antigen complex analysis
JP7361492B2 (en) Laboratory systems and methods for separating interfering substances contained in test samples
JP2016533486A (en) Method for determining the result of an agglutination reaction and microplate for determining the product of the agglutination reaction
JP2006292410A (en) Analyzer and analysis device used therefor
JPH0545361A (en) Analysis for liquid sample and liquid sample analyzing substrate used for the analysis
US4977077A (en) Integrated solid-phase immunoassay
JP6545960B2 (en) Reagent for detection of target substance, detection method, carrier used for detection of target substance, and method for producing the same
JPH05302930A (en) Analyzer and analyzing method
CN101046479B (en) Process of preparing human serum base matter containing no target protein
US5242837A (en) Method for the rapid detection of analytes involving specific binding reactions and the use of light attenuating magnetic particles
US7851229B2 (en) Two-phase optical assay with unitized container and double or single sensor systems
EP0369176A2 (en) Method for immunoassay using photoacoustic spectroscopy
JPS60152954A (en) Measurement of biological sample
JPS6281567A (en) Quantification method using particle agglutination reaction
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
JPS6336151A (en) Quantitative determination of fine particle by measuring fluorescent intensity
JP3618797B2 (en) Immunoassay
JP2510551B2 (en) Method for measuring antigen-antibody reaction
JP2709296B2 (en) Immunological analysis method
JP2010078374A (en) Method of detecting anti-erythrocyte antibody
JPS6262291B2 (en)
GB1600069A (en) Method for the measurement of antigens and antibodies
JPS60152953A (en) Analyzer for immunological measurement